Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fsl_pq_mdio.c
Go to the documentation of this file.
1 /*
2  * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
3  * Provides Bus interface for MIIM regs
4  *
5  * Author: Andy Fleming <[email protected]>
6  * Modifier: Sandeep Gopalpet <[email protected]>
7  *
8  * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
9  *
10  * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License as published by the
14  * Free Software Foundation; either version 2 of the License, or (at your
15  * option) any later version.
16  *
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/mii.h>
27 #include <linux/of_address.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_device.h>
30 
31 #include <asm/io.h>
32 #include <asm/ucc.h> /* for ucc_set_qe_mux_mii_mng() */
33 
34 #include "gianfar.h"
35 
36 #define MIIMIND_BUSY 0x00000001
37 #define MIIMIND_NOTVALID 0x00000004
38 #define MIIMCFG_INIT_VALUE 0x00000007
39 #define MIIMCFG_RESET 0x80000000
40 
41 #define MII_READ_COMMAND 0x00000001
42 
43 struct fsl_pq_mii {
44  u32 miimcfg; /* MII management configuration reg */
45  u32 miimcom; /* MII management command reg */
46  u32 miimadd; /* MII management address reg */
47  u32 miimcon; /* MII management control reg */
48  u32 miimstat; /* MII management status reg */
49  u32 miimind; /* MII management indication reg */
50 };
51 
52 struct fsl_pq_mdio {
53  u8 res1[16];
54  u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/
55  u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/
56  u8 res2[4];
57  u32 emapm; /* MDIO Event mapping register (for etsec2)*/
58  u8 res3[1280];
59  struct fsl_pq_mii mii;
60  u8 res4[28];
61  u32 utbipar; /* TBI phy address reg (only on UCC) */
62  u8 res5[2728];
63 } __packed;
64 
65 /* Number of microseconds to wait for an MII register to respond */
66 #define MII_TIMEOUT 1000
67 
69  void __iomem *map;
72 };
73 
74 /*
75  * Per-device-type data. Each type of device tree node that we support gets
76  * one of these.
77  *
78  * @mii_offset: the offset of the MII registers within the memory map of the
79  * node. Some nodes define only the MII registers, and some define the whole
80  * MAC (which includes the MII registers).
81  *
82  * @get_tbipa: determines the address of the TBIPA register
83  *
84  * @ucc_configure: a special function for extra QE configuration
85  */
87  unsigned int mii_offset; /* offset of the MII registers */
88  uint32_t __iomem * (*get_tbipa)(void __iomem *p);
90 };
91 
92 /*
93  * Write value to the PHY at mii_id at register regnum, on the bus attached
94  * to the local interface, which may be different from the generic mdio bus
95  * (tied to a single interface), waiting until the write is done before
96  * returning. This is helpful in programming interfaces like the TBI which
97  * control interfaces like onchip SERDES and are always tied to the local
98  * mdio pins, which may not be the same as system mdio bus, used for
99  * controlling the external PHYs, for example.
100  */
101 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
102  u16 value)
103 {
104  struct fsl_pq_mdio_priv *priv = bus->priv;
105  struct fsl_pq_mii __iomem *regs = priv->regs;
106  u32 status;
107 
108  /* Set the PHY address and the register address we want to write */
109  out_be32(&regs->miimadd, (mii_id << 8) | regnum);
110 
111  /* Write out the value we want */
112  out_be32(&regs->miimcon, value);
113 
114  /* Wait for the transaction to finish */
115  status = spin_event_timeout(!(in_be32(&regs->miimind) & MIIMIND_BUSY),
116  MII_TIMEOUT, 0);
117 
118  return status ? 0 : -ETIMEDOUT;
119 }
120 
121 /*
122  * Read the bus for PHY at addr mii_id, register regnum, and return the value.
123  * Clears miimcom first.
124  *
125  * All PHY operation done on the bus attached to the local interface, which
126  * may be different from the generic mdio bus. This is helpful in programming
127  * interfaces like the TBI which, in turn, control interfaces like on-chip
128  * SERDES and are always tied to the local mdio pins, which may not be the
129  * same as system mdio bus, used for controlling the external PHYs, for eg.
