Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i2c-algo-pca.c
Go to the documentation of this file.
1 /*
2  * i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
3  * Copyright (C) 2004 Arcom Control Systems
4  * Copyright (C) 2008 Pengutronix
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
19  * MA 02110-1301 USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/delay.h>
26 #include <linux/jiffies.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/i2c.h>
30 #include <linux/i2c-algo-pca.h>
31 
32 #define DEB1(fmt, args...) do { if (i2c_debug >= 1) \
33  printk(KERN_DEBUG fmt, ## args); } while (0)
34 #define DEB2(fmt, args...) do { if (i2c_debug >= 2) \
35  printk(KERN_DEBUG fmt, ## args); } while (0)
36 #define DEB3(fmt, args...) do { if (i2c_debug >= 3) \
37  printk(KERN_DEBUG fmt, ## args); } while (0)
38 
39 static int i2c_debug;
40 
41 #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
42 #define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
43 
44 #define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
45 #define pca_clock(adap) adap->i2c_clock
46 #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
47 #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
48 #define pca_wait(adap) adap->wait_for_completion(adap->data)
49 
50 static void pca_reset(struct i2c_algo_pca_data *adap)
51 {
52  if (adap->chip == I2C_PCA_CHIP_9665) {
53  /* Ignore the reset function from the module,
54  * we can use the parallel bus reset.
55  */
57  pca_outw(adap, I2C_PCA_IND, 0xA5);
58  pca_outw(adap, I2C_PCA_IND, 0x5A);
59  } else {
60  adap->reset_chip(adap->data);
61  }
62 }
63 
64 /*
65  * Generate a start condition on the i2c bus.
66  *
67  * returns after the start condition has occurred
68  */
69 static int pca_start(struct i2c_algo_pca_data *adap)
70 {
71  int sta = pca_get_con(adap);
72  DEB2("=== START\n");
73  sta |= I2C_PCA_CON_STA;
75  pca_set_con(adap, sta);
76  return pca_wait(adap);
77 }
78 
79 /*
80  * Generate a repeated start condition on the i2c bus
81  *
82  * return after the repeated start condition has occurred
83  */
84 static int pca_repeated_start(struct i2c_algo_pca_data *adap)
85 {
86  int sta = pca_get_con(adap);
87  DEB2("=== REPEATED START\n");
88  sta |= I2C_PCA_CON_STA;
90  pca_set_con(adap, sta);
91  return pca_wait(adap);
92 }
93 
94 /*
95  * Generate a stop condition on the i2c bus
96  *
97  * returns after the stop condition has been generated
98  *
99  * STOPs do not generate an interrupt or set the SI flag, since the
100  * part returns the idle state (0xf8). Hence we don't need to
101  * pca_wait here.
102  */
103 static void pca_stop(struct i2c_algo_pca_data *adap)
104 {
105  int sta = pca_get_con(adap);
106  DEB2("=== STOP\n");
107  sta |= I2C_PCA_CON_STO;
109  pca_set_con(adap, sta);
110 }
111 
112 /*
113  * Send the slave address and R/W bit
114  *
115  * returns after the address has been sent
116  */
117 static int pca_address(struct i2c_algo_pca_data *adap,
118  struct i2c_msg *msg)
119 {
120  int sta = pca_get_con(adap);
121  int addr;
122 
123  addr = ((0x7f & msg->addr) << 1);
124  if (msg->flags & I2C_M_RD)
125  addr |= 1;
126  DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
127  msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
128 
129  pca_outw(adap, I2C_PCA_DAT, addr);
130 
132  pca_set_con(adap, sta);
133 
134  return pca_wait(adap);
135 }
136 
137 /*
138  * Transmit a byte.
139  *
140  * Returns after the byte has been transmitted
141  */
142 static int pca_tx_byte(struct i2c_algo_pca_data *adap,
143  __u8 b)
144 {
145  int sta = pca_get_con(adap);
146  DEB2("=== WRITE %#04x\n", b);
147  pca_outw(adap, I2C_PCA_DAT, b);
148 
150  pca_set_con(adap, sta);
151 
152  return pca_wait(adap);
153 }
154 
155 /*
156  * Receive a byte
157  *
158  * returns immediately.
