Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i2c-pmcmsp.c
Go to the documentation of this file.
1 /*
2  * Specific bus support for PMC-TWI compliant implementation on MSP71xx.
3  *
4  * Copyright 2005-2007 PMC-Sierra, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  *
11  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
12  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
14  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
15  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
16  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
17  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
18  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
19  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
20  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
21  *
22  * You should have received a copy of the GNU General Public License along
23  * with this program; if not, write to the Free Software Foundation, Inc.,
24  * 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/platform_device.h>
31 #include <linux/i2c.h>
32 #include <linux/interrupt.h>
33 #include <linux/completion.h>
34 #include <linux/mutex.h>
35 #include <linux/delay.h>
36 #include <linux/io.h>
37 
38 #define DRV_NAME "pmcmsptwi"
39 
40 #define MSP_TWI_SF_CLK_REG_OFFSET 0x00
41 #define MSP_TWI_HS_CLK_REG_OFFSET 0x04
42 #define MSP_TWI_CFG_REG_OFFSET 0x08
43 #define MSP_TWI_CMD_REG_OFFSET 0x0c
44 #define MSP_TWI_ADD_REG_OFFSET 0x10
45 #define MSP_TWI_DAT_0_REG_OFFSET 0x14
46 #define MSP_TWI_DAT_1_REG_OFFSET 0x18
47 #define MSP_TWI_INT_STS_REG_OFFSET 0x1c
48 #define MSP_TWI_INT_MSK_REG_OFFSET 0x20
49 #define MSP_TWI_BUSY_REG_OFFSET 0x24
50 
51 #define MSP_TWI_INT_STS_DONE (1 << 0)
52 #define MSP_TWI_INT_STS_LOST_ARBITRATION (1 << 1)
53 #define MSP_TWI_INT_STS_NO_RESPONSE (1 << 2)
54 #define MSP_TWI_INT_STS_DATA_COLLISION (1 << 3)
55 #define MSP_TWI_INT_STS_BUSY (1 << 4)
56 #define MSP_TWI_INT_STS_ALL 0x1f
57 
58 #define MSP_MAX_BYTES_PER_RW 8
59 #define MSP_MAX_POLL 5
60 #define MSP_POLL_DELAY 10
61 #define MSP_IRQ_TIMEOUT (MSP_MAX_POLL * MSP_POLL_DELAY)
62 
63 /* IO Operation macros */
64 #define pmcmsptwi_readl __raw_readl
65 #define pmcmsptwi_writel __raw_writel
66 
67 /* TWI command type */
69  MSP_TWI_CMD_WRITE = 0, /* Write only */
70  MSP_TWI_CMD_READ = 1, /* Read only */
71  MSP_TWI_CMD_WRITE_READ = 2, /* Write then Read */
72 };
73 
74 /* The possible results of the xferCmd */
82 };
83 
84 /* Corresponds to a PMCTWI clock configuration register */
86  u8 filter; /* Bits 15:12, default = 0x03 */
87  u16 clock; /* Bits 9:0, default = 0x001f */
88 };
89 
91  struct pmcmsptwi_clock standard; /* The standard/fast clock config */
92  struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
93 };
94 
95 /* Corresponds to the main TWI configuration register */
96 struct pmcmsptwi_cfg {
97  u8 arbf; /* Bits 15:12, default=0x03 */
98  u8 nak; /* Bits 11:8, default=0x03 */
99  u8 add10; /* Bit 7, default=0x00 */
100  u8 mst_code; /* Bits 6:4, default=0x00 */
101  u8 arb; /* Bit 1, default=0x01 */
102  u8 highspeed; /* Bit 0, default=0x00 */
103 };
104 
105 /* A single pmctwi command to issue */
107  u16 addr; /* The slave address (7 or 10 bits) */
108  enum pmcmsptwi_cmd_type type; /* The command type */
109  u8 write_len; /* Number of bytes in the write buffer */
110  u8 read_len; /* Number of bytes in the read buffer */
111  u8 *write_data; /* Buffer of characters to send */
112  u8 *read_data; /* Buffer to fill with incoming data */
113 };
114 
115 /* The private data */
117  void __iomem *iobase; /* iomapped base for IO */
118  int irq; /* IRQ to use (0 disables) */
119  struct completion wait; /* Completion for xfer */
120  struct mutex lock; /* Used for threadsafeness */
121  enum pmcmsptwi_xfer_result last_result; /* result of last xfer */
122 };
123 
124 /* The default settings */
125 static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
126  .standard = {
127  .filter = 0x3,
128  .clock = 0x1f,
129  },
130  .highspeed = {
131  .filter = 0x3,
132  .clock = 0x1f,
133  },
134 };
135 
136 static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
137  .arbf = 0x03,
138  .nak = 0x03,
139  .add10 = 0x00,
140  .mst_code = 0x00,
141  .arb = 0x01,
142  .highspeed = 0x00,
143 };
144 
145 static struct pmcmsptwi_data pmcmsptwi_data;
146 
147 static struct i2c_adapter pmcmsptwi_adapter;
148 
149 /* inline helper functions */
