Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
gss_krb5_crypto.c
Go to the documentation of this file.
1 /*
2  * linux/net/sunrpc/gss_krb5_crypto.c
3  *
4  * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5  * All rights reserved.
6  *
7  * Andy Adamson <[email protected]>
8  * Bruce Fields <[email protected]>
9  */
10 
11 /*
12  * Copyright (C) 1998 by the FundsXpress, INC.
13  *
14  * All rights reserved.
15  *
16  * Export of this software from the United States of America may require
17  * a specific license from the United States Government. It is the
18  * responsibility of any person or organization contemplating export to
19  * obtain such a license before exporting.
20  *
21  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22  * distribute this software and its documentation for any purpose and
23  * without fee is hereby granted, provided that the above copyright
24  * notice appear in all copies and that both that copyright notice and
25  * this permission notice appear in supporting documentation, and that
26  * the name of FundsXpress. not be used in advertising or publicity pertaining
27  * to distribution of the software without specific, written prior
28  * permission. FundsXpress makes no representations about the suitability of
29  * this software for any purpose. It is provided "as is" without express
30  * or implied warranty.
31  *
32  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35  */
36 
37 #include <linux/err.h>
38 #include <linux/types.h>
39 #include <linux/mm.h>
40 #include <linux/scatterlist.h>
41 #include <linux/crypto.h>
42 #include <linux/highmem.h>
43 #include <linux/pagemap.h>
44 #include <linux/random.h>
45 #include <linux/sunrpc/gss_krb5.h>
46 #include <linux/sunrpc/xdr.h>
47 
48 #ifdef RPC_DEBUG
49 # define RPCDBG_FACILITY RPCDBG_AUTH
50 #endif
51 
52 u32
54  struct crypto_blkcipher *tfm,
55  void * iv,
56  void * in,
57  void * out,
58  int length)
59 {
60  u32 ret = -EINVAL;
61  struct scatterlist sg[1];
62  u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
63  struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
64 
65  if (length % crypto_blkcipher_blocksize(tfm) != 0)
66  goto out;
67 
68  if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
69  dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
70  crypto_blkcipher_ivsize(tfm));
71  goto out;
72  }
73 
74  if (iv)
75  memcpy(local_iv, iv, crypto_blkcipher_ivsize(tfm));
76 
77  memcpy(out, in, length);
78  sg_init_one(sg, out, length);
79 
80  ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, length);
81 out:
82  dprintk("RPC: krb5_encrypt returns %d\n", ret);
83  return ret;
84 }
85 
86 u32
88  struct crypto_blkcipher *tfm,
89  void * iv,
90  void * in,
91  void * out,
92  int length)
93 {
94  u32 ret = -EINVAL;
95  struct scatterlist sg[1];
96  u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
97  struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
98 
99  if (length % crypto_blkcipher_blocksize(tfm) != 0)
100  goto out;
101 
102  if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
103  dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
104  crypto_blkcipher_ivsize(tfm));
105  goto out;
106  }
107  if (iv)
108  memcpy(local_iv,iv, crypto_blkcipher_ivsize(tfm));
109 
110  memcpy(out, in, length);
111  sg_init_one(sg, out, length);
112 
113  ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, length);
114 out:
115  dprintk("RPC: gss_k5decrypt returns %d\n",ret);
116  return ret;
117 }
118 
119 static int
120 checksummer(struct scatterlist *sg, void *data)
121 {
122  struct hash_desc *desc = data;
123 
124  return crypto_hash_update(desc, sg, sg->length);
125 }
126 
127 static int
128 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
129 {
130  unsigned int ms_usage;
131 
132  switch (usage) {
133  case KG_USAGE_SIGN:
134  ms_usage = 15;
135  break;
136  case KG_USAGE_SEAL:
137  ms_usage = 13;
138  break;
139  default:
140  return -EINVAL;
141  }
142  salt[0] = (ms_usage >> 0) & 0xff;
143  salt[1] = (ms_usage >> 8) & 0xff;
144  salt[2] = (ms_usage >> 16) & 0xff;
145  salt[3] = (ms_usage >> 24) & 0xff;
146 
147  return 0;
148 }
149 
150 static u32
151 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
152  struct xdr_buf *body, int body_offset, u8 *cksumkey,
153  unsigned int usage, struct xdr_netobj *cksumout)
154 {
155  struct hash_desc desc;
156  struct scatterlist sg[1];
157  int err;
158  u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
