Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
huge_memory.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2009 Red Hat, Inc.
3  *
4  * This work is licensed under the terms of the GNU GPL, version 2. See
5  * the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <asm/tlb.h>
22 #include <asm/pgalloc.h>
23 #include "internal.h"
24 
25 /*
26  * By default transparent hugepage support is enabled for all mappings
27  * and khugepaged scans all mappings. Defrag is only invoked by
28  * khugepaged hugepage allocations and by page faults inside
29  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30  * allocations.
31  */
33 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
35 #endif
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
38 #endif
41 
42 /* default scan 8*512 pte (or vmas) every 30 second */
43 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44 static unsigned int khugepaged_pages_collapsed;
45 static unsigned int khugepaged_full_scans;
46 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47 /* during fragmentation poll the hugepage allocator once every minute */
48 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49 static struct task_struct *khugepaged_thread __read_mostly;
50 static DEFINE_MUTEX(khugepaged_mutex);
51 static DEFINE_SPINLOCK(khugepaged_mm_lock);
52 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53 /*
54  * default collapse hugepages if there is at least one pte mapped like
55  * it would have happened if the vma was large enough during page
56  * fault.
57  */
58 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59 
60 static int khugepaged(void *none);
61 static int mm_slots_hash_init(void);
62 static int khugepaged_slab_init(void);
63 static void khugepaged_slab_free(void);
64 
65 #define MM_SLOTS_HASH_HEADS 1024
66 static struct hlist_head *mm_slots_hash __read_mostly;
67 static struct kmem_cache *mm_slot_cache __read_mostly;
68 
75 struct mm_slot {
76  struct hlist_node hash;
78  struct mm_struct *mm;
79 };
80 
91  struct mm_slot *mm_slot;
92  unsigned long address;
93 };
94 static struct khugepaged_scan khugepaged_scan = {
95  .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
96 };
97 
98 
99 static int set_recommended_min_free_kbytes(void)
100 {
101  struct zone *zone;
102  int nr_zones = 0;
103  unsigned long recommended_min;
104  extern int min_free_kbytes;
105 
106  if (!khugepaged_enabled())
107  return 0;
108 
110  nr_zones++;
111 
112  /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
113  recommended_min = pageblock_nr_pages * nr_zones * 2;
114 
115  /*
116  * Make sure that on average at least two pageblocks are almost free
117  * of another type, one for a migratetype to fall back to and a
118  * second to avoid subsequent fallbacks of other types There are 3
119  * MIGRATE_TYPES we care about.
120  */
121  recommended_min += pageblock_nr_pages * nr_zones *
123 
124  /* don't ever allow to reserve more than 5% of the lowmem */
125  recommended_min = min(recommended_min,
126  (unsigned long) nr_free_buffer_pages() / 20);
127  recommended_min <<= (PAGE_SHIFT-10);
128 
129  if (recommended_min > min_free_kbytes)
130  min_free_kbytes = recommended_min;
132  return 0;
133 }
134 late_initcall(set_recommended_min_free_kbytes);
135 
136 static int start_khugepaged(void)
137 {
138  int err = 0;
139  if (khugepaged_enabled()) {
140  if (!khugepaged_thread)
141  khugepaged_thread = kthread_run(khugepaged, NULL,
142  "khugepaged");
143  if (unlikely(IS_ERR(khugepaged_thread))) {
145  "khugepaged: kthread_run(khugepaged) failed\n");
146  err = PTR_ERR(khugepaged_thread);
147  khugepaged_thread = NULL;
148  }
149 
150  if (!list_empty(&khugepaged_scan.mm_head))
151  wake_up_interruptible(&khugepaged_wait);
152 
153  set_recommended_min_free_kbytes();
154  } else if (khugepaged_thread) {
155  kthread_stop(khugepaged_thread);
156  khugepaged_thread = NULL;
157  }
158 
159  return err;
160 }
161 
162 #ifdef CONFIG_SYSFS
163 
164 static ssize_t double_flag_show(struct kobject *kobj,
165  struct kobj_attribute *attr, char *buf,
167  enum transparent_hugepage_flag req_madv)
168 {
169  if (test_bit(enabled, &transparent_hugepage_flags)) {
171  return sprintf(buf, "[always] madvise never\n");
172  } else if (test_bit(req_madv, &transparent_hugepage_flags))
173  return sprintf(buf, "always [madvise] never\n");
174  else
175  return sprintf(buf, "always madvise [never]\n");
176 }
177 static ssize_t double_flag_store(struct kobject *kobj,
178  struct kobj_attribute *attr,
179  const char *buf, size_t count,
180  enum transparent_hugepage_flag enabled,
181  enum transparent_hugepage_flag req_madv)
182 {
183  if (!memcmp("always", buf,
184  min(sizeof("always")-1, count))) {
187  } else if (!memcmp("madvise", buf,
188  min(sizeof("madvise")-1, count))) {
191  } else if (!memcmp("never", buf,
192  min(sizeof("never")-1, count))) {
195  } else
196  return -EINVAL;
197 
198  return count;
199 }
200 
201 static ssize_t enabled_show(struct kobject *kobj,
202  struct kobj_attribute *attr, char *buf)
203 {
204  return double_flag_show(kobj, attr, buf,
207 }
208 static ssize_t enabled_store(struct kobject *kobj,
209  struct kobj_attribute *attr,
210  const char *buf, size_t count)
211 {
212  ssize_t ret;
213 
214  ret = double_flag_store(kobj, attr, buf, count,
217 
218  if (ret > 0) {
219  int err;
220 
221  mutex_lock(&khugepaged_mutex);
222  err = start_khugepaged();
223  mutex_unlock(&khugepaged_mutex);
224 
225  if (err)
226  ret = err;
227  }
228 
229  return ret;
230 }
231 static struct kobj_attribute enabled_attr =
232  __ATTR(enabled, 0644, enabled_show, enabled_store);
233 
234 static ssize_t single_flag_show(struct kobject *kobj,
235  struct kobj_attribute *attr, char *buf,
237 {
238  return sprintf(buf, "%d\n",
240 }
241 
242 static ssize_t single_flag_store(struct kobject *kobj,
243  struct kobj_attribute *attr,
244  const char *buf, size_t count,
245  enum transparent_hugepage_flag flag)
246 {
247  unsigned long value;
248  int ret;
249 
250  ret = kstrtoul(buf, 10, &value);
251  if (ret < 0)
252  return ret;
253  if (value > 1)
254  return -EINVAL;
255 
256  if (value)
258  else
260 
261  return count;
262 }
263 
264 /*
265  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
266  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
267  * memory just to allocate one more hugepage.
268  */
269 static ssize_t defrag_show(struct kobject *kobj,
270  struct kobj_attribute *attr, char *buf)
271 {
272  return double_flag_show(kobj, attr, buf,
275 }
276 static ssize_t defrag_store(struct kobject *kobj,
277  struct kobj_attribute *attr,
278  const char *buf, size_t count)
279 {
280  return double_flag_store(kobj, attr, buf, count,
283 }
284 static struct kobj_attribute defrag_attr =
285  __ATTR(defrag, 0644, defrag_show, defrag_store);
286 
287 #ifdef CONFIG_DEBUG_VM
288 static ssize_t debug_cow_show(struct kobject *kobj,
289  struct kobj_attribute *attr, char *buf)
290 {
291  return single_flag_show(kobj, attr, buf,
292  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
293 }
294 static ssize_t debug_cow_store(struct kobject *kobj,
295  struct kobj_attribute *attr,
296  const char *buf, size_t count)
297 {
298  return single_flag_store(kobj, attr, buf, count,
299  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
300 }
301 static struct kobj_attribute debug_cow_attr =
302  __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
303 #endif /* CONFIG_DEBUG_VM */
304 
305 static struct attribute *hugepage_attr[] = {
306  &enabled_attr.attr,
307  &defrag_attr.attr,
308 #ifdef CONFIG_DEBUG_VM
309  &debug_cow_attr.attr,
310 #endif
311  NULL,
312 };
313 
314 static struct attribute_group hugepage_attr_group = {
315  .attrs = hugepage_attr,
316 };
317 
318 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
319  struct kobj_attribute *attr,
320  char *buf)
321 {
322  return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
323 }
324 
325 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
326  struct kobj_attribute *attr,
327  const char *buf, size_t count)
328 {
329  unsigned long msecs;
330  int err;
331 
332  err = strict_strtoul(buf, 10, &msecs);
333  if (err || msecs > UINT_MAX)
334  return -EINVAL;
335 
336  khugepaged_scan_sleep_millisecs = msecs;
337  wake_up_interruptible(&khugepaged_wait);
338 
339  return count;
340 }
341 static struct kobj_attribute scan_sleep_millisecs_attr =
342  __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
343  scan_sleep_millisecs_store);
344 
345 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
346  struct kobj_attribute *attr,
347  char *buf)
348 {
349  return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
350 }
351 
352 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
353  struct kobj_attribute *attr,
354  const char *buf, size_t count)
355 {
356  unsigned long msecs;
357  int err;
358 
359  err = strict_strtoul(buf, 10, &msecs);
360  if (err || msecs > UINT_MAX)
361  return -EINVAL;
362 
363  khugepaged_alloc_sleep_millisecs = msecs;
364  wake_up_interruptible(&khugepaged_wait);
365 
366  return count;
367 }
368 static struct kobj_attribute alloc_sleep_millisecs_attr =
369  __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
370  alloc_sleep_millisecs_store);
371 
372 static ssize_t pages_to_scan_show(struct kobject *kobj,
373  struct kobj_attribute *attr,
374  char *buf)
375 {
376  return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
377 }
378 static ssize_t pages_to_scan_store(struct kobject *kobj,
379  struct kobj_attribute *attr,
380  const char *buf, size_t count)
381 {
382  int err;
383  unsigned long pages;
384 
385  err = strict_strtoul(buf, 10, &pages);
386  if (err || !pages || pages > UINT_MAX)
387  return -EINVAL;
388 
389  khugepaged_pages_to_scan = pages;
390 
391  return count;
392 }
393 static struct kobj_attribute pages_to_scan_attr =
394  __ATTR(pages_to_scan, 0644, pages_to_scan_show,
395  pages_to_scan_store);
396 
397 static ssize_t pages_collapsed_show(struct kobject *kobj,
398  struct kobj_attribute *attr,
399  char *buf)
400 {
401  return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
402 }
403 static struct kobj_attribute pages_collapsed_attr =
404  __ATTR_RO(pages_collapsed);
405 
406 static ssize_t full_scans_show(struct kobject *kobj,
407  struct kobj_attribute *attr,
408  char *buf)
409 {
410  return sprintf(buf, "%u\n", khugepaged_full_scans);
411 }
412 static struct kobj_attribute full_scans_attr =
413  __ATTR_RO(full_scans);
414 
415 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
416  struct kobj_attribute *attr, char *buf)
417 {
418  return single_flag_show(kobj, attr, buf,
420 }
421 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
422  struct kobj_attribute *attr,
423  const char *buf, size_t count)
424 {
425  return single_flag_store(kobj, attr, buf, count,
427 }
428 static struct kobj_attribute khugepaged_defrag_attr =
429  __ATTR(defrag, 0644, khugepaged_defrag_show,
430  khugepaged_defrag_store);
431 
432 /*
433  * max_ptes_none controls if khugepaged should collapse hugepages over
434  * any unmapped ptes in turn potentially increasing the memory
435  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
436  * reduce the available free memory in the system as it
437  * runs. Increasing max_ptes_none will instead potentially reduce the
438  * free memory in the system during the khugepaged scan.