150 static inline u32 pmcmsptwi_clock_to_reg(
151  const struct pmcmsptwi_clock *clock)
152 {
153  return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
154 }
155 
156 static inline void pmcmsptwi_reg_to_clock(
157  u32 reg, struct pmcmsptwi_clock *clock)
158 {
159  clock->filter = (reg >> 12) & 0xf;
160  clock->clock = reg & 0x03ff;
161 }
162 
163 static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
164 {
165  return ((cfg->arbf & 0xf) << 12) |
166  ((cfg->nak & 0xf) << 8) |
167  ((cfg->add10 & 0x1) << 7) |
168  ((cfg->mst_code & 0x7) << 4) |
169  ((cfg->arb & 0x1) << 1) |
170  (cfg->highspeed & 0x1);
171 }
172 
173 static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
174 {
175  cfg->arbf = (reg >> 12) & 0xf;
176  cfg->nak = (reg >> 8) & 0xf;
177  cfg->add10 = (reg >> 7) & 0x1;
178  cfg->mst_code = (reg >> 4) & 0x7;
179  cfg->arb = (reg >> 1) & 0x1;
180  cfg->highspeed = reg & 0x1;
181 }
182 
183 /*
184  * Sets the current clock configuration
185  */
186 static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
187  struct pmcmsptwi_data *data)
188 {
189  mutex_lock(&data->lock);
190  pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
192  pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
194  mutex_unlock(&data->lock);
195 }
196 
197 /*
198  * Gets the current TWI bus configuration
199  */
200 static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
201  struct pmcmsptwi_data *data)
202 {
203  mutex_lock(&data->lock);
204  pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
205  data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
206  mutex_unlock(&data->lock);
207 }
208 
209 /*
210  * Sets the current TWI bus configuration
211  */
212 static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
213  struct pmcmsptwi_data *data)
214 {
215  mutex_lock(&data->lock);
216  pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
218  mutex_unlock(&data->lock);
219 }
220 
221 /*
222  * Parses the 'int_sts' register and returns a well-defined error code
223  */
224 static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
225 {
227  dev_dbg(&pmcmsptwi_adapter.dev,
228  "Result: Lost arbitration\n");
230  } else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
231  dev_dbg(&pmcmsptwi_adapter.dev,
232  "Result: No response\n");
234  } else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
235  dev_dbg(&pmcmsptwi_adapter.dev,
236  "Result: Data collision\n");
238  } else if (reg & MSP_TWI_INT_STS_BUSY) {
239  dev_dbg(&pmcmsptwi_adapter.dev,
240  "Result: Bus busy\n");
241  return MSP_TWI_XFER_BUSY;
242  }
243 
244  dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
245  return MSP_TWI_XFER_OK;
246 }
247 
248 /*
249  * In interrupt mode, handle the interrupt.
250  * NOTE: Assumes data->lock is held.
251  */
252 static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
253 {
254  struct pmcmsptwi_data *data = ptr;
255 
256  u32 reason = pmcmsptwi_readl(data->iobase +
259 
260  dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
261  if (!(reason & MSP_TWI_INT_STS_DONE))
262  return IRQ_NONE;
263 
264  data->last_result = pmcmsptwi_get_result(reason);
265  complete(&data->wait);
266 
267  return IRQ_HANDLED;
268 }
269 
270 /*
271  * Probe for and register the device and return 0 if there is one.
272  */
273 static int __devinit pmcmsptwi_probe(struct platform_device *pldev)
274 {
275  struct resource *res;
276  int rc = -ENODEV;
277 
278  /* get the static platform resources */
279  res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
280  if (!res) {
281  dev_err(&pldev->dev, "IOMEM resource not found\n");
282  goto ret_err;
283  }
284 
285  /* reserve the memory region */
286  if (!request_mem_region(res->start, resource_size(res),
287  pldev->name)) {
288  dev_err(&pldev->dev,
289  "Unable to get memory/io address region 0x%08x\n",
290  res->start);
291  rc = -EBUSY;
292  goto ret_err;
293  }
294 
295  /* remap the memory */
297  resource_size(res));
298  if (!pmcmsptwi_data.iobase) {
299  dev_err(&pldev->dev,
300  "Unable to ioremap address 0x%08x\n", res->start);
301  rc = -EIO;
302  goto ret_unreserve;
303  }
304 
305  /* request the irq */
306  pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
307  if (pmcmsptwi_data.irq) {
308  rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
309  IRQF_SHARED, pldev->name, &pmcmsptwi_data);
310  if (rc == 0) {
311  /*
312  * Enable 'DONE' interrupt only.