159  u8 rc4salt[4];
160  struct crypto_hash *md5;
161  struct crypto_hash *hmac_md5;
162 
163  if (cksumkey == NULL)
164  return GSS_S_FAILURE;
165 
166  if (cksumout->len < kctx->gk5e->cksumlength) {
167  dprintk("%s: checksum buffer length, %u, too small for %s\n",
168  __func__, cksumout->len, kctx->gk5e->name);
169  return GSS_S_FAILURE;
170  }
171 
172  if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
173  dprintk("%s: invalid usage value %u\n", __func__, usage);
174  return GSS_S_FAILURE;
175  }
176 
177  md5 = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
178  if (IS_ERR(md5))
179  return GSS_S_FAILURE;
180 
181  hmac_md5 = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
183  if (IS_ERR(hmac_md5)) {
184  crypto_free_hash(md5);
185  return GSS_S_FAILURE;
186  }
187 
188  desc.tfm = md5;
190 
191  err = crypto_hash_init(&desc);
192  if (err)
193  goto out;
194  sg_init_one(sg, rc4salt, 4);
195  err = crypto_hash_update(&desc, sg, 4);
196  if (err)
197  goto out;
198 
199  sg_init_one(sg, header, hdrlen);
200  err = crypto_hash_update(&desc, sg, hdrlen);
201  if (err)
202  goto out;
203  err = xdr_process_buf(body, body_offset, body->len - body_offset,
204  checksummer, &desc);
205  if (err)
206  goto out;
207  err = crypto_hash_final(&desc, checksumdata);
208  if (err)
209  goto out;
210 
211  desc.tfm = hmac_md5;
213 
214  err = crypto_hash_init(&desc);
215  if (err)
216  goto out;
217  err = crypto_hash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
218  if (err)
219  goto out;
220 
221  sg_init_one(sg, checksumdata, crypto_hash_digestsize(md5));
222  err = crypto_hash_digest(&desc, sg, crypto_hash_digestsize(md5),
223  checksumdata);
224  if (err)
225  goto out;
226 
227  memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
228  cksumout->len = kctx->gk5e->cksumlength;
229 out:
230  crypto_free_hash(md5);
231  crypto_free_hash(hmac_md5);
232  return err ? GSS_S_FAILURE : 0;
233 }
234 
235 /*
236  * checksum the plaintext data and hdrlen bytes of the token header
237  * The checksum is performed over the first 8 bytes of the
238  * gss token header and then over the data body
239  */
240 u32
241 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
242  struct xdr_buf *body, int body_offset, u8 *cksumkey,
243  unsigned int usage, struct xdr_netobj *cksumout)
244 {
245  struct hash_desc desc;
246  struct scatterlist sg[1];
247  int err;
248  u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
249  unsigned int checksumlen;
250 
251  if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
252  return make_checksum_hmac_md5(kctx, header, hdrlen,
253  body, body_offset,
254  cksumkey, usage, cksumout);
255 
256  if (cksumout->len < kctx->gk5e->cksumlength) {
257  dprintk("%s: checksum buffer length, %u, too small for %s\n",
258  __func__, cksumout->len, kctx->gk5e->name);
259  return GSS_S_FAILURE;
260  }
261 
262  desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
263  if (IS_ERR(desc.tfm))
264  return GSS_S_FAILURE;
266 
267  checksumlen = crypto_hash_digestsize(desc.tfm);
268 
269  if (cksumkey != NULL) {
270  err = crypto_hash_setkey(desc.tfm, cksumkey,
271  kctx->gk5e->keylength);
272  if (err)
273  goto out;
274  }
275 
276  err = crypto_hash_init(&desc);
277  if (err)
278  goto out;
279  sg_init_one(sg, header, hdrlen);
280  err = crypto_hash_update(&desc, sg, hdrlen);
281  if (err)
282  goto out;
283  err = xdr_process_buf(body, body_offset, body->len - body_offset,
284  checksummer, &desc);
285  if (err)
286  goto out;
287  err = crypto_hash_final(&desc, checksumdata);
288  if (err)
289  goto out;
290 
291  switch (kctx->gk5e->ctype) {
292  case CKSUMTYPE_RSA_MD5:
293  err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
294  checksumdata, checksumlen);
295  if (err)
296  goto out;
297  memcpy(cksumout->data,
298  checksumdata + checksumlen - kctx->gk5e->cksumlength,
299  kctx->gk5e->cksumlength);
300  break;
302  memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
303  break;
304  default:
305  BUG();
306  break;
307  }
308  cksumout->len = kctx->gk5e->cksumlength;
309 out:
310  crypto_free_hash(desc.tfm);
311  return err ? GSS_S_FAILURE : 0;
312 }
313 
314 /*
315  * checksum the plaintext data and hdrlen bytes of the token header
316  * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
317  * body then over the first 16 octets of the MIC token
318  * Inclusion of the header data in the calculation of the
319  * checksum is optional.
