Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inetpeer.c
Go to the documentation of this file.
1 /*
2  * INETPEER - A storage for permanent information about peers
3  *
4  * This source is covered by the GNU GPL, the same as all kernel sources.
5  *
6  * Authors: Andrey V. Savochkin <[email protected]>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock.h>
14 #include <linux/random.h>
15 #include <linux/timer.h>
16 #include <linux/time.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/net.h>
20 #include <linux/workqueue.h>
21 #include <net/ip.h>
22 #include <net/inetpeer.h>
23 #include <net/secure_seq.h>
24 
25 /*
26  * Theory of operations.
27  * We keep one entry for each peer IP address. The nodes contains long-living
28  * information about the peer which doesn't depend on routes.
29  * At this moment this information consists only of ID field for the next
30  * outgoing IP packet. This field is incremented with each packet as encoded
31  * in inet_getid() function (include/net/inetpeer.h).
32  * At the moment of writing this notes identifier of IP packets is generated
33  * to be unpredictable using this code only for packets subjected
34  * (actually or potentially) to defragmentation. I.e. DF packets less than
35  * PMTU in size uses a constant ID and do not use this code (see
36  * ip_select_ident() in include/net/ip.h).
37  *
38  * Route cache entries hold references to our nodes.
39  * New cache entries get references via lookup by destination IP address in
40  * the avl tree. The reference is grabbed only when it's needed i.e. only
41  * when we try to output IP packet which needs an unpredictable ID (see
42  * __ip_select_ident() in net/ipv4/route.c).
43  * Nodes are removed only when reference counter goes to 0.
44  * When it's happened the node may be removed when a sufficient amount of
45  * time has been passed since its last use. The less-recently-used entry can
46  * also be removed if the pool is overloaded i.e. if the total amount of
47  * entries is greater-or-equal than the threshold.
48  *
49  * Node pool is organised as an AVL tree.
50  * Such an implementation has been chosen not just for fun. It's a way to
51  * prevent easy and efficient DoS attacks by creating hash collisions. A huge
52  * amount of long living nodes in a single hash slot would significantly delay
53  * lookups performed with disabled BHs.
54  *
55  * Serialisation issues.
56  * 1. Nodes may appear in the tree only with the pool lock held.
57  * 2. Nodes may disappear from the tree only with the pool lock held
58  * AND reference count being 0.
59  * 3. Global variable peer_total is modified under the pool lock.
60  * 4. struct inet_peer fields modification:
61  * avl_left, avl_right, avl_parent, avl_height: pool lock
62  * refcnt: atomically against modifications on other CPU;
63  * usually under some other lock to prevent node disappearing
64  * daddr: unchangeable
65  * ip_id_count: atomic value (no lock needed)
66  */
67 
68 static struct kmem_cache *peer_cachep __read_mostly;
69 
70 static LIST_HEAD(gc_list);
71 static const int gc_delay = 60 * HZ;
72 static struct delayed_work gc_work;
73 static DEFINE_SPINLOCK(gc_lock);
74 
75 #define node_height(x) x->avl_height
76 
77 #define peer_avl_empty ((struct inet_peer *)&peer_fake_node)
78 #define peer_avl_empty_rcu ((struct inet_peer __rcu __force *)&peer_fake_node)
79 static const struct inet_peer peer_fake_node = {
