Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
grufault.c
Go to the documentation of this file.
1 /*
2  * SN Platform GRU Driver
3  *
4  * FAULT HANDLER FOR GRU DETECTED TLB MISSES
5  *
6  * This file contains code that handles TLB misses within the GRU.
7  * These misses are reported either via interrupts or user polling of
8  * the user CB.
9  *
10  * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <linux/security.h>
36 #include <linux/prefetch.h>
37 #include <asm/pgtable.h>
38 #include "gru.h"
39 #include "grutables.h"
40 #include "grulib.h"
41 #include "gru_instructions.h"
42 #include <asm/uv/uv_hub.h>
43 
44 /* Return codes for vtop functions */
45 #define VTOP_SUCCESS 0
46 #define VTOP_INVALID -1
47 #define VTOP_RETRY -2
48 
49 
50 /*
51  * Test if a physical address is a valid GRU GSEG address
52  */
53 static inline int is_gru_paddr(unsigned long paddr)
54 {
55  return paddr >= gru_start_paddr && paddr < gru_end_paddr;
56 }
57 
58 /*
59  * Find the vma of a GRU segment. Caller must hold mmap_sem.
60  */
61 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
62 {
63  struct vm_area_struct *vma;
64 
65  vma = find_vma(current->mm, vaddr);
66  if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
67  return vma;
68  return NULL;
69 }
70 
71 /*
72  * Find and lock the gts that contains the specified user vaddr.
73  *
74  * Returns:
75  * - *gts with the mmap_sem locked for read and the GTS locked.
76  * - NULL if vaddr invalid OR is not a valid GSEG vaddr.
77  */
78 
79 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
80 {
81  struct mm_struct *mm = current->mm;
82  struct vm_area_struct *vma;
83  struct gru_thread_state *gts = NULL;
84 
85  down_read(&mm->mmap_sem);
86  vma = gru_find_vma(vaddr);
87  if (vma)
88  gts = gru_find_thread_state(vma, TSID(vaddr, vma));
89  if (gts)
90  mutex_lock(&gts->ts_ctxlock);
91  else
92  up_read(&mm->mmap_sem);
93  return gts;
94 }
95 
96 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
97 {
98  struct mm_struct *mm = current->mm;
99  struct vm_area_struct *vma;
100  struct gru_thread_state *gts = ERR_PTR(-EINVAL);
101 
102  down_write(&mm->mmap_sem);
103  vma = gru_find_vma(vaddr);
104  if (!vma)
105  goto err;
106 
107  gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
108  if (IS_ERR(gts))
109  goto err;
110  mutex_lock(&gts->ts_ctxlock);
112  return gts;
113 
114 err:
115  up_write(&mm->mmap_sem);
116  return gts;
117 }
118 
119 /*
120  * Unlock a GTS that was previously locked with gru_find_lock_gts().
121  */
122 static void gru_unlock_gts(struct gru_thread_state *gts)
123 {
124  mutex_unlock(&gts->ts_ctxlock);
125  up_read(&current->mm->mmap_sem);
126 }
127 
128 /*
129  * Set a CB.istatus to active using a user virtual address. This must be done
130  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
131  * If the line is evicted, the status may be lost. The in-cache update
132  * is necessary to prevent the user from seeing a stale cb.istatus that will
133  * change as soon as the TFH restart is complete. Races may cause an
134  * occasional failure to clear the cb.istatus, but that is ok.
135  */
136 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
137 {
138  if (cbk) {
139  cbk->istatus = CBS_ACTIVE;
140  }
141 }
142 
143 /*
144  * Read & clear a TFM
145  *
146  * The GRU has an array of fault maps. A map is private to a cpu
147  * Only one cpu will be accessing a cpu's fault map.
148  *
149  * This function scans the cpu-private fault map & clears all bits that
150  * are set. The function returns a bitmap that indicates the bits that
151  * were cleared. Note that sense the maps may be updated asynchronously by
152  * the GRU, atomic operations must be used to clear bits.