320  */
321 u32
322 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
323  struct xdr_buf *body, int body_offset, u8 *cksumkey,
324  unsigned int usage, struct xdr_netobj *cksumout)
325 {
326  struct hash_desc desc;
327  struct scatterlist sg[1];
328  int err;
329  u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
330  unsigned int checksumlen;
331 
332  if (kctx->gk5e->keyed_cksum == 0) {
333  dprintk("%s: expected keyed hash for %s\n",
334  __func__, kctx->gk5e->name);
335  return GSS_S_FAILURE;
336  }
337  if (cksumkey == NULL) {
338  dprintk("%s: no key supplied for %s\n",
339  __func__, kctx->gk5e->name);
340  return GSS_S_FAILURE;
341  }
342 
343  desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
345  if (IS_ERR(desc.tfm))
346  return GSS_S_FAILURE;
347  checksumlen = crypto_hash_digestsize(desc.tfm);
349 
350  err = crypto_hash_setkey(desc.tfm, cksumkey, kctx->gk5e->keylength);
351  if (err)
352  goto out;
353 
354  err = crypto_hash_init(&desc);
355  if (err)
356  goto out;
357  err = xdr_process_buf(body, body_offset, body->len - body_offset,
358  checksummer, &desc);
359  if (err)
360  goto out;
361  if (header != NULL) {
362  sg_init_one(sg, header, hdrlen);
363  err = crypto_hash_update(&desc, sg, hdrlen);
364  if (err)
365  goto out;
366  }
367  err = crypto_hash_final(&desc, checksumdata);
368  if (err)
369  goto out;
370 
371  cksumout->len = kctx->gk5e->cksumlength;
372 
373  switch (kctx->gk5e->ctype) {
376  /* note that this truncates the hash */
377  memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
378  break;
379  default:
380  BUG();
381  break;
382  }
383 out:
384  crypto_free_hash(desc.tfm);
385  return err ? GSS_S_FAILURE : 0;
386 }
387 
391  int pos;
392  struct xdr_buf *outbuf;
393  struct page **pages;
394  struct scatterlist infrags[4];
396  int fragno;
397  int fraglen;
398 };
399 
400 static int
401 encryptor(struct scatterlist *sg, void *data)
402 {
403  struct encryptor_desc *desc = data;
404  struct xdr_buf *outbuf = desc->outbuf;
405  struct page *in_page;
406  int thislen = desc->fraglen + sg->length;
407  int fraglen, ret;
408  int page_pos;
409 
410  /* Worst case is 4 fragments: head, end of page 1, start
411  * of page 2, tail. Anything more is a bug. */
412  BUG_ON(desc->fragno > 3);
413 
414  page_pos = desc->pos - outbuf->head[0].iov_len;
415  if (page_pos >= 0 && page_pos < outbuf->page_len) {
416  /* pages are not in place: */
417  int i = (page_pos + outbuf->page_base) >> PAGE_CACHE_SHIFT;
418  in_page = desc->pages[i];
419  } else {
420  in_page = sg_page(sg);
421  }
422  sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
423  sg->offset);
424  sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
425  sg->offset);
426  desc->fragno++;
427  desc->fraglen += sg->length;
428  desc->pos += sg->length;
429 
430  fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
431  thislen -= fraglen;
432 
433  if (thislen == 0)
434  return 0;
435 
436  sg_mark_end(&desc->infrags[desc->fragno - 1]);
437  sg_mark_end(&desc->outfrags[desc->fragno - 1]);
438 
439  ret = crypto_blkcipher_encrypt_iv(&desc->desc, desc->outfrags,
