Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hp_sdc_rtc.c
Go to the documentation of this file.
1 /*
2  * HP i8042 SDC + MSM-58321 BBRTC driver.
3  *
4  * Copyright (c) 2001 Brian S. Julin
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  * notice, this list of conditions, and the following disclaimer,
12  * without modification.
13  * 2. The name of the author may not be used to endorse or promote products
14  * derived from this software without specific prior written permission.
15  *
16  * Alternatively, this software may be distributed under the terms of the
17  * GNU General Public License ("GPL").
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  *
29  * References:
30  * System Device Controller Microprocessor Firmware Theory of Operation
31  * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32  * efirtc.c by Stephane Eranian/Hewlett Packard
33  *
34  */
35 
36 #include <linux/hp_sdc.h>
37 #include <linux/errno.h>
38 #include <linux/types.h>
39 #include <linux/init.h>
40 #include <linux/module.h>
41 #include <linux/time.h>
42 #include <linux/miscdevice.h>
43 #include <linux/proc_fs.h>
44 #include <linux/poll.h>
45 #include <linux/rtc.h>
46 #include <linux/mutex.h>
47 #include <linux/semaphore.h>
48 
49 MODULE_AUTHOR("Brian S. Julin <[email protected]>");
50 MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
51 MODULE_LICENSE("Dual BSD/GPL");
52 
53 #define RTC_VERSION "1.10d"
54 
55 static DEFINE_MUTEX(hp_sdc_rtc_mutex);
56 static unsigned long epoch = 2000;
57 
58 static struct semaphore i8042tregs;
59 
60 static hp_sdc_irqhook hp_sdc_rtc_isr;
61 
62 static struct fasync_struct *hp_sdc_rtc_async_queue;
63 
64 static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
65 
66 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
67  size_t count, loff_t *ppos);
68 
69 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
70  unsigned int cmd, unsigned long arg);
71 
72 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
73 
74 static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
75 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
76 
77 static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
78  int count, int *eof, void *data);
79 
80 static void hp_sdc_rtc_isr (int irq, void *dev_id,
82 {
83  return;
84 }
85 
86 static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
87 {
88  struct semaphore tsem;
90  uint8_t tseq[91];
91  int i;
92 
93  i = 0;
94  while (i < 91) {
95  tseq[i++] = HP_SDC_ACT_DATAREG |
97  tseq[i++] = 0x01; /* write i8042[0x70] */
98  tseq[i] = i / 7; /* BBRTC reg address */
99  i++;
100  tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
101  tseq[i++] = 2; /* expect 1 stat/dat pair back. */
102  i++; i++; /* buffer for stat/dat pair */
103  }
104  tseq[84] |= HP_SDC_ACT_SEMAPHORE;
105  t.endidx = 91;
106  t.seq = tseq;
107  t.act.semaphore = &tsem;
108  sema_init(&tsem, 0);
109 
110  if (hp_sdc_enqueue_transaction(&t)) return -1;
111 
112  down_interruptible(&tsem); /* Put ourselves to sleep for results. */
113 
114  /* Check for nonpresence of BBRTC */
115  if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116  tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117  tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
118  return -1;
119 
120  memset(rtctm, 0, sizeof(struct rtc_time));
121  rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122  rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123  rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124  rtctm->tm_wday = (tseq[48] & 0x0f);
125  rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126  rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127  rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
128 
129  return 0;
130 }
131 
132 static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
133 {
134  struct rtc_time tm, tm_last;
135  int i = 0;
136 
137  /* MSM-58321 has no read latch, so must read twice and compare. */