159  */
160 static void pca_rx_byte(struct i2c_algo_pca_data *adap,
161  __u8 *b, int ack)
162 {
163  *b = pca_inw(adap, I2C_PCA_DAT);
164  DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
165 }
166 
167 /*
168  * Setup ACK or NACK for next received byte and wait for it to arrive.
169  *
170  * Returns after next byte has arrived.
171  */
172 static int pca_rx_ack(struct i2c_algo_pca_data *adap,
173  int ack)
174 {
175  int sta = pca_get_con(adap);
176 
178 
179  if (ack)
180  sta |= I2C_PCA_CON_AA;
181 
182  pca_set_con(adap, sta);
183  return pca_wait(adap);
184 }
185 
186 static int pca_xfer(struct i2c_adapter *i2c_adap,
187  struct i2c_msg *msgs,
188  int num)
189 {
190  struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
191  struct i2c_msg *msg = NULL;
192  int curmsg;
193  int numbytes = 0;
194  int state;
195  int ret;
196  int completed = 1;
197  unsigned long timeout = jiffies + i2c_adap->timeout;
198 
199  while ((state = pca_status(adap)) != 0xf8) {
200  if (time_before(jiffies, timeout)) {
201  msleep(10);
202  } else {
203  dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
204  "%#04x\n", state);
205  return -EBUSY;
206  }
207  }
208 
209  DEB1("{{{ XFER %d messages\n", num);
210 
211  if (i2c_debug >= 2) {
212  for (curmsg = 0; curmsg < num; curmsg++) {
213  int addr, i;
214  msg = &msgs[curmsg];
215 
216  addr = (0x7f & msg->addr) ;
217 
218  if (msg->flags & I2C_M_RD)
219  printk(KERN_INFO " [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
220  curmsg, msg->len, addr, (addr << 1) | 1);
221  else {
222  printk(KERN_INFO " [%02d] WR %d bytes to %#02x [%#02x%s",
223  curmsg, msg->len, addr, addr << 1,
224  msg->len == 0 ? "" : ", ");
225  for (i = 0; i < msg->len; i++)
226  printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
227  printk("]\n");
228  }
229  }
230  }
231 
232  curmsg = 0;
233  ret = -EIO;
234  while (curmsg < num) {
235  state = pca_status(adap);
236 
237  DEB3("STATE is 0x%02x\n", state);
238  msg = &msgs[curmsg];
239 
240  switch (state) {
241  case 0xf8: /* On reset or stop the bus is idle */
242  completed = pca_start(adap);
243  break;
244 
245  case 0x08: /* A START condition has been transmitted */
246  case 0x10: /* A repeated start condition has been transmitted */
247  completed = pca_address(adap, msg);
248  break;
249 
250  case 0x18: /* SLA+W has been transmitted; ACK has been received */
251  case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
252  if (numbytes < msg->len) {
253  completed = pca_tx_byte(adap,
254  msg->buf[numbytes]);
255  numbytes++;
256  break;
257  }
258  curmsg++; numbytes = 0;
259  if (curmsg == num)
260  pca_stop(adap);
261  else
262  completed = pca_repeated_start(adap);
263  break;
264 
265  case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
266  DEB2("NOT ACK received after SLA+W\n");
267  pca_stop(adap);
268  ret = -ENXIO;
269  goto out;
270 
271  case 0x40: /* SLA+R has been transmitted; ACK has been received */
272  completed = pca_rx_ack(adap, msg->len > 1);
273  break;
274 
275  case 0x50: /* Data bytes has been received; ACK has been returned */
276  if (numbytes < msg->len) {
277  pca_rx_byte(adap, &msg->buf[numbytes], 1);
278  numbytes++;
279  completed = pca_rx_ack(adap,
280  numbytes < msg->len - 1);
281  break;
282  }
283  curmsg++; numbytes = 0;
284  if (curmsg == num)
285  pca_stop(adap);
286  else
287  completed = pca_repeated_start(adap);
288  break;
289 
290  case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
291  DEB2("NOT ACK received after SLA+R\n");
292  pca_stop(adap);
293  ret = -ENXIO;
294  goto out;
295 
296  case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
297  DEB2("NOT ACK received after data byte\n");
298  pca_stop(adap);
299  goto out;
300 
301  case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
302  DEB2("Arbitration lost\n");
303  /*
304  * The PCA9564 data sheet (2006-09-01) says "A
305  * START condition will be transmitted when the
306  * bus becomes free (STOP or SCL and SDA high)"
307  * when the STA bit is set (p. 11).