130  */
131 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
132 {
133  struct fsl_pq_mdio_priv *priv = bus->priv;
134  struct fsl_pq_mii __iomem *regs = priv->regs;
135  u32 status;
136  u16 value;
137 
138  /* Set the PHY address and the register address we want to read */
139  out_be32(&regs->miimadd, (mii_id << 8) | regnum);
140 
141  /* Clear miimcom, and then initiate a read */
142  out_be32(&regs->miimcom, 0);
144 
145  /* Wait for the transaction to finish, normally less than 100us */
146  status = spin_event_timeout(!(in_be32(&regs->miimind) &
148  MII_TIMEOUT, 0);
149  if (!status)
150  return -ETIMEDOUT;
151 
152  /* Grab the value of the register from miimstat */
153  value = in_be32(&regs->miimstat);
154 
155  dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
156  return value;
157 }
158 
159 /* Reset the MIIM registers, and wait for the bus to free */
160 static int fsl_pq_mdio_reset(struct mii_bus *bus)
161 {
162  struct fsl_pq_mdio_priv *priv = bus->priv;
163  struct fsl_pq_mii __iomem *regs = priv->regs;
164  u32 status;
165 
166  mutex_lock(&bus->mdio_lock);
167 
168  /* Reset the management interface */
169  out_be32(&regs->miimcfg, MIIMCFG_RESET);
170 
171  /* Setup the MII Mgmt clock speed */
173 
174  /* Wait until the bus is free */
175  status = spin_event_timeout(!(in_be32(&regs->miimind) & MIIMIND_BUSY),
176  MII_TIMEOUT, 0);
177 
178  mutex_unlock(&bus->mdio_lock);
179 
180  if (!status) {
181  dev_err(&bus->dev, "timeout waiting for MII bus\n");
182  return -EBUSY;
183  }
184 
185  return 0;
186 }
187 
188 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
189 /*
190  * This is mildly evil, but so is our hardware for doing this.
191  * Also, we have to cast back to struct gfar because of
192  * definition weirdness done in gianfar.h.
193  */
194 static uint32_t __iomem *get_gfar_tbipa(void __iomem *p)
195 {
196  struct gfar __iomem *enet_regs = p;
197 
198  return &enet_regs->tbipa;
199 }
200 
201 /*
202  * Return the TBIPAR address for an eTSEC2 node
203  */
204 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
205 {
206  return p;
207 }
208 #endif
209 
210 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
211 /*
212  * Return the TBIPAR address for a QE MDIO node
213  */
214 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
215 {
216  struct fsl_pq_mdio __iomem *mdio = p;
217 
218  return &mdio->utbipar;
219 }
220 
221 /*
222  * Find the UCC node that controls the given MDIO node
223  *
224  * For some reason, the QE MDIO nodes are not children of the UCC devices
225  * that control them. Therefore, we need to scan all UCC nodes looking for
226  * the one that encompases the given MDIO node. We do this by comparing
227  * physical addresses. The 'start' and 'end' addresses of the MDIO node are
228  * passed, and the correct UCC node will cover the entire address range.
229  *
230  * This assumes that there is only one QE MDIO node in the entire device tree.
231  */
232 static void ucc_configure(phys_addr_t start, phys_addr_t end)
233 {
234  static bool found_mii_master;
235  struct device_node *np = NULL;
236 
237  if (found_mii_master)
238  return;
239 
240  for_each_compatible_node(np, NULL, "ucc_geth") {
241  struct resource res;
242  const uint32_t *iprop;
243  uint32_t id;
244  int ret;
245 
246  ret = of_address_to_resource(np, 0, &res);
247  if (ret < 0) {
248  pr_debug("fsl-pq-mdio: no address range in node %s\n",
249  np->full_name);
250  continue;
251  }
252 
253  /* if our mdio regs fall within this UCC regs range */
254  if ((start < res.start) || (end > res.end))
255  continue;
256 
257  iprop = of_get_property(np, "cell-index", NULL);
258  if (!iprop) {
259  iprop = of_get_property(np, "device-id", NULL);
260  if (!iprop) {
261  pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
262  np->full_name);
263  continue;
264  }
265  }
266 
267  id = be32_to_cpup(iprop);
268 
269  /*
270  * cell-index and device-id for QE nodes are
271  * numbered from 1, not 0.
272  */
273  if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
274  pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
275  np->full_name);
276  continue;
277  }
278 
279  pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
280  found_mii_master = true;
281  }
282 }
283 
284 #endif
285 
286 static struct of_device_id fsl_pq_mdio_match[] = {
287 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
288  {
289  .compatible = "fsl,gianfar-tbi",
290  .data = &(struct fsl_pq_mdio_data) {
291  .mii_offset = 0,
292  .get_tbipa = get_gfar_tbipa,
293  },
294  },
295  {
296  .compatible = "fsl,gianfar-mdio",
297  .data = &(struct fsl_pq_mdio_data) {
298  .mii_offset = 0,
299  .get_tbipa = get_gfar_tbipa,
300  },
301  },
302  {
303  .type = "mdio",
304  .compatible = "gianfar",