138 
139  if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140  if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
141 
142  while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143  if (i++ > 4) return -1;
144  memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145  if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
146  }
147 
148  memcpy(rtctm, &tm, sizeof(struct rtc_time));
149 
150  return 0;
151 }
152 
153 
154 static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
155 {
157  uint8_t tseq[26] = {
159  0,
160  HP_SDC_CMD_READ_T1, 2, 0, 0,
162  HP_SDC_CMD_READ_T2, 2, 0, 0,
164  HP_SDC_CMD_READ_T3, 2, 0, 0,
166  HP_SDC_CMD_READ_T4, 2, 0, 0,
168  HP_SDC_CMD_READ_T5, 2, 0, 0
169  };
170 
171  t.endidx = numreg * 5;
172 
173  tseq[1] = loadcmd;
174  tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
175 
176  t.seq = tseq;
177  t.act.semaphore = &i8042tregs;
178 
179  down_interruptible(&i8042tregs); /* Sleep if output regs in use. */
180 
181  if (hp_sdc_enqueue_transaction(&t)) return -1;
182 
183  down_interruptible(&i8042tregs); /* Sleep until results come back. */
184  up(&i8042tregs);
185 
186  return (tseq[5] |
187  ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
188  ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
189 }
190 
191 
192 /* Read the i8042 real-time clock */
193 static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
194  int64_t raw;
195  uint32_t tenms;
196  unsigned int days;
197 
198  raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
199  if (raw < 0) return -1;
200 
201  tenms = (uint32_t)raw & 0xffffff;
202  days = (unsigned int)(raw >> 24) & 0xffff;
203 
204  res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
205  res->tv_sec = (time_t)(tenms / 100) + days * 86400;
206 
207  return 0;
208 }
209 
210 
211 /* Read the i8042 fast handshake timer */
212 static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
213  int64_t raw;
214  unsigned int tenms;
215 
216  raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
217  if (raw < 0) return -1;
218 
219  tenms = (unsigned int)raw & 0xffff;
220 
221  res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
222  res->tv_sec = (time_t)(tenms / 100);
223 
224  return 0;
225 }
226 
227 
228 /* Read the i8042 match timer (a.k.a. alarm) */
229 static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
230  int64_t raw;
231  uint32_t tenms;
232 
233  raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
234  if (raw < 0) return -1;
235 
236  tenms = (uint32_t)raw & 0xffffff;
237 
238  res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
239  res->tv_sec = (time_t)(tenms / 100);
240 
241  return 0;
242 }
243 
244 
245 /* Read the i8042 delay timer */
246 static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
247  int64_t raw;
248  uint32_t tenms;
249 
250  raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
251  if (raw < 0) return -1;
252 
253  tenms = (uint32_t)raw & 0xffffff;
254 
255  res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
256  res->tv_sec = (time_t)(tenms / 100);
257 
258  return 0;
259 }
260 
261 
262 /* Read the i8042 cycle timer (a.k.a. periodic) */
263 static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
264  int64_t raw;
265  uint32_t tenms;
266 
267  raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
268  if (raw < 0) return -1;
269 
270  tenms = (uint32_t)raw & 0xffffff;
271 
272  res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
273  res->tv_sec = (time_t)(tenms / 100);
274 
275  return 0;
276 }
277 
278 
279 /* Set the i8042 real-time clock */
280 static int hp_sdc_rtc_set_rt (struct timeval *setto)
281 {
282  uint32_t tenms;
283  unsigned int days;
285  uint8_t tseq[11] = {
287  HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
289  HP_SDC_CMD_SET_RTD, 2, 0, 0
290  };
291 
292  t.endidx = 10;
293 
294  if (0xffff < setto->tv_sec / 86400) return -1;