439  */
440 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
441  struct kobj_attribute *attr,
442  char *buf)
443 {
444  return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
445 }
446 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
447  struct kobj_attribute *attr,
448  const char *buf, size_t count)
449 {
450  int err;
451  unsigned long max_ptes_none;
452 
453  err = strict_strtoul(buf, 10, &max_ptes_none);
454  if (err || max_ptes_none > HPAGE_PMD_NR-1)
455  return -EINVAL;
456 
457  khugepaged_max_ptes_none = max_ptes_none;
458 
459  return count;
460 }
461 static struct kobj_attribute khugepaged_max_ptes_none_attr =
462  __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
463  khugepaged_max_ptes_none_store);
464 
465 static struct attribute *khugepaged_attr[] = {
466  &khugepaged_defrag_attr.attr,
467  &khugepaged_max_ptes_none_attr.attr,
468  &pages_to_scan_attr.attr,
469  &pages_collapsed_attr.attr,
470  &full_scans_attr.attr,
471  &scan_sleep_millisecs_attr.attr,
472  &alloc_sleep_millisecs_attr.attr,
473  NULL,
474 };
475 
476 static struct attribute_group khugepaged_attr_group = {
477  .attrs = khugepaged_attr,
478  .name = "khugepaged",
479 };
480 
481 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
482 {
483  int err;
484 
485  *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
486  if (unlikely(!*hugepage_kobj)) {
487  printk(KERN_ERR "hugepage: failed kobject create\n");
488  return -ENOMEM;
489  }
490 
491  err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
492  if (err) {
493  printk(KERN_ERR "hugepage: failed register hugeage group\n");
494  goto delete_obj;
495  }
496 
497  err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
498  if (err) {
499  printk(KERN_ERR "hugepage: failed register hugeage group\n");
500  goto remove_hp_group;
501  }
502 
503  return 0;
504 
505 remove_hp_group:
506  sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
507 delete_obj:
508  kobject_put(*hugepage_kobj);
509  return err;
510 }
511 
512 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
513 {
514  sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
515  sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
516  kobject_put(hugepage_kobj);
517 }
518 #else
519 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
520 {
521  return 0;
522 }
523 
524 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
525 {
526 }
527 #endif /* CONFIG_SYSFS */
528 
529 static int __init hugepage_init(void)
530 {
531  int err;
532  struct kobject *hugepage_kobj;
533 
534  if (!has_transparent_hugepage()) {
536  return -EINVAL;
537  }
538 
539  err = hugepage_init_sysfs(&hugepage_kobj);
540  if (err)
541  return err;
542 
543  err = khugepaged_slab_init();
544  if (err)
545  goto out;
546 
547  err = mm_slots_hash_init();
548  if (err) {
549  khugepaged_slab_free();
550  goto out;
551  }
552 
553  /*
554  * By default disable transparent hugepages on smaller systems,
555  * where the extra memory used could hurt more than TLB overhead
556  * is likely to save. The admin can still enable it through /sys.
557  */
558  if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
560 
561  start_khugepaged();
562 
563  return 0;
564 out:
565  hugepage_exit_sysfs(hugepage_kobj);
566  return err;
567 }
568 module_init(hugepage_init)
569 
570 static int __init setup_transparent_hugepage(char *str)
571 {
572  int ret = 0;
573  if (!str)
574  goto out;
575  if (!strcmp(str, "always")) {
580  ret = 1;
581  } else if (!strcmp(str, "madvise")) {
586  ret = 1;
587  } else if (!strcmp(str, "never")) {
592  ret = 1;
593  }
594 out:
595  if (!ret)
597  "transparent_hugepage= cannot parse, ignored\n");
598  return ret;
599 }
600 __setup("transparent_hugepage=", setup_transparent_hugepage);
601 
602 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
603 {
604  if (likely(vma->vm_flags & VM_WRITE))
605  pmd = pmd_mkwrite(pmd);
606  return pmd;
607 }
608 
609 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
610  struct vm_area_struct *vma,
611  unsigned long haddr, pmd_t *pmd,
612  struct page *page)
613 {
614  pgtable_t pgtable;
615 
616  VM_BUG_ON(!PageCompound(page));
617  pgtable = pte_alloc_one(mm, haddr);
618  if (unlikely(!pgtable))
619  return VM_FAULT_OOM;
620 
621  clear_huge_page(page, haddr, HPAGE_PMD_NR);
622  __SetPageUptodate(page);
623 
624  spin_lock(&mm->page_table_lock);
625  if (unlikely(!pmd_none(*pmd))) {
626  spin_unlock(&mm->page_table_lock);
628  put_page(page);
629  pte_free(mm, pgtable);
630  } else {
631  pmd_t entry;
632  entry = mk_pmd(page, vma->vm_page_prot);
633  entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634  entry = pmd_mkhuge(entry);
635  /*
636  * The spinlocking to take the lru_lock inside
637  * page_add_new_anon_rmap() acts as a full memory
638  * barrier to be sure clear_huge_page writes become
639  * visible after the set_pmd_at() write.
640  */
641  page_add_new_anon_rmap(page, vma, haddr);
642  set_pmd_at(mm, haddr, pmd, entry);
643  pgtable_trans_huge_deposit(mm, pgtable);
644  add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645  mm->nr_ptes++;
646  spin_unlock(&mm->page_table_lock);
647  }
648 
649  return 0;
650 }
651 
652 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
653 {
654  return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
655 }
656 
657 static inline struct page *alloc_hugepage_vma(int defrag,
658  struct vm_area_struct *vma,
659  unsigned long haddr, int nd,
660  gfp_t extra_gfp)
661 {
662  return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
663  HPAGE_PMD_ORDER, vma, haddr, nd);
664 }
665 
666 #ifndef CONFIG_NUMA
667 static inline struct page *alloc_hugepage(int defrag)
668 {
669  return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
671 }
672 #endif
673 
675  unsigned long address, pmd_t *pmd,
676  unsigned int flags)
677 {
678  struct page *page;
679  unsigned long haddr = address & HPAGE_PMD_MASK;
680  pte_t *pte;
681 
682  if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
683  if (unlikely(anon_vma_prepare(vma)))
684  return VM_FAULT_OOM;
685  if (unlikely(khugepaged_enter(vma)))
686  return VM_FAULT_OOM;
687  page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
688  vma, haddr, numa_node_id(), 0);
689  if (unlikely(!page)) {
690  count_vm_event(THP_FAULT_FALLBACK);
691  goto out;
692  }
693  count_vm_event(THP_FAULT_ALLOC);
695  put_page(page);
696  goto out;
697  }
698  if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
699  page))) {
701  put_page(page);
702  goto out;
703  }
704 
705  return 0;
706  }
707 out:
708  /*
709  * Use __pte_alloc instead of pte_alloc_map, because we can't
710  * run pte_offset_map on the pmd, if an huge pmd could
711  * materialize from under us from a different thread.