440  desc->infrags, thislen);
441  if (ret)
442  return ret;
443 
444  sg_init_table(desc->infrags, 4);
445  sg_init_table(desc->outfrags, 4);
446 
447  if (fraglen) {
448  sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
449  sg->offset + sg->length - fraglen);
450  desc->infrags[0] = desc->outfrags[0];
451  sg_assign_page(&desc->infrags[0], in_page);
452  desc->fragno = 1;
453  desc->fraglen = fraglen;
454  } else {
455  desc->fragno = 0;
456  desc->fraglen = 0;
457  }
458  return 0;
459 }
460 
461 int
462 gss_encrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
463  int offset, struct page **pages)
464 {
465  int ret;
466  struct encryptor_desc desc;
467 
468  BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
469 
470  memset(desc.iv, 0, sizeof(desc.iv));
471  desc.desc.tfm = tfm;
472  desc.desc.info = desc.iv;
473  desc.desc.flags = 0;
474  desc.pos = offset;
475  desc.outbuf = buf;
476  desc.pages = pages;
477  desc.fragno = 0;
478  desc.fraglen = 0;
479 
480  sg_init_table(desc.infrags, 4);
481  sg_init_table(desc.outfrags, 4);
482 
483  ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
484  return ret;
485 }
486 
489  struct blkcipher_desc desc;
490  struct scatterlist frags[4];
491  int fragno;
492  int fraglen;
493 };
494 
495 static int
496 decryptor(struct scatterlist *sg, void *data)
497 {
498  struct decryptor_desc *desc = data;
499  int thislen = desc->fraglen + sg->length;
500  int fraglen, ret;
501 
502  /* Worst case is 4 fragments: head, end of page 1, start
503  * of page 2, tail. Anything more is a bug. */
504  BUG_ON(desc->fragno > 3);
505  sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
506  sg->offset);
507  desc->fragno++;
508  desc->fraglen += sg->length;
509 
510  fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
511  thislen -= fraglen;
512 
513  if (thislen == 0)
514  return 0;
515 
516  sg_mark_end(&desc->frags[desc->fragno - 1]);
517 
518  ret = crypto_blkcipher_decrypt_iv(&desc->desc, desc->frags,
519  desc->frags, thislen);
520  if (ret)
521  return ret;
522 
523  sg_init_table(desc->frags, 4);
524 
525  if (fraglen) {
526  sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
527  sg->offset + sg->length - fraglen);
528  desc->fragno = 1;
529  desc->fraglen = fraglen;
530  } else {
531  desc->fragno = 0;
532  desc->fraglen = 0;
533  }
534  return 0;
535 }
536 
537 int
538 gss_decrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
539  int offset)
540 {
541  struct decryptor_desc desc;
542 
543  /* XXXJBF: */
544  BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
545 
546  memset(desc.iv, 0, sizeof(desc.iv));
547  desc.desc.tfm = tfm;
548  desc.desc.info = desc.iv;
549  desc.desc.flags = 0;
550  desc.fragno = 0;
551  desc.fraglen = 0;
552 
553  sg_init_table(desc.frags, 4);
554 
555  return xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
556 }
557 
558 /*
559  * This function makes the assumption that it was ultimately called
560  * from gss_wrap().
561  *
562  * The client auth_gss code moves any existing tail data into a
563  * separate page before calling gss_wrap.