295  days = setto->tv_sec / 86400;
296  if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
297  days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
298  if (days > 0xffff) return -1;
299 
300  if (0xffffff < setto->tv_sec) return -1;
301  tenms = setto->tv_sec * 100;
302  if (0xffffff < setto->tv_usec / 10000) return -1;
303  tenms += setto->tv_usec / 10000;
304  if (tenms > 0xffffff) return -1;
305 
306  tseq[3] = (uint8_t)(tenms & 0xff);
307  tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
308  tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
309 
310  tseq[9] = (uint8_t)(days & 0xff);
311  tseq[10] = (uint8_t)((days >> 8) & 0xff);
312 
313  t.seq = tseq;
314 
315  if (hp_sdc_enqueue_transaction(&t)) return -1;
316  return 0;
317 }
318 
319 /* Set the i8042 fast handshake timer */
320 static int hp_sdc_rtc_set_fhs (struct timeval *setto)
321 {
322  uint32_t tenms;
324  uint8_t tseq[5] = {
326  HP_SDC_CMD_SET_FHS, 2, 0, 0
327  };
328 
329  t.endidx = 4;
330 
331  if (0xffff < setto->tv_sec) return -1;
332  tenms = setto->tv_sec * 100;
333  if (0xffff < setto->tv_usec / 10000) return -1;
334  tenms += setto->tv_usec / 10000;
335  if (tenms > 0xffff) return -1;
336 
337  tseq[3] = (uint8_t)(tenms & 0xff);
338  tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
339 
340  t.seq = tseq;
341 
342  if (hp_sdc_enqueue_transaction(&t)) return -1;
343  return 0;
344 }
345 
346 
347 /* Set the i8042 match timer (a.k.a. alarm) */
348 #define hp_sdc_rtc_set_mt (setto) \
349  hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
350 
351 /* Set the i8042 delay timer */
352 #define hp_sdc_rtc_set_dt (setto) \
353  hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
354 
355 /* Set the i8042 cycle timer (a.k.a. periodic) */
356 #define hp_sdc_rtc_set_ct (setto) \
357  hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
358 
359 /* Set one of the i8042 3-byte wide timers */
360 static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
361 {
362  uint32_t tenms;
364  uint8_t tseq[6] = {
366  0, 3, 0, 0, 0
367  };
368 
369  t.endidx = 6;
370 
371  if (0xffffff < setto->tv_sec) return -1;
372  tenms = setto->tv_sec * 100;
373  if (0xffffff < setto->tv_usec / 10000) return -1;
374  tenms += setto->tv_usec / 10000;
375  if (tenms > 0xffffff) return -1;
376 
377  tseq[1] = setcmd;
378  tseq[3] = (uint8_t)(tenms & 0xff);
379  tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
380  tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
381 
382  t.seq = tseq;
383 
384  if (hp_sdc_enqueue_transaction(&t)) {
385  return -1;
386  }
387  return 0;
388 }
389 
390 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
391  size_t count, loff_t *ppos) {
392  ssize_t retval;
393 
394  if (count < sizeof(unsigned long))
395  return -EINVAL;
396 
397  retval = put_user(68, (unsigned long __user *)buf);
398  return retval;
399 }
400 
401 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
402 {
403  unsigned long l;
404 
405  l = 0;
406  if (l != 0)
407  return POLLIN | POLLRDNORM;
408  return 0;
409 }
410 
411 static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
412 {
413  return 0;
414 }
415 
416 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
417 {
418  return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
419 }
420 
421 static int hp_sdc_rtc_proc_output (char *buf)
422 {
423 #define YN(bit) ("no")
424 #define NY(bit) ("yes")
425  char *p;
426  struct rtc_time tm;
427  struct timeval tv;
428 
429  memset(&tm, 0, sizeof(struct rtc_time));
430 
431  p = buf;
432 
433  if (hp_sdc_rtc_read_bbrtc(&tm)) {
434  p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
435  } else {
436  p += sprintf(p,
437  "rtc_time\t: %02d:%02d:%02d\n"
438  "rtc_date\t: %04d-%02d-%02d\n"
439  "rtc_epoch\t: %04lu\n",
441  tm.tm_year + 1900, tm.tm_mon + 1,
442  tm.tm_mday, epoch);
443  }
444 
445  if (hp_sdc_rtc_read_rt(&tv)) {