712  */
713  if (unlikely(__pte_alloc(mm, vma, pmd, address)))
714  return VM_FAULT_OOM;
715  /* if an huge pmd materialized from under us just retry later */
716  if (unlikely(pmd_trans_huge(*pmd)))
717  return 0;
718  /*
719  * A regular pmd is established and it can't morph into a huge pmd
720  * from under us anymore at this point because we hold the mmap_sem
721  * read mode and khugepaged takes it in write mode. So now it's
722  * safe to run pte_offset_map().
723  */
724  pte = pte_offset_map(pmd, address);
725  return handle_pte_fault(mm, vma, address, pte, pmd, flags);
726 }
727 
728 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
729  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
730  struct vm_area_struct *vma)
731 {
732  struct page *src_page;
733  pmd_t pmd;
734  pgtable_t pgtable;
735  int ret;
736 
737  ret = -ENOMEM;
738  pgtable = pte_alloc_one(dst_mm, addr);
739  if (unlikely(!pgtable))
740  goto out;
741 
742  spin_lock(&dst_mm->page_table_lock);
744 
745  ret = -EAGAIN;
746  pmd = *src_pmd;
747  if (unlikely(!pmd_trans_huge(pmd))) {
748  pte_free(dst_mm, pgtable);
749  goto out_unlock;
750  }
751  if (unlikely(pmd_trans_splitting(pmd))) {
752  /* split huge page running from under us */
753  spin_unlock(&src_mm->page_table_lock);
754  spin_unlock(&dst_mm->page_table_lock);
755  pte_free(dst_mm, pgtable);
756 
757  wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
758  goto out;
759  }
760  src_page = pmd_page(pmd);
761  VM_BUG_ON(!PageHead(src_page));
762  get_page(src_page);
763  page_dup_rmap(src_page);
764  add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
765 
766  pmdp_set_wrprotect(src_mm, addr, src_pmd);
767  pmd = pmd_mkold(pmd_wrprotect(pmd));
768  set_pmd_at(dst_mm, addr, dst_pmd, pmd);
769  pgtable_trans_huge_deposit(dst_mm, pgtable);
770  dst_mm->nr_ptes++;
771 
772  ret = 0;
773 out_unlock:
774  spin_unlock(&src_mm->page_table_lock);
775  spin_unlock(&dst_mm->page_table_lock);
776 out:
777  return ret;
778 }
779 
780 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
781  struct vm_area_struct *vma,
782  unsigned long address,
783  pmd_t *pmd, pmd_t orig_pmd,
784  struct page *page,
785  unsigned long haddr)
786 {
787  pgtable_t pgtable;
788  pmd_t _pmd;
789  int ret = 0, i;
790  struct page **pages;
791  unsigned long mmun_start; /* For mmu_notifiers */
792  unsigned long mmun_end; /* For mmu_notifiers */
793 
794  pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
795  GFP_KERNEL);
796  if (unlikely(!pages)) {
797  ret |= VM_FAULT_OOM;
798  goto out;
799  }
800 
801  for (i = 0; i < HPAGE_PMD_NR; i++) {
804  vma, address, page_to_nid(page));
805  if (unlikely(!pages[i] ||
806  mem_cgroup_newpage_charge(pages[i], mm,
807  GFP_KERNEL))) {
808  if (pages[i])
809  put_page(pages[i]);
811  while (--i >= 0) {
812  mem_cgroup_uncharge_page(pages[i]);
813  put_page(pages[i]);
814  }
816  kfree(pages);
817  ret |= VM_FAULT_OOM;
818  goto out;
819  }
820  }
821 
822  for (i = 0; i < HPAGE_PMD_NR; i++) {
823  copy_user_highpage(pages[i], page + i,
824  haddr + PAGE_SIZE * i, vma);
825  __SetPageUptodate(pages[i]);
826  cond_resched();
827  }
828 
829  mmun_start = haddr;
830  mmun_end = haddr + HPAGE_PMD_SIZE;
831  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
832 
833  spin_lock(&mm->page_table_lock);
834  if (unlikely(!pmd_same(*pmd, orig_pmd)))
835  goto out_free_pages;
836  VM_BUG_ON(!PageHead(page));
837 
838  pmdp_clear_flush(vma, haddr, pmd);
839  /* leave pmd empty until pte is filled */
840 
841  pgtable = pgtable_trans_huge_withdraw(mm);
842  pmd_populate(mm, &_pmd, pgtable);
843 
844  for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
845  pte_t *pte, entry;
846  entry = mk_pte(pages[i], vma->vm_page_prot);
847  entry = maybe_mkwrite(pte_mkdirty(entry), vma);
848  page_add_new_anon_rmap(pages[i], vma, haddr);
849  pte = pte_offset_map(&_pmd, haddr);
850  VM_BUG_ON(!pte_none(*pte));
851  set_pte_at(mm, haddr, pte, entry);
852  pte_unmap(pte);
853  }
854  kfree(pages);
855 
856  smp_wmb(); /* make pte visible before pmd */
857  pmd_populate(mm, pmd, pgtable);
858  page_remove_rmap(page);
859  spin_unlock(&mm->page_table_lock);
860 
861  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
862 
863  ret |= VM_FAULT_WRITE;
864  put_page(page);
865 
866 out:
867  return ret;
868 
869 out_free_pages:
870  spin_unlock(&mm->page_table_lock);
871  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
873  for (i = 0; i < HPAGE_PMD_NR; i++) {
874  mem_cgroup_uncharge_page(pages[i]);
875  put_page(pages[i]);
876  }
878  kfree(pages);
879  goto out;
880 }
881 
882 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
883  unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
884 {
885  int ret = 0;
886  struct page *page, *new_page;
887  unsigned long haddr;
888  unsigned long mmun_start; /* For mmu_notifiers */
889  unsigned long mmun_end; /* For mmu_notifiers */
890 
891  VM_BUG_ON(!vma->anon_vma);
892  spin_lock(&mm->page_table_lock);
893  if (unlikely(!pmd_same(*pmd, orig_pmd)))
894  goto out_unlock;
895 
896  page = pmd_page(orig_pmd);
897  VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898  haddr = address & HPAGE_PMD_MASK;
899  if (page_mapcount(page) == 1) {
900  pmd_t entry;
901  entry = pmd_mkyoung(orig_pmd);
902  entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903  if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
904  update_mmu_cache_pmd(vma, address, pmd);
905  ret |= VM_FAULT_WRITE;
906  goto out_unlock;
907  }
908  get_page(page);
909  spin_unlock(&mm->page_table_lock);
910 
911  if (transparent_hugepage_enabled(vma) &&
912  !transparent_hugepage_debug_cow())
913  new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914  vma, haddr, numa_node_id(), 0);
915  else
916  new_page = NULL;
917 
918  if (unlikely(!new_page)) {
919  count_vm_event(THP_FAULT_FALLBACK);
920  ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921  pmd, orig_pmd, page, haddr);
922  if (ret & VM_FAULT_OOM)
923  split_huge_page(page);
924  put_page(page);
925  goto out;
926  }
927  count_vm_event(THP_FAULT_ALLOC);
928 
929  if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
930  put_page(new_page);
931  split_huge_page(page);
932  put_page(page);
933  ret |= VM_FAULT_OOM;
934  goto out;
935  }
936 
937  copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
938  __SetPageUptodate(new_page);
939 
940  mmun_start = haddr;
941  mmun_end = haddr + HPAGE_PMD_SIZE;
942  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
943 
944  spin_lock(&mm->page_table_lock);
945  put_page(page);
946  if (unlikely(!pmd_same(*pmd, orig_pmd))) {
947  spin_unlock(&mm->page_table_lock);
948  mem_cgroup_uncharge_page(new_page);
949  put_page(new_page);
950  goto out_mn;
951  } else {
952  pmd_t entry;
953  VM_BUG_ON(!PageHead(page));
954  entry = mk_pmd(new_page, vma->vm_page_prot);
955  entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
956  entry = pmd_mkhuge(entry);
957  pmdp_clear_flush(vma, haddr, pmd);
958  page_add_new_anon_rmap(new_page, vma, haddr);
959  set_pmd_at(mm, haddr, pmd, entry);
960  update_mmu_cache_pmd(vma, address, pmd);
961  page_remove_rmap(page);
962  put_page(page);
963  ret |= VM_FAULT_WRITE;
964  }
965  spin_unlock(&mm->page_table_lock);
966 out_mn:
967  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
968 out:
969  return ret;
970 out_unlock:
971  spin_unlock(&mm->page_table_lock);
972  return ret;
973 }
974 
975 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
976  unsigned long addr,
977  pmd_t *pmd,
978  unsigned int flags)
979 {
980  struct mm_struct *mm = vma->vm_mm;
981  struct page *page = NULL;
982 
984 
985  if (flags & FOLL_WRITE && !pmd_write(*pmd))
986  goto out;
987 
988  page = pmd_page(*pmd);
989  VM_BUG_ON(!PageHead(page));
990  if (flags & FOLL_TOUCH) {
991  pmd_t _pmd;
992  /*
993  * We should set the dirty bit only for FOLL_WRITE but
994  * for now the dirty bit in the pmd is meaningless.
995  * And if the dirty bit will become meaningful and
996  * we'll only set it with FOLL_WRITE, an atomic
997  * set_bit will be required on the pmd to set the
998  * young bit, instead of the current set_pmd_at.