80  .avl_left = peer_avl_empty_rcu,
81  .avl_right = peer_avl_empty_rcu,
82  .avl_height = 0
83 };
84 
86 {
88  seqlock_init(&bp->lock);
89  bp->flush_seq = ~0U;
90  bp->total = 0;
91 }
93 
94 static atomic_t v4_seq = ATOMIC_INIT(0);
95 static atomic_t v6_seq = ATOMIC_INIT(0);
96 
97 static atomic_t *inetpeer_seq_ptr(int family)
98 {
99  return (family == AF_INET ? &v4_seq : &v6_seq);
100 }
101 
102 static inline void flush_check(struct inet_peer_base *base, int family)
103 {
104  atomic_t *fp = inetpeer_seq_ptr(family);
105 
106  if (unlikely(base->flush_seq != atomic_read(fp))) {
108  base->flush_seq = atomic_read(fp);
109  }
110 }
111 
113 {
114  atomic_t *fp = inetpeer_seq_ptr(family);
115 
116  atomic_inc(fp);
117 }
118 
119 #define PEER_MAXDEPTH 40 /* sufficient for about 2^27 nodes */
120 
121 /* Exported for sysctl_net_ipv4. */
122 int inet_peer_threshold __read_mostly = 65536 + 128; /* start to throw entries more
123  * aggressively at this stage */
124 int inet_peer_minttl __read_mostly = 120 * HZ; /* TTL under high load: 120 sec */
125 int inet_peer_maxttl __read_mostly = 10 * 60 * HZ; /* usual time to live: 10 min */
126 
127 static void inetpeer_gc_worker(struct work_struct *work)
128 {
129  struct inet_peer *p, *n, *c;
130  LIST_HEAD(list);
131 
132  spin_lock_bh(&gc_lock);
133  list_replace_init(&gc_list, &list);
134  spin_unlock_bh(&gc_lock);
135 
136  if (list_empty(&list))
137  return;
138 
140 
141  if (need_resched())
142  cond_resched();
143 
145  if (c != peer_avl_empty) {
146  list_add_tail(&c->gc_list, &list);
148  }
149 
151  if (c != peer_avl_empty) {
152  list_add_tail(&c->gc_list, &list);
154  }
155 
156  n = list_entry(p->gc_list.next, struct inet_peer, gc_list);
157 
158  if (!atomic_read(&p->refcnt)) {
159  list_del(&p->gc_list);
160  kmem_cache_free(peer_cachep, p);
161  }
162  }
163 
164  if (list_empty(&list))
165  return;
166 
167  spin_lock_bh(&gc_lock);
168  list_splice(&list, &gc_list);
169  spin_unlock_bh(&gc_lock);
170 
171  schedule_delayed_work(&gc_work, gc_delay);
172 }
173 
174 /* Called from ip_output.c:ip_init */
176 {
177  struct sysinfo si;
178 
179  /* Use the straight interface to information about memory. */
180  si_meminfo(&si);
181  /* The values below were suggested by Alexey Kuznetsov
182  * <[email protected]>. I don't have any opinion about the values
183  * myself. --SAW
184  */
185  if (si.totalram <= (32768*1024)/PAGE_SIZE)
186  inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */
187  if (si.totalram <= (16384*1024)/PAGE_SIZE)
188  inet_peer_threshold >>= 1; /* about 512KB */
189  if (si.totalram <= (8192*1024)/PAGE_SIZE)
190  inet_peer_threshold >>= 2; /* about 128KB */
191 
192  peer_cachep = kmem_cache_create("inet_peer_cache",
193  sizeof(struct inet_peer),
195  NULL);
196 
197  INIT_DEFERRABLE_WORK(&gc_work, inetpeer_gc_worker);
198 }
199 
200 static int addr_compare(const struct inetpeer_addr *a,
201  const struct inetpeer_addr *b)
202 {
203  int i, n = (a->family == AF_INET ? 1 : 4);
204 
205  for (i = 0; i < n; i++) {
206  if (a->addr.a6[i] == b->addr.a6[i])
207  continue;
208  if ((__force u32)a->addr.a6[i] < (__force u32)b->addr.a6[i])
209  return -1;
210  return 1;
211  }
212 
213  return 0;
214 }
215 
216 #define rcu_deref_locked(X, BASE) \
217  rcu_dereference_protected(X, lockdep_is_held(&(BASE)->lock.lock))
218 
219 /*
220  * Called with local BH disabled and the pool lock held.