313  *
314  * If you enable all interrupts, you will get one on
315  * error and another when the operation completes.
316  * This way you only have to handle one interrupt,
317  * but you can still check all result flags.
318  */
322  } else {
323  dev_warn(&pldev->dev,
324  "Could not assign TWI IRQ handler "
325  "to irq %d (continuing with poll)\n",
327  pmcmsptwi_data.irq = 0;
328  }
329  }
330 
331  init_completion(&pmcmsptwi_data.wait);
333 
334  pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
335  pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
336 
337  printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
338 
339  pmcmsptwi_adapter.dev.parent = &pldev->dev;
340  platform_set_drvdata(pldev, &pmcmsptwi_adapter);
341  i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
342 
343  rc = i2c_add_adapter(&pmcmsptwi_adapter);
344  if (rc) {
345  dev_err(&pldev->dev, "Unable to register I2C adapter\n");
346  goto ret_unmap;
347  }
348 
349  return 0;
350 
351 ret_unmap:
352  platform_set_drvdata(pldev, NULL);
353  if (pmcmsptwi_data.irq) {
357  }
358 
360 
361 ret_unreserve:
362  release_mem_region(res->start, resource_size(res));
363 
364 ret_err:
365  return rc;
366 }
367 
368 /*
369  * Release the device and return 0 if there is one.
370  */
371 static int __devexit pmcmsptwi_remove(struct platform_device *pldev)
372 {
373  struct resource *res;
374 
375  i2c_del_adapter(&pmcmsptwi_adapter);
376 
377  platform_set_drvdata(pldev, NULL);
378  if (pmcmsptwi_data.irq) {
382  }
383 
385 
386  res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
387  release_mem_region(res->start, resource_size(res));
388 
389  return 0;
390 }
391 
392 /*
393  * Polls the 'busy' register until the command is complete.
394  * NOTE: Assumes data->lock is held.
395  */
396 static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
397 {
398  int i;
399 
400  for (i = 0; i < MSP_MAX_POLL; i++) {
401  u32 val = pmcmsptwi_readl(data->iobase +
403  if (val == 0) {
404  u32 reason = pmcmsptwi_readl(data->iobase +
406  pmcmsptwi_writel(reason, data->iobase +
408  data->last_result = pmcmsptwi_get_result(reason);
409  return;
410  }
412  }
413 
414  dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
416 }
417 
418 /*
419  * Do the transfer (low level):
420  * May use interrupt-driven or polling, depending on if an IRQ is
421  * presently registered.
422  * NOTE: Assumes data->lock is held.
423  */
424 static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
425  u32 reg, struct pmcmsptwi_data *data)
426 {
427  dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
429  if (data->irq) {
430  unsigned long timeleft = wait_for_completion_timeout(
431  &data->wait, MSP_IRQ_TIMEOUT);
432  if (timeleft == 0) {
433  dev_dbg(&pmcmsptwi_adapter.dev,
434  "Result: IRQ timeout\n");
435  complete(&data->wait);
437  }
438  } else
439  pmcmsptwi_poll_complete(data);
440 
441  return data->last_result;
442 }
443 
444 /*
445  * Helper routine, converts 'pmctwi_cmd' struct to register format
446  */
447 static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
448 {
449  return ((cmd->type & 0x3) << 8) |
450  (((cmd->write_len - 1) & 0x7) << 4) |
451  ((cmd->read_len - 1) & 0x7);
452 }
453 
454 /*
455  * Do the transfer (high level)
456  */
457 static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
458  struct pmcmsptwi_cmd *cmd,
459  struct pmcmsptwi_data *data)
460 {
462 
463  if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
464  (cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
465  (cmd->type == MSP_TWI_CMD_WRITE_READ &&
466  (cmd->read_len == 0 || cmd->write_len == 0))) {
467  dev_err(&pmcmsptwi_adapter.dev,
468  "%s: Cannot transfer less than 1 byte\n",
469  __func__);
470  return -EINVAL;
471  }
472 
473  if (cmd->read_len > MSP_MAX_BYTES_PER_RW ||
475  dev_err(&pmcmsptwi_adapter.dev,
476  "%s: Cannot transfer more than %d bytes\n",
477  __func__, MSP_MAX_BYTES_PER_RW);
478  return -EINVAL;
479  }
480 
481  mutex_lock(&data->lock);
482  dev_dbg(&pmcmsptwi_adapter.dev,
483  "Setting address to 0x%04x\n", cmd->addr);
485 
486  if (cmd->type == MSP_TWI_CMD_WRITE ||