305  .data = &(struct fsl_pq_mdio_data) {
306  .mii_offset = offsetof(struct fsl_pq_mdio, mii),
307  .get_tbipa = get_gfar_tbipa,
308  },
309  },
310  {
311  .compatible = "fsl,etsec2-tbi",
312  .data = &(struct fsl_pq_mdio_data) {
313  .mii_offset = offsetof(struct fsl_pq_mdio, mii),
314  .get_tbipa = get_etsec_tbipa,
315  },
316  },
317  {
318  .compatible = "fsl,etsec2-mdio",
319  .data = &(struct fsl_pq_mdio_data) {
320  .mii_offset = offsetof(struct fsl_pq_mdio, mii),
321  .get_tbipa = get_etsec_tbipa,
322  },
323  },
324 #endif
325 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
326  {
327  .compatible = "fsl,ucc-mdio",
328  .data = &(struct fsl_pq_mdio_data) {
329  .mii_offset = 0,
330  .get_tbipa = get_ucc_tbipa,
331  .ucc_configure = ucc_configure,
332  },
333  },
334  {
335  /* Legacy UCC MDIO node */
336  .type = "mdio",
337  .compatible = "ucc_geth_phy",
338  .data = &(struct fsl_pq_mdio_data) {
339  .mii_offset = 0,
340  .get_tbipa = get_ucc_tbipa,
341  .ucc_configure = ucc_configure,
342  },
343  },
344 #endif
345  /* No Kconfig option for Fman support yet */
346  {
347  .compatible = "fsl,fman-mdio",
348  .data = &(struct fsl_pq_mdio_data) {
349  .mii_offset = 0,
350  /* Fman TBI operations are handled elsewhere */
351  },
352  },
353 
354  {},
355 };
356 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
357 
358 static int fsl_pq_mdio_probe(struct platform_device *pdev)
359 {
360  const struct of_device_id *id =
361  of_match_device(fsl_pq_mdio_match, &pdev->dev);
362  const struct fsl_pq_mdio_data *data = id->data;
363  struct device_node *np = pdev->dev.of_node;
364  struct resource res;
365  struct device_node *tbi;
366  struct fsl_pq_mdio_priv *priv;
367  struct mii_bus *new_bus;
368  int err;
369 
370  dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
371 
372  new_bus = mdiobus_alloc_size(sizeof(*priv));
373  if (!new_bus)
374  return -ENOMEM;
375 
376  priv = new_bus->priv;
377  new_bus->name = "Freescale PowerQUICC MII Bus",
378  new_bus->read = &fsl_pq_mdio_read;
379  new_bus->write = &fsl_pq_mdio_write;
380  new_bus->reset = &fsl_pq_mdio_reset;
381  new_bus->irq = priv->irqs;
382 
383  err = of_address_to_resource(np, 0, &res);
384  if (err < 0) {
385  dev_err(&pdev->dev, "could not obtain address information\n");
386  goto error;
387  }
388 
389  snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
390  (unsigned long long)res.start);
391 
392  priv->map = of_iomap(np, 0);
393  if (!priv->map) {
394  err = -ENOMEM;
395  goto error;
396  }
397 
398  /*
399  * Some device tree nodes represent only the MII registers, and
400  * others represent the MAC and MII registers. The 'mii_offset' field
401  * contains the offset of the MII registers inside the mapped register
402  * space.
403  */
404  if (data->mii_offset > resource_size(&res)) {
405  dev_err(&pdev->dev, "invalid register map\n");
406  err = -EINVAL;
407  goto error;
408  }
409  priv->regs = priv->map + data->mii_offset;
410 
411  new_bus->parent = &pdev->dev;
412  dev_set_drvdata(&pdev->dev, new_bus);
413 
414  if (data->get_tbipa) {
415  for_each_child_of_node(np, tbi) {
416  if (strcmp(tbi->type, "tbi-phy") == 0) {
417  dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
418  strrchr(tbi->full_name, '/') + 1);
419  break;
420  }
421  }
422 
423  if (tbi) {
424  const u32 *prop = of_get_property(tbi, "reg", NULL);
425  uint32_t __iomem *tbipa;
426 
427  if (!prop) {
428  dev_err(&pdev->dev,
429  "missing 'reg' property in node %s\n",
430  tbi->full_name);
431  err = -EBUSY;
432  goto error;
433  }
434 
435  tbipa = data->get_tbipa(priv->map);
436 
437  out_be32(tbipa, be32_to_cpup(prop));
438  }
439  }
440 
441  if (data->ucc_configure)
442  data->ucc_configure(res.start, res.end);
443 
444  err = of_mdiobus_register(new_bus, np);
445  if (err) {
446  dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
447  new_bus->name);
448  goto error;
449  }
450 
451  return 0;
452 
453 error:
454  if (priv->map)
455  iounmap(priv->map);
456 
457  kfree(new_bus);
458 
459  return err;
460 }
461 
462 
463 static int fsl_pq_mdio_remove(struct platform_device *pdev)
464 {
465  struct device *device = &pdev->dev;
466  struct mii_bus *bus = dev_get_drvdata(device);
467  struct fsl_pq_mdio_priv *priv = bus->priv;
468 
469  mdiobus_unregister(bus);
470 
471  dev_set_drvdata(device, NULL);
472 
473  iounmap(priv->map);
474  mdiobus_free(bus);
475 
476  return 0;
477 }
478 
479 static struct platform_driver fsl_pq_mdio_driver = {
480  .driver = {
481  .name = "fsl-pq_mdio",
482  .owner = THIS_MODULE,
483  .of_match_table = fsl_pq_mdio_match,
484  },
485  .probe = fsl_pq_mdio_probe,
486  .remove = fsl_pq_mdio_remove,
487 };
488 
489 module_platform_driver(fsl_pq_mdio_driver);
490 
491 MODULE_LICENSE("GPL");