999  */
1000  _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1001  set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1002  }
1003  if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1004  if (page->mapping && trylock_page(page)) {
1005  lru_add_drain();
1006  if (page->mapping)
1007  mlock_vma_page(page);
1008  unlock_page(page);
1009  }
1010  }
1011  page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1012  VM_BUG_ON(!PageCompound(page));
1013  if (flags & FOLL_GET)
1014  get_page_foll(page);
1015 
1016 out:
1017  return page;
1018 }
1019 
1020 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1021  pmd_t *pmd, unsigned long addr)
1022 {
1023  int ret = 0;
1024 
1025  if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1026  struct page *page;
1027  pgtable_t pgtable;
1028  pmd_t orig_pmd;
1029  pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1030  orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1031  page = pmd_page(orig_pmd);
1032  tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1033  page_remove_rmap(page);
1034  VM_BUG_ON(page_mapcount(page) < 0);
1035  add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1036  VM_BUG_ON(!PageHead(page));
1037  tlb->mm->nr_ptes--;
1038  spin_unlock(&tlb->mm->page_table_lock);
1039  tlb_remove_page(tlb, page);
1040  pte_free(tlb->mm, pgtable);
1041  ret = 1;
1042  }
1043  return ret;
1044 }
1045 
1046 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1047  unsigned long addr, unsigned long end,
1048  unsigned char *vec)
1049 {
1050  int ret = 0;
1051 
1052  if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1053  /*
1054  * All logical pages in the range are present
1055  * if backed by a huge page.
1056  */
1057  spin_unlock(&vma->vm_mm->page_table_lock);
1058  memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1059  ret = 1;
1060  }
1061 
1062  return ret;
1063 }
1064 
1065 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1066  unsigned long old_addr,
1067  unsigned long new_addr, unsigned long old_end,
1068  pmd_t *old_pmd, pmd_t *new_pmd)
1069 {
1070  int ret = 0;
1071  pmd_t pmd;
1072 
1073  struct mm_struct *mm = vma->vm_mm;
1074 
1075  if ((old_addr & ~HPAGE_PMD_MASK) ||
1076  (new_addr & ~HPAGE_PMD_MASK) ||
1077  old_end - old_addr < HPAGE_PMD_SIZE ||
1078  (new_vma->vm_flags & VM_NOHUGEPAGE))
1079  goto out;
1080 
1081  /*
1082  * The destination pmd shouldn't be established, free_pgtables()
1083  * should have release it.
1084  */
1085  if (WARN_ON(!pmd_none(*new_pmd))) {
1086  VM_BUG_ON(pmd_trans_huge(*new_pmd));
1087  goto out;
1088  }
1089 
1090  ret = __pmd_trans_huge_lock(old_pmd, vma);
1091  if (ret == 1) {
1092  pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1093  VM_BUG_ON(!pmd_none(*new_pmd));
1094  set_pmd_at(mm, new_addr, new_pmd, pmd);
1095  spin_unlock(&mm->page_table_lock);
1096  }
1097 out:
1098  return ret;
1099 }
1100 
1101 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1102  unsigned long addr, pgprot_t newprot)
1103 {
1104  struct mm_struct *mm = vma->vm_mm;
1105  int ret = 0;
1106 
1107  if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1108  pmd_t entry;
1109  entry = pmdp_get_and_clear(mm, addr, pmd);
1110  entry = pmd_modify(entry, newprot);
1111  set_pmd_at(mm, addr, pmd, entry);
1112  spin_unlock(&vma->vm_mm->page_table_lock);
1113  ret = 1;
1114  }
1115 
1116  return ret;
1117 }
1118 
1119 /*
1120  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1121  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1122  *
1123  * Note that if it returns 1, this routine returns without unlocking page
1124  * table locks. So callers must unlock them.
1125  */
1127 {
1128  spin_lock(&vma->vm_mm->page_table_lock);
1129  if (likely(pmd_trans_huge(*pmd))) {
1130  if (unlikely(pmd_trans_splitting(*pmd))) {
1131  spin_unlock(&vma->vm_mm->page_table_lock);
1132  wait_split_huge_page(vma->anon_vma, pmd);
1133  return -1;
1134  } else {
1135  /* Thp mapped by 'pmd' is stable, so we can
1136  * handle it as it is. */
1137  return 1;
1138  }
1139  }
1140  spin_unlock(&vma->vm_mm->page_table_lock);
1141  return 0;
1142 }
1143 
1144 pmd_t *page_check_address_pmd(struct page *page,
1145  struct mm_struct *mm,
1146  unsigned long address,
1147  enum page_check_address_pmd_flag flag)
1148 {
1149  pgd_t *pgd;
1150  pud_t *pud;
1151  pmd_t *pmd, *ret = NULL;
1152 
1153  if (address & ~HPAGE_PMD_MASK)
1154  goto out;
1155 
1156  pgd = pgd_offset(mm, address);
1157  if (!pgd_present(*pgd))
1158  goto out;
1159 
1160  pud = pud_offset(pgd, address);
1161  if (!pud_present(*pud))
1162  goto out;
1163 
1164  pmd = pmd_offset(pud, address);
1165  if (pmd_none(*pmd))
1166  goto out;
1167  if (pmd_page(*pmd) != page)
1168  goto out;
1169  /*
1170  * split_vma() may create temporary aliased mappings. There is
1171  * no risk as long as all huge pmd are found and have their
1172  * splitting bit set before __split_huge_page_refcount
1173  * runs. Finding the same huge pmd more than once during the
1174  * same rmap walk is not a problem.
1175  */
1177  pmd_trans_splitting(*pmd))
1178  goto out;
1179  if (pmd_trans_huge(*pmd)) {
1181  !pmd_trans_splitting(*pmd));
1182  ret = pmd;
1183  }
1184 out:
1185  return ret;
1186 }
1187 
1188 static int __split_huge_page_splitting(struct page *page,
1189  struct vm_area_struct *vma,
1190  unsigned long address)
1191 {
1192  struct mm_struct *mm = vma->vm_mm;
1193  pmd_t *pmd;
1194  int ret = 0;
1195  /* For mmu_notifiers */
1196  const unsigned long mmun_start = address;
1197  const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1198 
1199  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1200  spin_lock(&mm->page_table_lock);
1201  pmd = page_check_address_pmd(page, mm, address,
1203  if (pmd) {
1204  /*
1205  * We can't temporarily set the pmd to null in order
1206  * to split it, the pmd must remain marked huge at all
1207  * times or the VM won't take the pmd_trans_huge paths
1208  * and it won't wait on the anon_vma->root->mutex to
1209  * serialize against split_huge_page*.
1210  */
1211  pmdp_splitting_flush(vma, address, pmd);
1212  ret = 1;
1213  }
1214  spin_unlock(&mm->page_table_lock);
1215  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1216 
1217  return ret;
1218 }
1219 
1220 static void __split_huge_page_refcount(struct page *page)
1221 {
1222  int i;
1223  struct zone *zone = page_zone(page);
1224  struct lruvec *lruvec;
1225  int tail_count = 0;
1226 
1227  /* prevent PageLRU to go away from under us, and freeze lru stats */
1228  spin_lock_irq(&zone->lru_lock);
1229  lruvec = mem_cgroup_page_lruvec(page, zone);
1230 
1231  compound_lock(page);
1232  /* complete memcg works before add pages to LRU */
1233  mem_cgroup_split_huge_fixup(page);
1234 
1235  for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1236  struct page *page_tail = page + i;
1237 
1238  /* tail_page->_mapcount cannot change */
1239  BUG_ON(page_mapcount(page_tail) < 0);
1240  tail_count += page_mapcount(page_tail);
1241  /* check for overflow */
1242  BUG_ON(tail_count < 0);
1243  BUG_ON(atomic_read(&page_tail->_count) != 0);
1244  /*
1245  * tail_page->_count is zero and not changing from
1246  * under us. But get_page_unless_zero() may be running
1247  * from under us on the tail_page. If we used
1248  * atomic_set() below instead of atomic_add(), we
1249  * would then run atomic_set() concurrently with
1250  * get_page_unless_zero(), and atomic_set() is
1251  * implemented in C not using locked ops. spin_unlock
1252  * on x86 sometime uses locked ops because of PPro
1253  * errata 66, 92, so unless somebody can guarantee
1254  * atomic_set() here would be safe on all archs (and
1255  * not only on x86), it's safer to use atomic_add().
1256  */
1257  atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1258  &page_tail->_count);
1259 
1260  /* after clearing PageTail the gup refcount can be released */
1261  smp_mb();
1262 
1263  /*
1264  * retain hwpoison flag of the poisoned tail page:
1265  * fix for the unsuitable process killed on Guest Machine(KVM)
1266  * by the memory-failure.
1267  */
1268  page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1269  page_tail->flags |= (page->flags &
1270  ((1L << PG_referenced) |
1271  (1L << PG_swapbacked) |
1272  (1L << PG_mlocked) |
1273  (1L << PG_uptodate)));
1274  page_tail->flags |= (1L << PG_dirty);
1275 
1276  /* clear PageTail before overwriting first_page */
1277  smp_wmb();
1278 
1279  /*
1280  * __split_huge_page_splitting() already set the
1281  * splitting bit in all pmd that could map this
1282  * hugepage, that will ensure no CPU can alter the
1283  * mapcount on the head page. The mapcount is only
1284  * accounted in the head page and it has to be
1285  * transferred to all tail pages in the below code. So
1286  * for this code to be safe, the split the mapcount
1287  * can't change. But that doesn't mean userland can't
1288  * keep changing and reading the page contents while
1289  * we transfer the mapcount, so the pmd splitting
1290  * status is achieved setting a reserved bit in the
1291  * pmd, not by clearing the present bit.