308  *
309  * In case this won't work, try pca_reset()
310  * instead.
311  */
312  pca_start(adap);
313  goto out;
314 
315  case 0x58: /* Data byte has been received; NOT ACK has been returned */
316  if (numbytes == msg->len - 1) {
317  pca_rx_byte(adap, &msg->buf[numbytes], 0);
318  curmsg++; numbytes = 0;
319  if (curmsg == num)
320  pca_stop(adap);
321  else
322  completed = pca_repeated_start(adap);
323  } else {
324  DEB2("NOT ACK sent after data byte received. "
325  "Not final byte. numbytes %d. len %d\n",
326  numbytes, msg->len);
327  pca_stop(adap);
328  goto out;
329  }
330  break;
331  case 0x70: /* Bus error - SDA stuck low */
332  DEB2("BUS ERROR - SDA Stuck low\n");
333  pca_reset(adap);
334  goto out;
335  case 0x90: /* Bus error - SCL stuck low */
336  DEB2("BUS ERROR - SCL Stuck low\n");
337  pca_reset(adap);
338  goto out;
339  case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
340  DEB2("BUS ERROR - Illegal START or STOP\n");
341  pca_reset(adap);
342  goto out;
343  default:
344  dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
345  break;
346  }
347 
348  if (!completed)
349  goto out;
350  }
351 
352  ret = curmsg;
353  out:
354  DEB1("}}} transferred %d/%d messages. "
355  "status is %#04x. control is %#04x\n",
356  curmsg, num, pca_status(adap),
357  pca_get_con(adap));
358  return ret;
359 }
360 
361 static u32 pca_func(struct i2c_adapter *adap)
362 {
364 }
365 
366 static const struct i2c_algorithm pca_algo = {
367  .master_xfer = pca_xfer,
368  .functionality = pca_func,
369 };
370 
371 static unsigned int pca_probe_chip(struct i2c_adapter *adap)
372 {
373  struct i2c_algo_pca_data *pca_data = adap->algo_data;
374  /* The trick here is to check if there is an indirect register
375  * available. If there is one, we will read the value we first
376  * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
377  * we wrote on I2C_PCA_ADR
378  */
380  pca_outw(pca_data, I2C_PCA_IND, 0xAA);
381  pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
382  pca_outw(pca_data, I2C_PCA_IND, 0x00);
384  if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
385  printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
386  pca_data->chip = I2C_PCA_CHIP_9665;
387  } else {
388  printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
389  pca_data->chip = I2C_PCA_CHIP_9564;
390  }
391  return pca_data->chip;
392 }
393 
394 static int pca_init(struct i2c_adapter *adap)
395 {
396  struct i2c_algo_pca_data *pca_data = adap->algo_data;
397 
398  adap->algo = &pca_algo;
399 
400  if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
401  static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
402  int clock;
403 
404  if (pca_data->i2c_clock > 7) {
405  switch (pca_data->i2c_clock) {
406  case 330000:
407  pca_data->i2c_clock = I2C_PCA_CON_330kHz;
408  break;
409  case 288000:
410  pca_data->i2c_clock = I2C_PCA_CON_288kHz;
411  break;
412  case 217000:
413  pca_data->i2c_clock = I2C_PCA_CON_217kHz;
414  break;
415  case 146000:
416  pca_data->i2c_clock = I2C_PCA_CON_146kHz;
417  break;
418  case 88000:
419  pca_data->i2c_clock = I2C_PCA_CON_88kHz;
420  break;
421  case 59000:
422  pca_data->i2c_clock = I2C_PCA_CON_59kHz;
423  break;
424  case 44000:
425  pca_data->i2c_clock = I2C_PCA_CON_44kHz;
426  break;
427  case 36000:
428  pca_data->i2c_clock = I2C_PCA_CON_36kHz;
429  break;
430  default:
432  "%s: Invalid I2C clock speed selected."