564  * The server svcauth_gss code ensures that both the head and the
565  * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
566  *
567  * Even with that guarantee, this function may be called more than
568  * once in the processing of gss_wrap(). The best we can do is
569  * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
570  * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
571  * At run-time we can verify that a single invocation of this
572  * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
573  */
574 
575 int
576 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
577 {
578  u8 *p;
579 
580  if (shiftlen == 0)
581  return 0;
582 
583  BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
584  BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
585 
586  p = buf->head[0].iov_base + base;
587 
588  memmove(p + shiftlen, p, buf->head[0].iov_len - base);
589 
590  buf->head[0].iov_len += shiftlen;
591  buf->len += shiftlen;
592 
593  return 0;
594 }
595 
596 static u32
597 gss_krb5_cts_crypt(struct crypto_blkcipher *cipher, struct xdr_buf *buf,
598  u32 offset, u8 *iv, struct page **pages, int encrypt)
599 {
600  u32 ret;
601  struct scatterlist sg[1];
602  struct blkcipher_desc desc = { .tfm = cipher, .info = iv };
603  u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
604  struct page **save_pages;
605  u32 len = buf->len - offset;
606 
607  if (len > ARRAY_SIZE(data)) {
608  WARN_ON(0);
609  return -ENOMEM;
610  }
611 
612  /*
613  * For encryption, we want to read from the cleartext
614  * page cache pages, and write the encrypted data to
615  * the supplied xdr_buf pages.
616  */
617  save_pages = buf->pages;
618  if (encrypt)
619  buf->pages = pages;
620 
621  ret = read_bytes_from_xdr_buf(buf, offset, data, len);
622  buf->pages = save_pages;
623  if (ret)
624  goto out;
625 
626  sg_init_one(sg, data, len);
627 
628  if (encrypt)
629  ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
630  else
631  ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, len);
632 
633  if (ret)
634  goto out;
635 
636  ret = write_bytes_to_xdr_buf(buf, offset, data, len);
637 
638 out:
639  return ret;
640 }
641 
642 u32
643 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
644  struct xdr_buf *buf, int ec, struct page **pages)
645 {
646  u32 err;
647  struct xdr_netobj hmac;
648  u8 *cksumkey;
649  u8 *ecptr;
650  struct crypto_blkcipher *cipher, *aux_cipher;
651  int blocksize;
652  struct page **save_pages;
653  int nblocks, nbytes;
654  struct encryptor_desc desc;
655  u32 cbcbytes;
656  unsigned int usage;
657 
658  if (kctx->initiate) {
659  cipher = kctx->initiator_enc;
660  aux_cipher = kctx->initiator_enc_aux;
661  cksumkey = kctx->initiator_integ;
662  usage = KG_USAGE_INITIATOR_SEAL;
663  } else {
664  cipher = kctx->acceptor_enc;
665  aux_cipher = kctx->acceptor_enc_aux;
666  cksumkey = kctx->acceptor_integ;
667  usage = KG_USAGE_ACCEPTOR_SEAL;
668  }
669  blocksize = crypto_blkcipher_blocksize(cipher);
670 
671  /* hide the gss token header and insert the confounder */
672  offset += GSS_KRB5_TOK_HDR_LEN;
673  if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
674  return GSS_S_FAILURE;
675  gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
676  offset -= GSS_KRB5_TOK_HDR_LEN;
677 
678  if (buf->tail[0].iov_base != NULL) {
679  ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
680  } else {
681  buf->tail[0].iov_base = buf->head[0].iov_base
682  + buf->head[0].iov_len;
683  buf->tail[0].iov_len = 0;
684  ecptr = buf->tail[0].iov_base;
685  }
686 
687  memset(ecptr, 'X', ec);
688  buf->tail[0].iov_len += ec;
689  buf->len += ec;
690 
691  /* copy plaintext gss token header after filler (if any) */
692  memcpy(ecptr + ec, buf->head[0].iov_base + offset,
694  buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
695  buf->len += GSS_KRB5_TOK_HDR_LEN;
696 
697  /* Do the HMAC */
698  hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
699  hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
700 
701  /*
702  * When we are called, pages points to the real page cache
703  * data -- which we can't go and encrypt! buf->pages points
704  * to scratch pages which we are going to send off to the
705  * client/server. Swap in the plaintext pages to calculate
706  * the hmac.