1292  */
1293  page_tail->_mapcount = page->_mapcount;
1294 
1295  BUG_ON(page_tail->mapping);
1296  page_tail->mapping = page->mapping;
1297 
1298  page_tail->index = page->index + i;
1299 
1300  BUG_ON(!PageAnon(page_tail));
1301  BUG_ON(!PageUptodate(page_tail));
1302  BUG_ON(!PageDirty(page_tail));
1303  BUG_ON(!PageSwapBacked(page_tail));
1304 
1305  lru_add_page_tail(page, page_tail, lruvec);
1306  }
1307  atomic_sub(tail_count, &page->_count);
1308  BUG_ON(atomic_read(&page->_count) <= 0);
1309 
1310  __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1311  __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1312 
1313  ClearPageCompound(page);
1314  compound_unlock(page);
1315  spin_unlock_irq(&zone->lru_lock);
1316 
1317  for (i = 1; i < HPAGE_PMD_NR; i++) {
1318  struct page *page_tail = page + i;
1319  BUG_ON(page_count(page_tail) <= 0);
1320  /*
1321  * Tail pages may be freed if there wasn't any mapping
1322  * like if add_to_swap() is running on a lru page that
1323  * had its mapping zapped. And freeing these pages
1324  * requires taking the lru_lock so we do the put_page
1325  * of the tail pages after the split is complete.
1326  */
1327  put_page(page_tail);
1328  }
1329 
1330  /*
1331  * Only the head page (now become a regular page) is required
1332  * to be pinned by the caller.
1333  */
1334  BUG_ON(page_count(page) <= 0);
1335 }
1336 
1337 static int __split_huge_page_map(struct page *page,
1338  struct vm_area_struct *vma,
1339  unsigned long address)
1340 {
1341  struct mm_struct *mm = vma->vm_mm;
1342  pmd_t *pmd, _pmd;
1343  int ret = 0, i;
1344  pgtable_t pgtable;
1345  unsigned long haddr;
1346 
1347  spin_lock(&mm->page_table_lock);
1348  pmd = page_check_address_pmd(page, mm, address,
1350  if (pmd) {
1351  pgtable = pgtable_trans_huge_withdraw(mm);
1352  pmd_populate(mm, &_pmd, pgtable);
1353 
1354  haddr = address;
1355  for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1356  pte_t *pte, entry;
1357  BUG_ON(PageCompound(page+i));
1358  entry = mk_pte(page + i, vma->vm_page_prot);
1359  entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1360  if (!pmd_write(*pmd))
1361  entry = pte_wrprotect(entry);
1362  else
1363  BUG_ON(page_mapcount(page) != 1);
1364  if (!pmd_young(*pmd))
1365  entry = pte_mkold(entry);
1366  pte = pte_offset_map(&_pmd, haddr);
1367  BUG_ON(!pte_none(*pte));
1368  set_pte_at(mm, haddr, pte, entry);
1369  pte_unmap(pte);
1370  }
1371 
1372  smp_wmb(); /* make pte visible before pmd */
1373  /*
1374  * Up to this point the pmd is present and huge and
1375  * userland has the whole access to the hugepage
1376  * during the split (which happens in place). If we
1377  * overwrite the pmd with the not-huge version
1378  * pointing to the pte here (which of course we could
1379  * if all CPUs were bug free), userland could trigger
1380  * a small page size TLB miss on the small sized TLB
1381  * while the hugepage TLB entry is still established
1382  * in the huge TLB. Some CPU doesn't like that. See
1383  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1384  * Erratum 383 on page 93. Intel should be safe but is
1385  * also warns that it's only safe if the permission
1386  * and cache attributes of the two entries loaded in
1387  * the two TLB is identical (which should be the case
1388  * here). But it is generally safer to never allow
1389  * small and huge TLB entries for the same virtual
1390  * address to be loaded simultaneously. So instead of
1391  * doing "pmd_populate(); flush_tlb_range();" we first
1392  * mark the current pmd notpresent (atomically because
1393  * here the pmd_trans_huge and pmd_trans_splitting
1394  * must remain set at all times on the pmd until the
1395  * split is complete for this pmd), then we flush the
1396  * SMP TLB and finally we write the non-huge version
1397  * of the pmd entry with pmd_populate.
1398  */
1399  pmdp_invalidate(vma, address, pmd);
1400  pmd_populate(mm, pmd, pgtable);
1401  ret = 1;
1402  }
1403  spin_unlock(&mm->page_table_lock);
1404 
1405  return ret;
1406 }
1407 
1408 /* must be called with anon_vma->root->mutex hold */
1409 static void __split_huge_page(struct page *page,
1410  struct anon_vma *anon_vma)
1411 {
1412  int mapcount, mapcount2;
1413  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1414  struct anon_vma_chain *avc;
1415 
1416  BUG_ON(!PageHead(page));
1417  BUG_ON(PageTail(page));
1418 
1419  mapcount = 0;
1420  anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1421  struct vm_area_struct *vma = avc->vma;
1422  unsigned long addr = vma_address(page, vma);
1424  mapcount += __split_huge_page_splitting(page, vma, addr);
1425  }
1426  /*
1427  * It is critical that new vmas are added to the tail of the
1428  * anon_vma list. This guarantes that if copy_huge_pmd() runs
1429  * and establishes a child pmd before
1430  * __split_huge_page_splitting() freezes the parent pmd (so if
1431  * we fail to prevent copy_huge_pmd() from running until the
1432  * whole __split_huge_page() is complete), we will still see
1433  * the newly established pmd of the child later during the
1434  * walk, to be able to set it as pmd_trans_splitting too.
1435  */
1436  if (mapcount != page_mapcount(page))
1437  printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1438  mapcount, page_mapcount(page));
1439  BUG_ON(mapcount != page_mapcount(page));
1440 
1441  __split_huge_page_refcount(page);
1442 
1443  mapcount2 = 0;
1444  anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1445  struct vm_area_struct *vma = avc->vma;
1446  unsigned long addr = vma_address(page, vma);
1448  mapcount2 += __split_huge_page_map(page, vma, addr);
1449  }
1450  if (mapcount != mapcount2)
1451  printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1452  mapcount, mapcount2, page_mapcount(page));
1453  BUG_ON(mapcount != mapcount2);
1454 }
1455 
1456 int split_huge_page(struct page *page)
1457 {
1458  struct anon_vma *anon_vma;
1459  int ret = 1;
1460 
1461  BUG_ON(!PageAnon(page));
1462  anon_vma = page_lock_anon_vma(page);
1463  if (!anon_vma)
1464  goto out;
1465  ret = 0;
1466  if (!PageCompound(page))
1467  goto out_unlock;
1468 
1469  BUG_ON(!PageSwapBacked(page));
1470  __split_huge_page(page, anon_vma);
1471  count_vm_event(THP_SPLIT);
1472 
1473  BUG_ON(PageCompound(page));
1474 out_unlock:
1475  page_unlock_anon_vma(anon_vma);
1476 out:
1477  return ret;
1478 }
1479 
1480 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1481 
1483  unsigned long *vm_flags, int advice)
1484 {
1485  struct mm_struct *mm = vma->vm_mm;
1486 
1487  switch (advice) {
1488  case MADV_HUGEPAGE:
1489  /*
1490  * Be somewhat over-protective like KSM for now!
1491  */
1492  if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1493  return -EINVAL;
1494  if (mm->def_flags & VM_NOHUGEPAGE)
1495  return -EINVAL;
1496  *vm_flags &= ~VM_NOHUGEPAGE;
1497  *vm_flags |= VM_HUGEPAGE;
1498  /*
1499  * If the vma become good for khugepaged to scan,
1500  * register it here without waiting a page fault that
1501  * may not happen any time soon.
1502  */
1504  return -ENOMEM;
1505  break;
1506  case MADV_NOHUGEPAGE:
1507  /*
1508  * Be somewhat over-protective like KSM for now!
1509  */
1510  if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1511  return -EINVAL;
1512  *vm_flags &= ~VM_HUGEPAGE;
1513  *vm_flags |= VM_NOHUGEPAGE;
1514  /*
1515  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1516  * this vma even if we leave the mm registered in khugepaged if
1517  * it got registered before VM_NOHUGEPAGE was set.