153  */
154 static void get_clear_fault_map(struct gru_state *gru,
155  struct gru_tlb_fault_map *imap,
156  struct gru_tlb_fault_map *dmap)
157 {
158  unsigned long i, k;
159  struct gru_tlb_fault_map *tfm;
160 
162  prefetchw(tfm); /* Helps on hardware, required for emulator */
163  for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
164  k = tfm->fault_bits[i];
165  if (k)
166  k = xchg(&tfm->fault_bits[i], 0UL);
167  imap->fault_bits[i] = k;
168  k = tfm->done_bits[i];
169  if (k)
170  k = xchg(&tfm->done_bits[i], 0UL);
171  dmap->fault_bits[i] = k;
172  }
173 
174  /*
175  * Not functionally required but helps performance. (Required
176  * on emulator)
177  */
178  gru_flush_cache(tfm);
179 }
180 
181 /*
182  * Atomic (interrupt context) & non-atomic (user context) functions to
183  * convert a vaddr into a physical address. The size of the page
184  * is returned in pageshift.
185  * returns:
186  * 0 - successful
187  * < 0 - error code
188  * 1 - (atomic only) try again in non-atomic context
189  */
190 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
191  unsigned long vaddr, int write,
192  unsigned long *paddr, int *pageshift)
193 {
194  struct page *page;
195 
196 #ifdef CONFIG_HUGETLB_PAGE
197  *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
198 #else
199  *pageshift = PAGE_SHIFT;
200 #endif
201  if (get_user_pages
202  (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
203  return -EFAULT;
204  *paddr = page_to_phys(page);
205  put_page(page);
206  return 0;
207 }
208 
209 /*
210  * atomic_pte_lookup
211  *
212  * Convert a user virtual address to a physical address
213  * Only supports Intel large pages (2MB only) on x86_64.
214  * ZZZ - hugepage support is incomplete
215  *
216  * NOTE: mmap_sem is already held on entry to this function. This
217  * guarantees existence of the page tables.
218  */
219 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
220  int write, unsigned long *paddr, int *pageshift)
221 {
222  pgd_t *pgdp;
223  pmd_t *pmdp;
224  pud_t *pudp;
225  pte_t pte;
226 
227  pgdp = pgd_offset(vma->vm_mm, vaddr);
228  if (unlikely(pgd_none(*pgdp)))
229  goto err;
230 
231  pudp = pud_offset(pgdp, vaddr);
232  if (unlikely(pud_none(*pudp)))
233  goto err;
234 
235  pmdp = pmd_offset(pudp, vaddr);
236  if (unlikely(pmd_none(*pmdp)))
237  goto err;
238 #ifdef CONFIG_X86_64
239  if (unlikely(pmd_large(*pmdp)))
240  pte = *(pte_t *) pmdp;
241  else
242 #endif
243  pte = *pte_offset_kernel(pmdp, vaddr);
244 
245  if (unlikely(!pte_present(pte) ||
246  (write && (!pte_write(pte) || !pte_dirty(pte)))))
247  return 1;
248 
249  *paddr = pte_pfn(pte) << PAGE_SHIFT;
250 #ifdef CONFIG_HUGETLB_PAGE
251  *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
252 #else
253  *pageshift = PAGE_SHIFT;
254 #endif
255  return 0;
256 
257 err:
258  return 1;
259 }
260 
261 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
262  int write, int atomic, unsigned long *gpa, int *pageshift)
263 {
264  struct mm_struct *mm = gts->ts_mm;
265  struct vm_area_struct *vma;
266  unsigned long paddr;
267  int ret, ps;
268 
269  vma = find_vma(mm, vaddr);
270  if (!vma)
271  goto inval;
272 
273  /*
274  * Atomic lookup is faster & usually works even if called in non-atomic
275  * context.
276  */
277  rmb(); /* Must/check ms_range_active before loading PTEs */
278  ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
279  if (ret) {
280  if (atomic)
281  goto upm;
282  if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
283  goto inval;
284  }
285  if (is_gru_paddr(paddr))
286  goto inval;
287  paddr = paddr & ~((1UL << ps) - 1);
288  *gpa = uv_soc_phys_ram_to_gpa(paddr);
289  *pageshift = ps;
290  return VTOP_SUCCESS;
291 
292 inval:
293  return VTOP_INVALID;
294 upm:
295  return VTOP_RETRY;
296 }
297 
298 
299 /*
300  * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
301  * CBE cacheline so that the line will be written back to home agent.
302  * Otherwise the line may be silently dropped. This has no impact
303  * except on performance.
304  */
305 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
306 {
307  if (unlikely(cbe)) {
308  cbe->cbrexecstatus = 0; /* make CL dirty */
309  gru_flush_cache(cbe);
310  }
311 }
312 
313 /*
314  * Preload the TLB with entries that may be required. Currently, preloading
315  * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to
316  * the end of the bcopy tranfer, whichever is smaller.