433  " Using default 59kHz.\n", adap->name);
434  pca_data->i2c_clock = I2C_PCA_CON_59kHz;
435  }
436  } else {
437  printk(KERN_WARNING "%s: "
438  "Choosing the clock frequency based on "
439  "index is deprecated."
440  " Use the nominal frequency.\n", adap->name);
441  }
442 
443  pca_reset(pca_data);
444 
445  clock = pca_clock(pca_data);
446  printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
447  adap->name, freqs[clock]);
448 
449  pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
450  } else {
451  int clock;
452  int mode;
453  int tlow, thi;
454  /* Values can be found on PCA9665 datasheet section 7.3.2.6 */
455  int min_tlow, min_thi;
456  /* These values are the maximum raise and fall values allowed
457  * by the I2C operation mode (Standard, Fast or Fast+)
458  * They are used (added) below to calculate the clock dividers
459  * of PCA9665. Note that they are slightly different of the
460  * real maximum, to allow the change on mode exactly on the
461  * maximum clock rate for each mode
462  */
463  int raise_fall_time;
464 
465  if (pca_data->i2c_clock > 1265800) {
466  printk(KERN_WARNING "%s: I2C clock speed too high."
467  " Using 1265.8kHz.\n", adap->name);
468  pca_data->i2c_clock = 1265800;
469  }
470 
471  if (pca_data->i2c_clock < 60300) {
472  printk(KERN_WARNING "%s: I2C clock speed too low."
473  " Using 60.3kHz.\n", adap->name);
474  pca_data->i2c_clock = 60300;
475  }
476 
477  /* To avoid integer overflow, use clock/100 for calculations */
478  clock = pca_clock(pca_data) / 100;
479 
480  if (pca_data->i2c_clock > 1000000) {
481  mode = I2C_PCA_MODE_TURBO;
482  min_tlow = 14;
483  min_thi = 5;
484  raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
485  } else if (pca_data->i2c_clock > 400000) {
486  mode = I2C_PCA_MODE_FASTP;
487  min_tlow = 17;
488  min_thi = 9;
489  raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
490  } else if (pca_data->i2c_clock > 100000) {
491  mode = I2C_PCA_MODE_FAST;
492  min_tlow = 44;
493  min_thi = 20;
494  raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
495  } else {
496  mode = I2C_PCA_MODE_STD;
497  min_tlow = 157;
498  min_thi = 134;
499  raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
500  }
501 
502  /* The minimum clock that respects the thi/tlow = 134/157 is
503  * 64800 Hz. Below that, we have to fix the tlow to 255 and
504  * calculate the thi factor.
505  */
506  if (clock < 648) {
507  tlow = 255;
508  thi = 1000000 - clock * raise_fall_time;
509  thi /= (I2C_PCA_OSC_PER * clock) - tlow;
510  } else {
511  tlow = (1000000 - clock * raise_fall_time) * min_tlow;
512  tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
513  thi = tlow * min_thi / min_tlow;
514  }
515 
516  pca_reset(pca_data);
517 
519  "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
520 
522  pca_outw(pca_data, I2C_PCA_IND, mode);
524  pca_outw(pca_data, I2C_PCA_IND, tlow);
526  pca_outw(pca_data, I2C_PCA_IND, thi);
527 
528  pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
529  }
530  udelay(500); /* 500 us for oscilator to stabilise */
531 
532  return 0;
533 }
534 
535 /*
536  * registering functions to load algorithms at runtime
537  */
538 int i2c_pca_add_bus(struct i2c_adapter *adap)
539 {
540  int rval;
541 
542  rval = pca_init(adap);
543  if (rval)
544  return rval;
545 
546  return i2c_add_adapter(adap);
547 }
549 
551 {
552  int rval;
553 
554  rval = pca_init(adap);
555  if (rval)
556  return rval;
557 
558  return i2c_add_numbered_adapter(adap);
559 }
561 
562 MODULE_AUTHOR("Ian Campbell <[email protected]>, "
563  "Wolfram Sang <[email protected]>");
564 MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
565 MODULE_LICENSE("GPL");
566 
567 module_param(i2c_debug, int, 0);