1518  */
1519  break;
1520  }
1521 
1522  return 0;
1523 }
1524 
1525 static int __init khugepaged_slab_init(void)
1526 {
1527  mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1528  sizeof(struct mm_slot),
1529  __alignof__(struct mm_slot), 0, NULL);
1530  if (!mm_slot_cache)
1531  return -ENOMEM;
1532 
1533  return 0;
1534 }
1535 
1536 static void __init khugepaged_slab_free(void)
1537 {
1538  kmem_cache_destroy(mm_slot_cache);
1539  mm_slot_cache = NULL;
1540 }
1541 
1542 static inline struct mm_slot *alloc_mm_slot(void)
1543 {
1544  if (!mm_slot_cache) /* initialization failed */
1545  return NULL;
1546  return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1547 }
1548 
1549 static inline void free_mm_slot(struct mm_slot *mm_slot)
1550 {
1551  kmem_cache_free(mm_slot_cache, mm_slot);
1552 }
1553 
1554 static int __init mm_slots_hash_init(void)
1555 {
1556  mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1557  GFP_KERNEL);
1558  if (!mm_slots_hash)
1559  return -ENOMEM;
1560  return 0;
1561 }
1562 
1563 #if 0
1564 static void __init mm_slots_hash_free(void)
1565 {
1566  kfree(mm_slots_hash);
1567  mm_slots_hash = NULL;
1568 }
1569 #endif
1570 
1571 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1572 {
1573  struct mm_slot *mm_slot;
1574  struct hlist_head *bucket;
1575  struct hlist_node *node;
1576 
1577  bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1579  hlist_for_each_entry(mm_slot, node, bucket, hash) {
1580  if (mm == mm_slot->mm)
1581  return mm_slot;
1582  }
1583  return NULL;
1584 }
1585 
1586 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1587  struct mm_slot *mm_slot)
1588 {
1589  struct hlist_head *bucket;
1590 
1591  bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1593  mm_slot->mm = mm;
1594  hlist_add_head(&mm_slot->hash, bucket);
1595 }
1596 
1597 static inline int khugepaged_test_exit(struct mm_struct *mm)
1598 {
1599  return atomic_read(&mm->mm_users) == 0;
1600 }
1601 
1603 {
1604  struct mm_slot *mm_slot;
1605  int wakeup;
1606 
1607  mm_slot = alloc_mm_slot();
1608  if (!mm_slot)
1609  return -ENOMEM;
1610 
1611  /* __khugepaged_exit() must not run from under us */
1612  VM_BUG_ON(khugepaged_test_exit(mm));
1614  free_mm_slot(mm_slot);
1615  return 0;
1616  }
1617 
1618  spin_lock(&khugepaged_mm_lock);
1619  insert_to_mm_slots_hash(mm, mm_slot);
1620  /*
1621  * Insert just behind the scanning cursor, to let the area settle
1622  * down a little.
1623  */
1624  wakeup = list_empty(&khugepaged_scan.mm_head);
1625  list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1626  spin_unlock(&khugepaged_mm_lock);
1627 
1628  atomic_inc(&mm->mm_count);
1629  if (wakeup)
1630  wake_up_interruptible(&khugepaged_wait);
1631 
1632  return 0;
1633 }
1634 
1636 {
1637  unsigned long hstart, hend;
1638  if (!vma->anon_vma)
1639  /*
1640  * Not yet faulted in so we will register later in the
1641  * page fault if needed.
1642  */
1643  return 0;
1644  if (vma->vm_ops)
1645  /* khugepaged not yet working on file or special mappings */
1646  return 0;
1647  VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1648  hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1649  hend = vma->vm_end & HPAGE_PMD_MASK;
1650  if (hstart < hend)
1651  return khugepaged_enter(vma);
1652  return 0;
1653 }
1654 
1656 {
1657  struct mm_slot *mm_slot;
1658  int free = 0;
1659 
1660  spin_lock(&khugepaged_mm_lock);
1661  mm_slot = get_mm_slot(mm);
1662  if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1663  hlist_del(&mm_slot->hash);
1664  list_del(&mm_slot->mm_node);
1665  free = 1;
1666  }
1667  spin_unlock(&khugepaged_mm_lock);
1668 
1669  if (free) {
1671  free_mm_slot(mm_slot);
1672  mmdrop(mm);
1673  } else if (mm_slot) {
1674  /*
1675  * This is required to serialize against
1676  * khugepaged_test_exit() (which is guaranteed to run
1677  * under mmap sem read mode). Stop here (after we
1678  * return all pagetables will be destroyed) until
1679  * khugepaged has finished working on the pagetables
1680  * under the mmap_sem.
1681  */
1682  down_write(&mm->mmap_sem);
1683  up_write(&mm->mmap_sem);
1684  }
1685 }
1686 
1687 static void release_pte_page(struct page *page)
1688 {
1689  /* 0 stands for page_is_file_cache(page) == false */
1691  unlock_page(page);
1692  putback_lru_page(page);
1693 }
1694 
1695 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1696 {
1697  while (--_pte >= pte) {
1698  pte_t pteval = *_pte;
1699  if (!pte_none(pteval))
1700  release_pte_page(pte_page(pteval));
1701  }
1702 }
1703 
1704 static void release_all_pte_pages(pte_t *pte)
1705 {
1706  release_pte_pages(pte, pte + HPAGE_PMD_NR);
1707 }
1708 
1709 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1710  unsigned long address,
1711  pte_t *pte)
1712 {
1713  struct page *page;
1714  pte_t *_pte;
1715  int referenced = 0, isolated = 0, none = 0;
1716  for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1717  _pte++, address += PAGE_SIZE) {
1718  pte_t pteval = *_pte;
1719  if (pte_none(pteval)) {
1720  if (++none <= khugepaged_max_ptes_none)
1721  continue;
1722  else {
1723  release_pte_pages(pte, _pte);
1724  goto out;
1725  }
1726  }
1727  if (!pte_present(pteval) || !pte_write(pteval)) {
1728  release_pte_pages(pte, _pte);
1729  goto out;
1730  }
1731  page = vm_normal_page(vma, address, pteval);
1732  if (unlikely(!page)) {
1733  release_pte_pages(pte, _pte);
1734  goto out;
1735  }
1736  VM_BUG_ON(PageCompound(page));
1737  BUG_ON(!PageAnon(page));
1738  VM_BUG_ON(!PageSwapBacked(page));
1739 
1740  /* cannot use mapcount: can't collapse if there's a gup pin */
1741  if (page_count(page) != 1) {
1742  release_pte_pages(pte, _pte);
1743  goto out;
1744  }
1745  /*
1746  * We can do it before isolate_lru_page because the
1747  * page can't be freed from under us. NOTE: PG_lock
1748  * is needed to serialize against split_huge_page
1749  * when invoked from the VM.
1750  */
1751  if (!trylock_page(page)) {
1752  release_pte_pages(pte, _pte);
1753  goto out;
1754  }
1755  /*
1756  * Isolate the page to avoid collapsing an hugepage
1757  * currently in use by the VM.
1758  */
1759  if (isolate_lru_page(page)) {
1760  unlock_page(page);
1761  release_pte_pages(pte, _pte);
1762  goto out;
1763  }
1764  /* 0 stands for page_is_file_cache(page) == false */
1766  VM_BUG_ON(!PageLocked(page));
1767  VM_BUG_ON(PageLRU(page));
1768 
1769  /* If there is no mapped pte young don't collapse the page */
1770  if (pte_young(pteval) || PageReferenced(page) ||
1771  mmu_notifier_test_young(vma->vm_mm, address))
1772  referenced = 1;
1773  }
1774  if (unlikely(!referenced))
1775  release_all_pte_pages(pte);
1776  else
1777  isolated = 1;
1778 out:
1779  return isolated;
1780 }
1781 
1782 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1783  struct vm_area_struct *vma,
1784  unsigned long address,
1785  spinlock_t *ptl)
1786 {
1787  pte_t *_pte;
1788  for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1789  pte_t pteval = *_pte;
1790  struct page *src_page;
1791 
1792  if (pte_none(pteval)) {
1793  clear_user_highpage(page, address);
1794  add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1795  } else {
1796  src_page = pte_page(pteval);
1797  copy_user_highpage(page, src_page, address, vma);
1798  VM_BUG_ON(page_mapcount(src_page) != 1);
1799  release_pte_page(src_page);
1800  /*
1801  * ptl mostly unnecessary, but preempt has to
1802  * be disabled to update the per-cpu stats
1803  * inside page_remove_rmap().
1804  */
1805  spin_lock(ptl);
1806  /*
1807  * paravirt calls inside pte_clear here are
1808  * superfluous.
1809  */
1810  pte_clear(vma->vm_mm, address, _pte);
1811  page_remove_rmap(src_page);
1812  spin_unlock(ptl);
1813  free_page_and_swap_cache(src_page);
1814  }
1815 
1816  address += PAGE_SIZE;
1817  page++;
1818  }
1819 }
1820 
1821 static void khugepaged_alloc_sleep(void)
1822 {
1823  wait_event_freezable_timeout(khugepaged_wait, false,
1824  msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1825 }
1826 
1827 #ifdef CONFIG_NUMA
1828 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1829 {
1830  if (IS_ERR(*hpage)) {
1831  if (!*wait)
1832  return false;
1833 
1834  *wait = false;
1835  *hpage = NULL;
1836  khugepaged_alloc_sleep();
1837  } else if (*hpage) {
1838  put_page(*hpage);
1839  *hpage = NULL;
1840  }
1841 
1842  return true;
1843 }
1844 
1845 static struct page
1846 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1847  struct vm_area_struct *vma, unsigned long address,
1848  int node)
1849 {
1850  VM_BUG_ON(*hpage);
1851  /*
1852  * Allocate the page while the vma is still valid and under
1853  * the mmap_sem read mode so there is no memory allocation
1854  * later when we take the mmap_sem in write mode. This is more
1855  * friendly behavior (OTOH it may actually hide bugs) to
1856  * filesystems in userland with daemons allocating memory in
1857  * the userland I/O paths. Allocating memory with the
1858  * mmap_sem in read mode is good idea also to allow greater
1859  * scalability.