317  */
318 static void gru_preload_tlb(struct gru_state *gru,
319  struct gru_thread_state *gts, int atomic,
320  unsigned long fault_vaddr, int asid, int write,
321  unsigned char tlb_preload_count,
322  struct gru_tlb_fault_handle *tfh,
323  struct gru_control_block_extended *cbe)
324 {
325  unsigned long vaddr = 0, gpa;
326  int ret, pageshift;
327 
328  if (cbe->opccpy != OP_BCOPY)
329  return;
330 
331  if (fault_vaddr == cbe->cbe_baddr0)
332  vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
333  else if (fault_vaddr == cbe->cbe_baddr1)
334  vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
335 
336  fault_vaddr &= PAGE_MASK;
337  vaddr &= PAGE_MASK;
338  vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
339 
340  while (vaddr > fault_vaddr) {
341  ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
342  if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
343  GRU_PAGESIZE(pageshift)))
344  return;
345  gru_dbg(grudev,
346  "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
347  atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
348  vaddr, asid, write, pageshift, gpa);
349  vaddr -= PAGE_SIZE;
350  STAT(tlb_preload_page);
351  }
352 }
353 
354 /*
355  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
356  * Input:
357  * cb Address of user CBR. Null if not running in user context
358  * Return:
359  * 0 = dropin, exception, or switch to UPM successful
360  * 1 = range invalidate active
361  * < 0 = error code
362  *
363  */
364 static int gru_try_dropin(struct gru_state *gru,
365  struct gru_thread_state *gts,
366  struct gru_tlb_fault_handle *tfh,
367  struct gru_instruction_bits *cbk)
368 {
369  struct gru_control_block_extended *cbe = NULL;
370  unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
371  int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
372  unsigned long gpa = 0, vaddr = 0;
373 
374  /*
375  * NOTE: The GRU contains magic hardware that eliminates races between
376  * TLB invalidates and TLB dropins. If an invalidate occurs
377  * in the window between reading the TFH and the subsequent TLB dropin,
378  * the dropin is ignored. This eliminates the need for additional locks.
379  */
380 
381  /*
382  * Prefetch the CBE if doing TLB preloading
383  */
384  if (unlikely(tlb_preload_count)) {
385  cbe = gru_tfh_to_cbe(tfh);
386  prefetchw(cbe);
387  }
388 
389  /*
390  * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
391  * Might be a hardware race OR a stupid user. Ignore FMM because FMM
392  * is a transient state.
393  */
394  if (tfh->status != TFHSTATUS_EXCEPTION) {
395  gru_flush_cache(tfh);
396  sync_core();
397  if (tfh->status != TFHSTATUS_EXCEPTION)
398  goto failnoexception;
399  STAT(tfh_stale_on_fault);
400  }
401  if (tfh->state == TFHSTATE_IDLE)
402  goto failidle;
403  if (tfh->state == TFHSTATE_MISS_FMM && cbk)
404  goto failfmm;
405 
406  write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
407  vaddr = tfh->missvaddr;
408  asid = tfh->missasid;
409  indexway = tfh->indexway;
410  if (asid == 0)
411  goto failnoasid;
412 
413  rmb(); /* TFH must be cache resident before reading ms_range_active */
414 
415  /*
416  * TFH is cache resident - at least briefly. Fail the dropin
417  * if a range invalidate is active.