446  p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
447  } else {
448  p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
449  tv.tv_sec, (int)tv.tv_usec/1000);
450  }
451 
452  if (hp_sdc_rtc_read_fhs(&tv)) {
453  p += sprintf(p, "handshake\t: READ FAILED!\n");
454  } else {
455  p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
456  tv.tv_sec, (int)tv.tv_usec/1000);
457  }
458 
459  if (hp_sdc_rtc_read_mt(&tv)) {
460  p += sprintf(p, "alarm\t\t: READ FAILED!\n");
461  } else {
462  p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
463  tv.tv_sec, (int)tv.tv_usec/1000);
464  }
465 
466  if (hp_sdc_rtc_read_dt(&tv)) {
467  p += sprintf(p, "delay\t\t: READ FAILED!\n");
468  } else {
469  p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
470  tv.tv_sec, (int)tv.tv_usec/1000);
471  }
472 
473  if (hp_sdc_rtc_read_ct(&tv)) {
474  p += sprintf(p, "periodic\t: READ FAILED!\n");
475  } else {
476  p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
477  tv.tv_sec, (int)tv.tv_usec/1000);
478  }
479 
480  p += sprintf(p,
481  "DST_enable\t: %s\n"
482  "BCD\t\t: %s\n"
483  "24hr\t\t: %s\n"
484  "square_wave\t: %s\n"
485  "alarm_IRQ\t: %s\n"
486  "update_IRQ\t: %s\n"
487  "periodic_IRQ\t: %s\n"
488  "periodic_freq\t: %ld\n"
489  "batt_status\t: %s\n",
490  YN(RTC_DST_EN),
491  NY(RTC_DM_BINARY),
492  YN(RTC_24H),
493  YN(RTC_SQWE),
494  YN(RTC_AIE),
495  YN(RTC_UIE),
496  YN(RTC_PIE),
497  1UL,
498  1 ? "okay" : "dead");
499 
500  return p - buf;
501 #undef YN
502 #undef NY
503 }
504 
505 static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
506  int count, int *eof, void *data)
507 {
508  int len = hp_sdc_rtc_proc_output (page);
509  if (len <= off+count) *eof = 1;
510  *start = page + off;
511  len -= off;
512  if (len>count) len = count;
513  if (len<0) len = 0;
514  return len;
515 }
516 
517 static int hp_sdc_rtc_ioctl(struct file *file,
518  unsigned int cmd, unsigned long arg)
519 {
520 #if 1
521  return -EINVAL;
522 #else
523 
524  struct rtc_time wtime;
525  struct timeval ttime;
526  int use_wtime = 0;
527 
528  /* This needs major work. */
529 
530  switch (cmd) {
531 
532  case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
533  case RTC_AIE_ON: /* Allow alarm interrupts. */
534  case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
535  case RTC_PIE_ON: /* Allow periodic ints */
536  case RTC_UIE_ON: /* Allow ints for RTC updates. */
537  case RTC_UIE_OFF: /* Allow ints for RTC updates. */
538  {
539  /* We cannot mask individual user timers and we
540  cannot tell them apart when they occur, so it
541  would be disingenuous to succeed these IOCTLs */
542  return -EINVAL;
543  }
544  case RTC_ALM_READ: /* Read the present alarm time */
545  {
546  if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
547  if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
548 
549  wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
550  wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
551  wtime.tm_sec = ttime.tv_sec;
552 
553  break;
554  }
555  case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
556  {
557  return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
558  }
559  case RTC_IRQP_SET: /* Set periodic IRQ rate. */
560  {
561  /*
562  * The max we can do is 100Hz.
563  */
564 
565  if ((arg < 1) || (arg > 100)) return -EINVAL;
566  ttime.tv_sec = 0;
567  ttime.tv_usec = 1000000 / arg;
568  if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
569  hp_sdc_rtc_freq = arg;
570  return 0;
571  }
572  case RTC_ALM_SET: /* Store a time into the alarm */
573  {
574  /*
575  * This expects a struct hp_sdc_rtc_time. Writing 0xff means
576  * "don't care" or "match all" for PC timers. The HP SDC
577  * does not support that perk, but it could be emulated fairly
578  * easily. Only the tm_hour, tm_min and tm_sec are used.
579  * We could do it with 10ms accuracy with the HP SDC, if the
580  * rtc interface left us a way to do that.