487  cmd->type == MSP_TWI_CMD_WRITE_READ) {
488  u64 tmp = be64_to_cpup((__be64 *)cmd->write_data);
489  tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
490  dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
491  pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
493  if (cmd->write_len > 4)
494  pmcmsptwi_writel(tmp >> 32,
496  }
497 
498  retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
499  if (retval != MSP_TWI_XFER_OK)
500  goto xfer_err;
501 
502  if (cmd->type == MSP_TWI_CMD_READ ||
503  cmd->type == MSP_TWI_CMD_WRITE_READ) {
504  int i;
505  u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
506  u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
508  if (cmd->read_len > 4)
509  tmp |= (u64)pmcmsptwi_readl(data->iobase +
511  tmp &= rmsk;
512  dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
513 
514  for (i = 0; i < cmd->read_len; i++)
515  cmd->read_data[i] = tmp >> i;
516  }
517 
518 xfer_err:
519  mutex_unlock(&data->lock);
520 
521  return retval;
522 }
523 
524 /* -- Algorithm functions -- */
525 
526 /*
527  * Sends an i2c command out on the adapter
528  */
529 static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
530  struct i2c_msg *msg, int num)
531 {
532  struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
533  struct pmcmsptwi_cmd cmd;
534  struct pmcmsptwi_cfg oldcfg, newcfg;
535  int ret;
536 
537  if (num > 2) {
538  dev_dbg(&adap->dev, "%d messages unsupported\n", num);
539  return -EINVAL;
540  } else if (num == 2) {
541  /* Check for a dual write-then-read command */
542  struct i2c_msg *nextmsg = msg + 1;
543  if (!(msg->flags & I2C_M_RD) &&
544  (nextmsg->flags & I2C_M_RD) &&
545  msg->addr == nextmsg->addr) {
547  cmd.write_len = msg->len;
548  cmd.write_data = msg->buf;
549  cmd.read_len = nextmsg->len;
550  cmd.read_data = nextmsg->buf;
551  } else {
552  dev_dbg(&adap->dev,
553  "Non write-read dual messages unsupported\n");
554  return -EINVAL;
555  }
556  } else if (msg->flags & I2C_M_RD) {
557  cmd.type = MSP_TWI_CMD_READ;
558  cmd.read_len = msg->len;
559  cmd.read_data = msg->buf;
560  cmd.write_len = 0;
561  cmd.write_data = NULL;
562  } else {
563  cmd.type = MSP_TWI_CMD_WRITE;
564  cmd.read_len = 0;
565  cmd.read_data = NULL;
566  cmd.write_len = msg->len;
567  cmd.write_data = msg->buf;
568  }
569 
570  if (msg->len == 0) {
571  dev_err(&adap->dev, "Zero-byte messages unsupported\n");
572  return -EINVAL;
573  }
574 
575  cmd.addr = msg->addr;
576 
577  if (msg->flags & I2C_M_TEN) {
578  pmcmsptwi_get_twi_config(&newcfg, data);
579  memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
580 
581  /* Set the special 10-bit address flag */
582  newcfg.add10 = 1;
583 
584  pmcmsptwi_set_twi_config(&newcfg, data);
585  }
586 
587  /* Execute the command */
588  ret = pmcmsptwi_xfer_cmd(&cmd, data);
589 
590  if (msg->flags & I2C_M_TEN)
591  pmcmsptwi_set_twi_config(&oldcfg, data);
592 
593  dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
594  (msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
595  (ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
596 
597  if (ret != MSP_TWI_XFER_OK) {
598  /*
599  * TODO: We could potentially loop and retry in the case
600  * of MSP_TWI_XFER_TIMEOUT.
601  */
602  return -1;
603  }
604 
605  return 0;
606 }
607 
608 static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
609 {
613 }
614 
615 /* -- Initialization -- */
616 
617 static struct i2c_algorithm pmcmsptwi_algo = {
618  .master_xfer = pmcmsptwi_master_xfer,
619  .functionality = pmcmsptwi_i2c_func,
620 };
621 
622 static struct i2c_adapter pmcmsptwi_adapter = {
623  .owner = THIS_MODULE,
624  .class = I2C_CLASS_HWMON | I2C_CLASS_SPD,
625  .algo = &pmcmsptwi_algo,
626  .name = DRV_NAME,
627 };
628 
629 static struct platform_driver pmcmsptwi_driver = {
630  .probe = pmcmsptwi_probe,
631  .remove = __devexit_p(pmcmsptwi_remove),
632  .driver = {
633  .name = DRV_NAME,
634  .owner = THIS_MODULE,
635  },
636 };
637 
638 module_platform_driver(pmcmsptwi_driver);
639 
640 MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
641 MODULE_LICENSE("GPL");
642 MODULE_ALIAS("platform:" DRV_NAME);