707  */
708  save_pages = buf->pages;
709  buf->pages = pages;
710 
711  err = make_checksum_v2(kctx, NULL, 0, buf,
712  offset + GSS_KRB5_TOK_HDR_LEN,
713  cksumkey, usage, &hmac);
714  buf->pages = save_pages;
715  if (err)
716  return GSS_S_FAILURE;
717 
718  nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
719  nblocks = (nbytes + blocksize - 1) / blocksize;
720  cbcbytes = 0;
721  if (nblocks > 2)
722  cbcbytes = (nblocks - 2) * blocksize;
723 
724  memset(desc.iv, 0, sizeof(desc.iv));
725 
726  if (cbcbytes) {
727  desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
728  desc.fragno = 0;
729  desc.fraglen = 0;
730  desc.pages = pages;
731  desc.outbuf = buf;
732  desc.desc.info = desc.iv;
733  desc.desc.flags = 0;
734  desc.desc.tfm = aux_cipher;
735 
736  sg_init_table(desc.infrags, 4);
737  sg_init_table(desc.outfrags, 4);
738 
739  err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
740  cbcbytes, encryptor, &desc);
741  if (err)
742  goto out_err;
743  }
744 
745  /* Make sure IV carries forward from any CBC results. */
746  err = gss_krb5_cts_crypt(cipher, buf,
747  offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
748  desc.iv, pages, 1);
749  if (err) {
750  err = GSS_S_FAILURE;
751  goto out_err;
752  }
753 
754  /* Now update buf to account for HMAC */
755  buf->tail[0].iov_len += kctx->gk5e->cksumlength;
756  buf->len += kctx->gk5e->cksumlength;
757 
758 out_err:
759  if (err)
760  err = GSS_S_FAILURE;
761  return err;
762 }
763 
764 u32
765 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
766  u32 *headskip, u32 *tailskip)
767 {
768  struct xdr_buf subbuf;
769  u32 ret = 0;
770  u8 *cksum_key;
771  struct crypto_blkcipher *cipher, *aux_cipher;
772  struct xdr_netobj our_hmac_obj;
773  u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
774  u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
775  int nblocks, blocksize, cbcbytes;
776  struct decryptor_desc desc;
777  unsigned int usage;
778 
779  if (kctx->initiate) {
780  cipher = kctx->acceptor_enc;
781  aux_cipher = kctx->acceptor_enc_aux;
782  cksum_key = kctx->acceptor_integ;
783  usage = KG_USAGE_ACCEPTOR_SEAL;
784  } else {
785  cipher = kctx->initiator_enc;
786  aux_cipher = kctx->initiator_enc_aux;
787  cksum_key = kctx->initiator_integ;
788  usage = KG_USAGE_INITIATOR_SEAL;
789  }
790  blocksize = crypto_blkcipher_blocksize(cipher);
791 
792 
793  /* create a segment skipping the header and leaving out the checksum */
794  xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
795  (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
796  kctx->gk5e->cksumlength));
797 
798  nblocks = (subbuf.len + blocksize - 1) / blocksize;
799 
800  cbcbytes = 0;
801  if (nblocks > 2)
802  cbcbytes = (nblocks - 2) * blocksize;
803 
804  memset(desc.iv, 0, sizeof(desc.iv));
805 
806  if (cbcbytes) {
807  desc.fragno = 0;
808  desc.fraglen = 0;
809  desc.desc.info = desc.iv;
810  desc.desc.flags = 0;
811  desc.desc.tfm = aux_cipher;
812 
813  sg_init_table(desc.frags, 4);
814 
815  ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
816  if (ret)
817  goto out_err;
818  }
819 
820  /* Make sure IV carries forward from any CBC results. */
821  ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
822  if (ret)
823  goto out_err;
824 
825 
826  /* Calculate our hmac over the plaintext data */
827  our_hmac_obj.len = sizeof(our_hmac);
828  our_hmac_obj.data = our_hmac;
829 
830  ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
831  cksum_key, usage, &our_hmac_obj);
832  if (ret)
833  goto out_err;
834 
835  /* Get the packet's hmac value */
836  ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
837  pkt_hmac, kctx->gk5e->cksumlength);
838  if (ret)
839  goto out_err;
840 
841  if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
842  ret = GSS_S_BAD_SIG;
843  goto out_err;
844  }
845  *headskip = kctx->gk5e->conflen;
846  *tailskip = kctx->gk5e->cksumlength;
847 out_err:
848  if (ret && ret != GSS_S_BAD_SIG)
849  ret = GSS_S_FAILURE;
850  return ret;
851 }
852 
853 /*
854  * Compute Kseq given the initial session key and the checksum.