418  */
419  if (atomic_read(&gts->ts_gms->ms_range_active))
420  goto failactive;
421 
422  ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
423  if (ret == VTOP_INVALID)
424  goto failinval;
425  if (ret == VTOP_RETRY)
426  goto failupm;
427 
428  if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
429  gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
430  if (atomic || !gru_update_cch(gts)) {
431  gts->ts_force_cch_reload = 1;
432  goto failupm;
433  }
434  }
435 
436  if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
437  gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
438  gru_flush_cache_cbe(cbe);
439  }
440 
441  gru_cb_set_istatus_active(cbk);
442  gts->ustats.tlbdropin++;
443  tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
444  GRU_PAGESIZE(pageshift));
445  gru_dbg(grudev,
446  "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
447  " rw %d, ps %d, gpa 0x%lx\n",
448  atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
449  indexway, write, pageshift, gpa);
450  STAT(tlb_dropin);
451  return 0;
452 
453 failnoasid:
454  /* No asid (delayed unload). */
455  STAT(tlb_dropin_fail_no_asid);
456  gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
457  if (!cbk)
459  else
460  gru_flush_cache(tfh);
461  gru_flush_cache_cbe(cbe);
462  return -EAGAIN;
463 
464 failupm:
465  /* Atomic failure switch CBR to UPM */
467  gru_flush_cache_cbe(cbe);
468  STAT(tlb_dropin_fail_upm);
469  gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
470  return 1;
471 
472 failfmm:
473  /* FMM state on UPM call */
474  gru_flush_cache(tfh);
475  gru_flush_cache_cbe(cbe);
476  STAT(tlb_dropin_fail_fmm);
477  gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
478  return 0;
479 
480 failnoexception:
481  /* TFH status did not show exception pending */
482  gru_flush_cache(tfh);
483  gru_flush_cache_cbe(cbe);
484  if (cbk)
485  gru_flush_cache(cbk);
486  STAT(tlb_dropin_fail_no_exception);
487  gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
488  tfh, tfh->status, tfh->state);
489  return 0;
490 
491 failidle:
492  /* TFH state was idle - no miss pending */
493  gru_flush_cache(tfh);
494  gru_flush_cache_cbe(cbe);
495  if (cbk)
496  gru_flush_cache(cbk);
497  STAT(tlb_dropin_fail_idle);
498  gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
499  return 0;
500 
501 failinval:
502  /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
503  tfh_exception(tfh);
504  gru_flush_cache_cbe(cbe);
505  STAT(tlb_dropin_fail_invalid);
506  gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
507  return -EFAULT;
508 
509 failactive:
510  /* Range invalidate active. Switch to UPM iff atomic */
511  if (!cbk)
513  else
514  gru_flush_cache(tfh);
515  gru_flush_cache_cbe(cbe);
516  STAT(tlb_dropin_fail_range_active);
517  gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
518  tfh, vaddr);
519  return 1;
520 }
521 
522 /*
523  * Process an external interrupt from the GRU. This interrupt is
524  * caused by a TLB miss.
525  * Note that this is the interrupt handler that is registered with linux
526  * interrupt handlers.
527  */
528 static irqreturn_t gru_intr(int chiplet, int blade)
529 {
530  struct gru_state *gru;
531  struct gru_tlb_fault_map imap, dmap;
532  struct gru_thread_state *gts;
533  struct gru_tlb_fault_handle *tfh = NULL;
534  struct completion *cmp;
535  int cbrnum, ctxnum;
536 
537  STAT(intr);
538 
539  gru = &gru_base[blade]->bs_grus[chiplet];
540  if (!gru) {
541  dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
542  raw_smp_processor_id(), chiplet);
543  return IRQ_NONE;
544  }
545  get_clear_fault_map(gru, &imap, &dmap);
546  gru_dbg(grudev,
547  "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
548  smp_processor_id(), chiplet, gru->gs_gid,
549  imap.fault_bits[0], imap.fault_bits[1],
550  dmap.fault_bits[0], dmap.fault_bits[1]);
551 
552  for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
553  STAT(intr_cbr);
554  cmp = gru->gs_blade->bs_async_wq;
555  if (cmp)
556  complete(cmp);
557  gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
558  gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
559  }
560 
561  for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
562  STAT(intr_tfh);
563  tfh = get_tfh_by_index(gru, cbrnum);
564  prefetchw(tfh); /* Helps on hdw, required for emulator */
565 
566  /*
567  * When hardware sets a bit in the faultmap, it implicitly
568  * locks the GRU context so that it cannot be unloaded.
569  * The gts cannot change until a TFH start/writestart command
570  * is issued.
571  */
572  ctxnum = tfh->ctxnum;
573  gts = gru->gs_gts[ctxnum];
574 
575  /* Spurious interrupts can cause this. Ignore. */
576  if (!gts) {
577  STAT(intr_spurious);
578  continue;
579  }
580 
581  /*
582  * This is running in interrupt context. Trylock the mmap_sem.
583  * If it fails, retry the fault in user context.