581  */
582  struct hp_sdc_rtc_time alm_tm;
583 
584  if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
585  sizeof(struct hp_sdc_rtc_time)))
586  return -EFAULT;
587 
588  if (alm_tm.tm_hour > 23) return -EINVAL;
589  if (alm_tm.tm_min > 59) return -EINVAL;
590  if (alm_tm.tm_sec > 59) return -EINVAL;
591 
592  ttime.sec = alm_tm.tm_hour * 3600 +
593  alm_tm.tm_min * 60 + alm_tm.tm_sec;
594  ttime.usec = 0;
595  if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
596  return 0;
597  }
598  case RTC_RD_TIME: /* Read the time/date from RTC */
599  {
600  if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
601  break;
602  }
603  case RTC_SET_TIME: /* Set the RTC */
604  {
605  struct rtc_time hp_sdc_rtc_tm;
606  unsigned char mon, day, hrs, min, sec, leap_yr;
607  unsigned int yrs;
608 
609  if (!capable(CAP_SYS_TIME))
610  return -EACCES;
611  if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
612  sizeof(struct rtc_time)))
613  return -EFAULT;
614 
615  yrs = hp_sdc_rtc_tm.tm_year + 1900;
616  mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
617  day = hp_sdc_rtc_tm.tm_mday;
618  hrs = hp_sdc_rtc_tm.tm_hour;
619  min = hp_sdc_rtc_tm.tm_min;
620  sec = hp_sdc_rtc_tm.tm_sec;
621 
622  if (yrs < 1970)
623  return -EINVAL;
624 
625  leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
626 
627  if ((mon > 12) || (day == 0))
628  return -EINVAL;
629  if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
630  return -EINVAL;
631  if ((hrs >= 24) || (min >= 60) || (sec >= 60))
632  return -EINVAL;
633 
634  if ((yrs -= eH) > 255) /* They are unsigned */
635  return -EINVAL;
636 
637 
638  return 0;
639  }
640  case RTC_EPOCH_READ: /* Read the epoch. */
641  {
642  return put_user (epoch, (unsigned long *)arg);
643  }
644  case RTC_EPOCH_SET: /* Set the epoch. */
645  {
646  /*
647  * There were no RTC clocks before 1900.
648  */
649  if (arg < 1900)
650  return -EINVAL;
651  if (!capable(CAP_SYS_TIME))
652  return -EACCES;
653 
654  epoch = arg;
655  return 0;
656  }
657  default:
658  return -EINVAL;
659  }
660  return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
661 #endif
662 }
663 
664 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
665  unsigned int cmd, unsigned long arg)
666 {
667  int ret;
668 
669  mutex_lock(&hp_sdc_rtc_mutex);
670  ret = hp_sdc_rtc_ioctl(file, cmd, arg);
671  mutex_unlock(&hp_sdc_rtc_mutex);
672 
673  return ret;
674 }
675 
676 
677 static const struct file_operations hp_sdc_rtc_fops = {
678  .owner = THIS_MODULE,
679  .llseek = no_llseek,
680  .read = hp_sdc_rtc_read,
681  .poll = hp_sdc_rtc_poll,
682  .unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl,
683  .open = hp_sdc_rtc_open,
684  .fasync = hp_sdc_rtc_fasync,
685 };
686 
687 static struct miscdevice hp_sdc_rtc_dev = {
688  .minor = RTC_MINOR,
689  .name = "rtc_HIL",
690  .fops = &hp_sdc_rtc_fops
691 };
692 
693 static int __init hp_sdc_rtc_init(void)
694 {
695  int ret;
696 
697 #ifdef __mc68000__
698  if (!MACH_IS_HP300)
699  return -ENODEV;
700 #endif
701 
702  sema_init(&i8042tregs, 1);
703 
704  if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
705  return ret;
706  if (misc_register(&hp_sdc_rtc_dev) != 0)
707  printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
708 
709  create_proc_read_entry ("driver/rtc", 0, NULL,
710  hp_sdc_rtc_read_proc, NULL);
711 
712  printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
713  "(RTC v " RTC_VERSION ")\n");
714 
715  return 0;
716 }
717 
718 static void __exit hp_sdc_rtc_exit(void)
719 {
720  remove_proc_entry ("driver/rtc", NULL);
721  misc_deregister(&hp_sdc_rtc_dev);
722  hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
723  printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
724 }
725 
726 module_init(hp_sdc_rtc_init);
727 module_exit(hp_sdc_rtc_exit);