1860  */
1861  *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1862  node, __GFP_OTHER_NODE);
1863 
1864  /*
1865  * After allocating the hugepage, release the mmap_sem read lock in
1866  * preparation for taking it in write mode.
1867  */
1868  up_read(&mm->mmap_sem);
1869  if (unlikely(!*hpage)) {
1870  count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1871  *hpage = ERR_PTR(-ENOMEM);
1872  return NULL;
1873  }
1874 
1875  count_vm_event(THP_COLLAPSE_ALLOC);
1876  return *hpage;
1877 }
1878 #else
1879 static struct page *khugepaged_alloc_hugepage(bool *wait)
1880 {
1881  struct page *hpage;
1882 
1883  do {
1884  hpage = alloc_hugepage(khugepaged_defrag());
1885  if (!hpage) {
1886  count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1887  if (!*wait)
1888  return NULL;
1889 
1890  *wait = false;
1891  khugepaged_alloc_sleep();
1892  } else
1893  count_vm_event(THP_COLLAPSE_ALLOC);
1894  } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1895 
1896  return hpage;
1897 }
1898 
1899 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1900 {
1901  if (!*hpage)
1902  *hpage = khugepaged_alloc_hugepage(wait);
1903 
1904  if (unlikely(!*hpage))
1905  return false;
1906 
1907  return true;
1908 }
1909 
1910 static struct page
1911 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1912  struct vm_area_struct *vma, unsigned long address,
1913  int node)
1914 {
1915  up_read(&mm->mmap_sem);
1916  VM_BUG_ON(!*hpage);
1917  return *hpage;
1918 }
1919 #endif
1920 
1921 static void collapse_huge_page(struct mm_struct *mm,
1922  unsigned long address,
1923  struct page **hpage,
1924  struct vm_area_struct *vma,
1925  int node)
1926 {
1927  pgd_t *pgd;
1928  pud_t *pud;
1929  pmd_t *pmd, _pmd;
1930  pte_t *pte;
1931  pgtable_t pgtable;
1932  struct page *new_page;
1933  spinlock_t *ptl;
1934  int isolated;
1935  unsigned long hstart, hend;
1936  unsigned long mmun_start; /* For mmu_notifiers */
1937  unsigned long mmun_end; /* For mmu_notifiers */
1938 
1939  VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1940 
1941  /* release the mmap_sem read lock. */
1942  new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1943  if (!new_page)
1944  return;
1945 
1946  if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1947  return;
1948 
1949  /*
1950  * Prevent all access to pagetables with the exception of
1951  * gup_fast later hanlded by the ptep_clear_flush and the VM
1952  * handled by the anon_vma lock + PG_lock.
1953  */
1954  down_write(&mm->mmap_sem);
1955  if (unlikely(khugepaged_test_exit(mm)))
1956  goto out;
1957 
1958  vma = find_vma(mm, address);
1959  hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1960  hend = vma->vm_end & HPAGE_PMD_MASK;
1962  goto out;
1963 
1964  if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1965  (vma->vm_flags & VM_NOHUGEPAGE))
1966  goto out;
1967 
1968  if (!vma->anon_vma || vma->vm_ops)
1969  goto out;
1970  if (is_vma_temporary_stack(vma))
1971  goto out;
1972  VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1973 
1974  pgd = pgd_offset(mm, address);
1975  if (!pgd_present(*pgd))
1976  goto out;
1977 
1978  pud = pud_offset(pgd, address);
1979  if (!pud_present(*pud))
1980  goto out;
1981 
1982  pmd = pmd_offset(pud, address);
1983  /* pmd can't go away or become huge under us */
1984  if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1985  goto out;
1986 
1987  anon_vma_lock(vma->anon_vma);
1988 
1989  pte = pte_offset_map(pmd, address);
1990  ptl = pte_lockptr(mm, pmd);
1991 
1992  mmun_start = address;
1993  mmun_end = address + HPAGE_PMD_SIZE;
1994  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1995  spin_lock(&mm->page_table_lock); /* probably unnecessary */
1996  /*
1997  * After this gup_fast can't run anymore. This also removes
1998  * any huge TLB entry from the CPU so we won't allow
1999  * huge and small TLB entries for the same virtual address
2000  * to avoid the risk of CPU bugs in that area.
2001  */
2002  _pmd = pmdp_clear_flush(vma, address, pmd);
2003  spin_unlock(&mm->page_table_lock);
2004  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2005 
2006  spin_lock(ptl);
2007  isolated = __collapse_huge_page_isolate(vma, address, pte);
2008  spin_unlock(ptl);
2009 
2010  if (unlikely(!isolated)) {
2011  pte_unmap(pte);
2012  spin_lock(&mm->page_table_lock);
2013  BUG_ON(!pmd_none(*pmd));
2014  set_pmd_at(mm, address, pmd, _pmd);
2015  spin_unlock(&mm->page_table_lock);
2016  anon_vma_unlock(vma->anon_vma);
2017  goto out;
2018  }
2019 
2020  /*
2021  * All pages are isolated and locked so anon_vma rmap
2022  * can't run anymore.
2023  */
2024  anon_vma_unlock(vma->anon_vma);
2025 
2026  __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2027  pte_unmap(pte);
2028  __SetPageUptodate(new_page);
2029  pgtable = pmd_pgtable(_pmd);
2030 
2031  _pmd = mk_pmd(new_page, vma->vm_page_prot);
2032  _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2033  _pmd = pmd_mkhuge(_pmd);
2034 
2035  /*
2036  * spin_lock() below is not the equivalent of smp_wmb(), so
2037  * this is needed to avoid the copy_huge_page writes to become
2038  * visible after the set_pmd_at() write.
2039  */
2040  smp_wmb();
2041 
2042  spin_lock(&mm->page_table_lock);
2043  BUG_ON(!pmd_none(*pmd));
2044  page_add_new_anon_rmap(new_page, vma, address);
2045  set_pmd_at(mm, address, pmd, _pmd);
2046  update_mmu_cache_pmd(vma, address, pmd);
2047  pgtable_trans_huge_deposit(mm, pgtable);
2048  spin_unlock(&mm->page_table_lock);
2049 
2050  *hpage = NULL;
2051 
2052  khugepaged_pages_collapsed++;
2053 out_up_write:
2054  up_write(&mm->mmap_sem);
2055  return;
2056 
2057 out:
2058  mem_cgroup_uncharge_page(new_page);
2059  goto out_up_write;
2060 }
2061 
2062 static int khugepaged_scan_pmd(struct mm_struct *mm,
2063  struct vm_area_struct *vma,
2064  unsigned long address,
2065  struct page **hpage)
2066 {
2067  pgd_t *pgd;
2068  pud_t *pud;
2069  pmd_t *pmd;
2070  pte_t *pte, *_pte;
2071  int ret = 0, referenced = 0, none = 0;
2072  struct page *page;
2073  unsigned long _address;
2074  spinlock_t *ptl;
2075  int node = -1;
2076 
2077  VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2078 
2079  pgd = pgd_offset(mm, address);
2080  if (!pgd_present(*pgd))
2081  goto out;
2082 
2083  pud = pud_offset(pgd, address);
2084  if (!pud_present(*pud))
2085  goto out;
2086 
2087  pmd = pmd_offset(pud, address);
2088  if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2089  goto out;
2090 
2091  pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2092  for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2093  _pte++, _address += PAGE_SIZE) {
2094  pte_t pteval = *_pte;
2095  if (pte_none(pteval)) {
2096  if (++none <= khugepaged_max_ptes_none)
2097  continue;
2098  else
2099  goto out_unmap;
2100  }
2101  if (!pte_present(pteval) || !pte_write(pteval))
2102  goto out_unmap;
2103  page = vm_normal_page(vma, _address, pteval);
2104  if (unlikely(!page))
2105  goto out_unmap;
2106  /*
2107  * Chose the node of the first page. This could
2108  * be more sophisticated and look at more pages,
2109  * but isn't for now.
2110  */
2111  if (node == -1)
2112  node = page_to_nid(page);
2113  VM_BUG_ON(PageCompound(page));
2114  if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2115  goto out_unmap;
2116  /* cannot use mapcount: can't collapse if there's a gup pin */
2117  if (page_count(page) != 1)
2118  goto out_unmap;
2119  if (pte_young(pteval) || PageReferenced(page) ||
2120  mmu_notifier_test_young(vma->vm_mm, address))
2121  referenced = 1;
2122  }
2123  if (referenced)
2124  ret = 1;
2125 out_unmap:
2126  pte_unmap_unlock(pte, ptl);
2127  if (ret)
2128  /* collapse_huge_page will return with the mmap_sem released */
2129  collapse_huge_page(mm, address, hpage, vma, node);
2130 out:
2131  return ret;
2132 }
2133 
2134 static void collect_mm_slot(struct mm_slot *mm_slot)
2135 {
2136  struct mm_struct *mm = mm_slot->mm;
2137 
2138  VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2139 
2140  if (khugepaged_test_exit(mm)) {
2141  /* free mm_slot */
2142  hlist_del(&mm_slot->hash);
2143  list_del(&mm_slot->mm_node);
2144 
2145  /*
2146  * Not strictly needed because the mm exited already.