584  */
585  gts->ustats.fmm_tlbmiss++;
586  if (!gts->ts_force_cch_reload &&
587  down_read_trylock(&gts->ts_mm->mmap_sem)) {
588  gru_try_dropin(gru, gts, tfh, NULL);
589  up_read(&gts->ts_mm->mmap_sem);
590  } else {
592  STAT(intr_mm_lock_failed);
593  }
594  }
595  return IRQ_HANDLED;
596 }
597 
598 irqreturn_t gru0_intr(int irq, void *dev_id)
599 {
600  return gru_intr(0, uv_numa_blade_id());
601 }
602 
603 irqreturn_t gru1_intr(int irq, void *dev_id)
604 {
605  return gru_intr(1, uv_numa_blade_id());
606 }
607 
609 {
610  int blade;
611 
612  for_each_possible_blade(blade) {
613  if (uv_blade_nr_possible_cpus(blade))
614  continue;
615  gru_intr(0, blade);
616  gru_intr(1, blade);
617  }
618  return IRQ_HANDLED;
619 }
620 
621 
622 static int gru_user_dropin(struct gru_thread_state *gts,
623  struct gru_tlb_fault_handle *tfh,
624  void *cb)
625 {
626  struct gru_mm_struct *gms = gts->ts_gms;
627  int ret;
628 
629  gts->ustats.upm_tlbmiss++;
630  while (1) {
632  atomic_read(&gms->ms_range_active) == 0);
633  prefetchw(tfh); /* Helps on hdw, required for emulator */
634  ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
635  if (ret <= 0)
636  return ret;
637  STAT(call_os_wait_queue);
638  }
639 }
640 
641 /*
642  * This interface is called as a result of a user detecting a "call OS" bit
643  * in a user CB. Normally means that a TLB fault has occurred.
644  * cb - user virtual address of the CB
645  */
646 int gru_handle_user_call_os(unsigned long cb)
647 {
648  struct gru_tlb_fault_handle *tfh;
649  struct gru_thread_state *gts;
650  void *cbk;
651  int ucbnum, cbrnum, ret = -EINVAL;
652 
653  STAT(call_os);
654 
655  /* sanity check the cb pointer */
656  ucbnum = get_cb_number((void *)cb);
657  if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
658  return -EINVAL;
659 
660  gts = gru_find_lock_gts(cb);
661  if (!gts)
662  return -EINVAL;
663  gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
664 
665  if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
666  goto exit;
667 
669 
670  /*
671  * CCH may contain stale data if ts_force_cch_reload is set.
672  */
673  if (gts->ts_gru && gts->ts_force_cch_reload) {
674  gts->ts_force_cch_reload = 0;
675  gru_update_cch(gts);
676  }
677 
678  ret = -EAGAIN;
679  cbrnum = thread_cbr_number(gts, ucbnum);
680  if (gts->ts_gru) {
681  tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
682  cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
683  gts->ts_ctxnum, ucbnum);
684  ret = gru_user_dropin(gts, tfh, cbk);
685  }
686 exit:
687  gru_unlock_gts(gts);
688  return ret;
689 }
690 
691 /*
692  * Fetch the exception detail information for a CB that terminated with
693  * an exception.
694  */
695 int gru_get_exception_detail(unsigned long arg)
696 {
697  struct control_block_extended_exc_detail excdet;
698  struct gru_control_block_extended *cbe;
699  struct gru_thread_state *gts;
700  int ucbnum, cbrnum, ret;
701 
703  if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
704  return -EFAULT;
705 
706  gts = gru_find_lock_gts(excdet.cb);
707  if (!gts)
708  return -EINVAL;
709 
710  gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
711  ucbnum = get_cb_number((void *)excdet.cb);
712  if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
713  ret = -EINVAL;
714  } else if (gts->ts_gru) {
715  cbrnum = thread_cbr_number(gts, ucbnum);
716  cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
717  gru_flush_cache(cbe); /* CBE not coherent */
718  sync_core(); /* make sure we are have current data */
719  excdet.opc = cbe->opccpy;
720  excdet.exopc = cbe->exopccpy;
721  excdet.ecause = cbe->ecause;
722  excdet.exceptdet0 = cbe->idef1upd;
723  excdet.exceptdet1 = cbe->idef3upd;
724  excdet.cbrstate = cbe->cbrstate;
725  excdet.cbrexecstatus = cbe->cbrexecstatus;
726  gru_flush_cache_cbe(cbe);
727  ret = 0;
728  } else {
729  ret = -EAGAIN;
730  }
731  gru_unlock_gts(gts);
732 
733  gru_dbg(grudev,
734  "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
735  "exdet0 0x%lx, exdet1 0x%x\n",
736  excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
737  excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
738  if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
739  ret = -EFAULT;
740  return ret;
741 }
742 
743 /*
744  * User request to unload a context. Content is saved for possible reload.