855  * Set the key of the given cipher.
856  */
857 int
858 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
859  unsigned char *cksum)
860 {
861  struct crypto_hash *hmac;
862  struct hash_desc desc;
863  struct scatterlist sg[1];
864  u8 Kseq[GSS_KRB5_MAX_KEYLEN];
865  u32 zeroconstant = 0;
866  int err;
867 
868  dprintk("%s: entered\n", __func__);
869 
870  hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
871  if (IS_ERR(hmac)) {
872  dprintk("%s: error %ld, allocating hash '%s'\n",
873  __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
874  return PTR_ERR(hmac);
875  }
876 
877  desc.tfm = hmac;
878  desc.flags = 0;
879 
880  err = crypto_hash_init(&desc);
881  if (err)
882  goto out_err;
883 
884  /* Compute intermediate Kseq from session key */
885  err = crypto_hash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
886  if (err)
887  goto out_err;
888 
889  sg_init_table(sg, 1);
890  sg_set_buf(sg, &zeroconstant, 4);
891 
892  err = crypto_hash_digest(&desc, sg, 4, Kseq);
893  if (err)
894  goto out_err;
895 
896  /* Compute final Kseq from the checksum and intermediate Kseq */
897  err = crypto_hash_setkey(hmac, Kseq, kctx->gk5e->keylength);
898  if (err)
899  goto out_err;
900 
901  sg_set_buf(sg, cksum, 8);
902 
903  err = crypto_hash_digest(&desc, sg, 8, Kseq);
904  if (err)
905  goto out_err;
906 
907  err = crypto_blkcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
908  if (err)
909  goto out_err;
910 
911  err = 0;
912 
913 out_err:
914  crypto_free_hash(hmac);
915  dprintk("%s: returning %d\n", __func__, err);
916  return err;
917 }
918 
919 /*
920  * Compute Kcrypt given the initial session key and the plaintext seqnum.
921  * Set the key of cipher kctx->enc.
922  */
923 int
924 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
925  s32 seqnum)
926 {
927  struct crypto_hash *hmac;
928  struct hash_desc desc;
929  struct scatterlist sg[1];
930  u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
931  u8 zeroconstant[4] = {0};
932  u8 seqnumarray[4];
933  int err, i;
934 
935  dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
936 
937  hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
938  if (IS_ERR(hmac)) {
939  dprintk("%s: error %ld, allocating hash '%s'\n",
940  __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
941  return PTR_ERR(hmac);
942  }
943 
944  desc.tfm = hmac;
945  desc.flags = 0;
946 
947  err = crypto_hash_init(&desc);
948  if (err)
949  goto out_err;
950 
951  /* Compute intermediate Kcrypt from session key */
952  for (i = 0; i < kctx->gk5e->keylength; i++)
953  Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
954 
955  err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
956  if (err)
957  goto out_err;
958 
959  sg_init_table(sg, 1);
960  sg_set_buf(sg, zeroconstant, 4);
961 
962  err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
963  if (err)
964  goto out_err;
965 
966  /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
967  err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
968  if (err)
969  goto out_err;
970 
971  seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
972  seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
973  seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
974  seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
975 
976  sg_set_buf(sg, seqnumarray, 4);
977 
978  err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
979  if (err)
980  goto out_err;
981 
982  err = crypto_blkcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
983  if (err)
984  goto out_err;
985 
986  err = 0;
987 
988 out_err:
989  crypto_free_hash(hmac);
990  dprintk("%s: returning %d\n", __func__, err);
991  return err;
992 }
993