2147  *
2148  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2149  */
2150 
2151  /* khugepaged_mm_lock actually not necessary for the below */
2152  free_mm_slot(mm_slot);
2153  mmdrop(mm);
2154  }
2155 }
2156 
2157 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2158  struct page **hpage)
2159  __releases(&khugepaged_mm_lock)
2160  __acquires(&khugepaged_mm_lock)
2161 {
2162  struct mm_slot *mm_slot;
2163  struct mm_struct *mm;
2164  struct vm_area_struct *vma;
2165  int progress = 0;
2166 
2167  VM_BUG_ON(!pages);
2168  VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2169 
2170  if (khugepaged_scan.mm_slot)
2171  mm_slot = khugepaged_scan.mm_slot;
2172  else {
2173  mm_slot = list_entry(khugepaged_scan.mm_head.next,
2174  struct mm_slot, mm_node);
2175  khugepaged_scan.address = 0;
2176  khugepaged_scan.mm_slot = mm_slot;
2177  }
2178  spin_unlock(&khugepaged_mm_lock);
2179 
2180  mm = mm_slot->mm;
2181  down_read(&mm->mmap_sem);
2182  if (unlikely(khugepaged_test_exit(mm)))
2183  vma = NULL;
2184  else
2185  vma = find_vma(mm, khugepaged_scan.address);
2186 
2187  progress++;
2188  for (; vma; vma = vma->vm_next) {
2189  unsigned long hstart, hend;
2190 
2191  cond_resched();
2192  if (unlikely(khugepaged_test_exit(mm))) {
2193  progress++;
2194  break;
2195  }
2196 
2197  if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2198  !khugepaged_always()) ||
2199  (vma->vm_flags & VM_NOHUGEPAGE)) {
2200  skip:
2201  progress++;
2202  continue;
2203  }
2204  if (!vma->anon_vma || vma->vm_ops)
2205  goto skip;
2206  if (is_vma_temporary_stack(vma))
2207  goto skip;
2208  VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2209 
2210  hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2211  hend = vma->vm_end & HPAGE_PMD_MASK;
2212  if (hstart >= hend)
2213  goto skip;
2214  if (khugepaged_scan.address > hend)
2215  goto skip;
2216  if (khugepaged_scan.address < hstart)
2217  khugepaged_scan.address = hstart;
2218  VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2219 
2220  while (khugepaged_scan.address < hend) {
2221  int ret;
2222  cond_resched();
2223  if (unlikely(khugepaged_test_exit(mm)))
2224  goto breakouterloop;
2225 
2226  VM_BUG_ON(khugepaged_scan.address < hstart ||
2227  khugepaged_scan.address + HPAGE_PMD_SIZE >
2228  hend);
2229  ret = khugepaged_scan_pmd(mm, vma,
2230  khugepaged_scan.address,
2231  hpage);
2232  /* move to next address */
2233  khugepaged_scan.address += HPAGE_PMD_SIZE;
2234  progress += HPAGE_PMD_NR;
2235  if (ret)
2236  /* we released mmap_sem so break loop */
2237  goto breakouterloop_mmap_sem;
2238  if (progress >= pages)
2239  goto breakouterloop;
2240  }
2241  }
2242 breakouterloop:
2243  up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2244 breakouterloop_mmap_sem:
2245 
2246  spin_lock(&khugepaged_mm_lock);
2247  VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2248  /*
2249  * Release the current mm_slot if this mm is about to die, or
2250  * if we scanned all vmas of this mm.
2251  */
2252  if (khugepaged_test_exit(mm) || !vma) {
2253  /*
2254  * Make sure that if mm_users is reaching zero while
2255  * khugepaged runs here, khugepaged_exit will find
2256  * mm_slot not pointing to the exiting mm.
2257  */
2258  if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2259  khugepaged_scan.mm_slot = list_entry(
2260  mm_slot->mm_node.next,
2261  struct mm_slot, mm_node);
2262  khugepaged_scan.address = 0;
2263  } else {
2264  khugepaged_scan.mm_slot = NULL;
2265  khugepaged_full_scans++;
2266  }
2267 
2268  collect_mm_slot(mm_slot);
2269  }
2270 
2271  return progress;
2272 }
2273 
2274 static int khugepaged_has_work(void)
2275 {
2276  return !list_empty(&khugepaged_scan.mm_head) &&
2277  khugepaged_enabled();
2278 }
2279 
2280 static int khugepaged_wait_event(void)
2281 {
2282  return !list_empty(&khugepaged_scan.mm_head) ||
2284 }
2285 
2286 static void khugepaged_do_scan(void)
2287 {
2288  struct page *hpage = NULL;
2289  unsigned int progress = 0, pass_through_head = 0;
2290  unsigned int pages = khugepaged_pages_to_scan;
2291  bool wait = true;
2292 
2293  barrier(); /* write khugepaged_pages_to_scan to local stack */
2294 
2295  while (progress < pages) {
2296  if (!khugepaged_prealloc_page(&hpage, &wait))
2297  break;
2298 
2299  cond_resched();
2300 
2301  if (unlikely(kthread_should_stop() || freezing(current)))
2302  break;
2303 
2304  spin_lock(&khugepaged_mm_lock);
2305  if (!khugepaged_scan.mm_slot)
2306  pass_through_head++;
2307  if (khugepaged_has_work() &&
2308  pass_through_head < 2)
2309  progress += khugepaged_scan_mm_slot(pages - progress,
2310  &hpage);
2311  else
2312  progress = pages;
2313  spin_unlock(&khugepaged_mm_lock);
2314  }
2315 
2316  if (!IS_ERR_OR_NULL(hpage))
2317  put_page(hpage);
2318 }
2319 
2320 static void khugepaged_wait_work(void)
2321 {
2322  try_to_freeze();
2323 
2324  if (khugepaged_has_work()) {
2325  if (!khugepaged_scan_sleep_millisecs)
2326  return;
2327 
2328  wait_event_freezable_timeout(khugepaged_wait,
2330  msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2331  return;
2332  }
2333 
2334  if (khugepaged_enabled())
2335  wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2336 }
2337 
2338 static int khugepaged(void *none)
2339 {
2340  struct mm_slot *mm_slot;
2341 
2342  set_freezable();
2343  set_user_nice(current, 19);
2344 
2345  while (!kthread_should_stop()) {
2346  khugepaged_do_scan();
2347  khugepaged_wait_work();
2348  }
2349 
2350  spin_lock(&khugepaged_mm_lock);
2351  mm_slot = khugepaged_scan.mm_slot;
2352  khugepaged_scan.mm_slot = NULL;
2353  if (mm_slot)
2354  collect_mm_slot(mm_slot);
2355  spin_unlock(&khugepaged_mm_lock);
2356  return 0;
2357 }
2358 
2359 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2360 {
2361  struct page *page;
2362 
2363  spin_lock(&mm->page_table_lock);
2364  if (unlikely(!pmd_trans_huge(*pmd))) {
2365  spin_unlock(&mm->page_table_lock);
2366  return;
2367  }
2368  page = pmd_page(*pmd);
2369  VM_BUG_ON(!page_count(page));
2370  get_page(page);
2371  spin_unlock(&mm->page_table_lock);
2372 
2373  split_huge_page(page);
2374 
2375  put_page(page);
2376  BUG_ON(pmd_trans_huge(*pmd));
2377 }
2378 
2379 static void split_huge_page_address(struct mm_struct *mm,
2380  unsigned long address)
2381 {
2382  pgd_t *pgd;
2383  pud_t *pud;
2384  pmd_t *pmd;
2385 
2386  VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2387 
2388  pgd = pgd_offset(mm, address);
2389  if (!pgd_present(*pgd))
2390  return;
2391 
2392  pud = pud_offset(pgd, address);
2393  if (!pud_present(*pud))
2394  return;
2395 
2396  pmd = pmd_offset(pud, address);
2397  if (!pmd_present(*pmd))
2398  return;
2399  /*
2400  * Caller holds the mmap_sem write mode, so a huge pmd cannot
2401  * materialize from under us.
2402  */
2403  split_huge_page_pmd(mm, pmd);
2404 }
2405 
2407  unsigned long start,
2408  unsigned long end,
2409  long adjust_next)
2410 {
2411  /*
2412  * If the new start address isn't hpage aligned and it could
2413  * previously contain an hugepage: check if we need to split
2414  * an huge pmd.
2415  */
2416  if (start & ~HPAGE_PMD_MASK &&
2417  (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2418  (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2419  split_huge_page_address(vma->vm_mm, start);
2420 
2421  /*
2422  * If the new end address isn't hpage aligned and it could
2423  * previously contain an hugepage: check if we need to split
2424  * an huge pmd.
2425  */
2426  if (end & ~HPAGE_PMD_MASK &&
2427  (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2428  (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2429  split_huge_page_address(vma->vm_mm, end);
2430 
2431  /*
2432  * If we're also updating the vma->vm_next->vm_start, if the new
2433  * vm_next->vm_start isn't page aligned and it could previously
2434  * contain an hugepage: check if we need to split an huge pmd.
2435  */
2436  if (adjust_next > 0) {
2437  struct vm_area_struct *next = vma->vm_next;
2438  unsigned long nstart = next->vm_start;
2439  nstart += adjust_next << PAGE_SHIFT;
2440  if (nstart & ~HPAGE_PMD_MASK &&
2441  (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2442  (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2443  split_huge_page_address(next->vm_mm, nstart);
2444  }
2445 }