745  */
746 static int gru_unload_all_contexts(void)
747 {
748  struct gru_thread_state *gts;
749  struct gru_state *gru;
750  int gid, ctxnum;
751 
752  if (!capable(CAP_SYS_ADMIN))
753  return -EPERM;
754  foreach_gid(gid) {
755  gru = GID_TO_GRU(gid);
756  spin_lock(&gru->gs_lock);
757  for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
758  gts = gru->gs_gts[ctxnum];
759  if (gts && mutex_trylock(&gts->ts_ctxlock)) {
760  spin_unlock(&gru->gs_lock);
761  gru_unload_context(gts, 1);
762  mutex_unlock(&gts->ts_ctxlock);
763  spin_lock(&gru->gs_lock);
764  }
765  }
766  spin_unlock(&gru->gs_lock);
767  }
768  return 0;
769 }
770 
771 int gru_user_unload_context(unsigned long arg)
772 {
773  struct gru_thread_state *gts;
774  struct gru_unload_context_req req;
775 
776  STAT(user_unload_context);
777  if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
778  return -EFAULT;
779 
780  gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
781 
782  if (!req.gseg)
783  return gru_unload_all_contexts();
784 
785  gts = gru_find_lock_gts(req.gseg);
786  if (!gts)
787  return -EINVAL;
788 
789  if (gts->ts_gru)
790  gru_unload_context(gts, 1);
791  gru_unlock_gts(gts);
792 
793  return 0;
794 }
795 
796 /*
797  * User request to flush a range of virtual addresses from the GRU TLB
798  * (Mainly for testing).
799  */
800 int gru_user_flush_tlb(unsigned long arg)
801 {
802  struct gru_thread_state *gts;
803  struct gru_flush_tlb_req req;
804  struct gru_mm_struct *gms;
805 
806  STAT(user_flush_tlb);
807  if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
808  return -EFAULT;
809 
810  gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
811  req.vaddr, req.len);
812 
813  gts = gru_find_lock_gts(req.gseg);
814  if (!gts)
815  return -EINVAL;
816 
817  gms = gts->ts_gms;
818  gru_unlock_gts(gts);
819  gru_flush_tlb_range(gms, req.vaddr, req.len);
820 
821  return 0;
822 }
823 
824 /*
825  * Fetch GSEG statisticss
826  */
827 long gru_get_gseg_statistics(unsigned long arg)
828 {
829  struct gru_thread_state *gts;
830  struct gru_get_gseg_statistics_req req;
831 
832  if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
833  return -EFAULT;
834 
835  /*
836  * The library creates arrays of contexts for threaded programs.
837  * If no gts exists in the array, the context has never been used & all
838  * statistics are implicitly 0.
839  */
840  gts = gru_find_lock_gts(req.gseg);
841  if (gts) {
842  memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
843  gru_unlock_gts(gts);
844  } else {
845  memset(&req.stats, 0, sizeof(gts->ustats));
846  }
847 
848  if (copy_to_user((void __user *)arg, &req, sizeof(req)))
849  return -EFAULT;
850 
851  return 0;
852 }
853 
854 /*
855  * Register the current task as the user of the GSEG slice.
856  * Needed for TLB fault interrupt targeting.
857  */
858 int gru_set_context_option(unsigned long arg)
859 {
860  struct gru_thread_state *gts;
861  struct gru_set_context_option_req req;
862  int ret = 0;
863 
864  STAT(set_context_option);
865  if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
866  return -EFAULT;
867  gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
868 
869  gts = gru_find_lock_gts(req.gseg);
870  if (!gts) {
871  gts = gru_alloc_locked_gts(req.gseg);
872  if (IS_ERR(gts))
873  return PTR_ERR(gts);
874  }
875 
876  switch (req.op) {
877  case sco_blade_chiplet:
878  /* Select blade/chiplet for GRU context */
879  if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
880  req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
881  ret = -EINVAL;
882  } else {
883  gts->ts_user_blade_id = req.val1;
884  gts->ts_user_chiplet_id = req.val0;
886  }
887  break;
888  case sco_gseg_owner:
889  /* Register the current task as the GSEG owner */
890  gts->ts_tgid_owner = current->tgid;
891  break;
892  case sco_cch_req_slice:
893  /* Set the CCH slice option */
894  gts->ts_cch_req_slice = req.val1 & 3;
895  break;
896  default:
897  ret = -EINVAL;
898  }
899  gru_unlock_gts(gts);
900 
901  return ret;
902 }