221  */
222 #define lookup(_daddr, _stack, _base) \
223 ({ \
224  struct inet_peer *u; \
225  struct inet_peer __rcu **v; \
226  \
227  stackptr = _stack; \
228  *stackptr++ = &_base->root; \
229  for (u = rcu_deref_locked(_base->root, _base); \
230  u != peer_avl_empty; ) { \
231  int cmp = addr_compare(_daddr, &u->daddr); \
232  if (cmp == 0) \
233  break; \
234  if (cmp == -1) \
235  v = &u->avl_left; \
236  else \
237  v = &u->avl_right; \
238  *stackptr++ = v; \
239  u = rcu_deref_locked(*v, _base); \
240  } \
241  u; \
242 })
243 
244 /*
245  * Called with rcu_read_lock()
246  * Because we hold no lock against a writer, its quite possible we fall
247  * in an endless loop.
248  * But every pointer we follow is guaranteed to be valid thanks to RCU.
249  * We exit from this function if number of links exceeds PEER_MAXDEPTH
250  */
251 static struct inet_peer *lookup_rcu(const struct inetpeer_addr *daddr,
252  struct inet_peer_base *base)
253 {
254  struct inet_peer *u = rcu_dereference(base->root);
255  int count = 0;
256 
257  while (u != peer_avl_empty) {
258  int cmp = addr_compare(daddr, &u->daddr);
259  if (cmp == 0) {
260  /* Before taking a reference, check if this entry was
261  * deleted (refcnt=-1)
262  */
263  if (!atomic_add_unless(&u->refcnt, 1, -1))
264  u = NULL;
265  return u;
266  }
267  if (cmp == -1)
268  u = rcu_dereference(u->avl_left);
269  else
270  u = rcu_dereference(u->avl_right);
271  if (unlikely(++count == PEER_MAXDEPTH))
272  break;
273  }
274  return NULL;
275 }
276 
277 /* Called with local BH disabled and the pool lock held. */
278 #define lookup_rightempty(start, base) \
279 ({ \
280  struct inet_peer *u; \
281  struct inet_peer __rcu **v; \
282  *stackptr++ = &start->avl_left; \
283  v = &start->avl_left; \
284  for (u = rcu_deref_locked(*v, base); \
285  u->avl_right != peer_avl_empty_rcu; ) { \
286  v = &u->avl_right; \
287  *stackptr++ = v; \
288  u = rcu_deref_locked(*v, base); \
289  } \
290  u; \
291 })
292 
293 /* Called with local BH disabled and the pool lock held.
294  * Variable names are the proof of operation correctness.
295  * Look into mm/map_avl.c for more detail description of the ideas.
296  */
297 static void peer_avl_rebalance(struct inet_peer __rcu **stack[],
298  struct inet_peer __rcu ***stackend,
299  struct inet_peer_base *base)
300 {
301  struct inet_peer __rcu **nodep;
302  struct inet_peer *node, *l, *r;
303  int lh, rh;
304 
305  while (stackend > stack) {
306  nodep = *--stackend;
307  node = rcu_deref_locked(*nodep, base);
308  l = rcu_deref_locked(node->avl_left, base);
309  r = rcu_deref_locked(node->avl_right, base);
310  lh = node_height(l);
311  rh = node_height(r);
312  if (lh > rh + 1) { /* l: RH+2 */
313  struct inet_peer *ll, *lr, *lrl, *lrr;
314  int lrh;
315  ll = rcu_deref_locked(l->avl_left, base);
316  lr = rcu_deref_locked(l->avl_right, base);
317  lrh = node_height(lr);
318  if (lrh <= node_height(ll)) { /* ll: RH+1 */
319  RCU_INIT_POINTER(node->avl_left, lr); /* lr: RH or RH+1 */
320  RCU_INIT_POINTER(node->avl_right, r); /* r: RH */
321  node->avl_height = lrh + 1; /* RH+1 or RH+2 */
322  RCU_INIT_POINTER(l->avl_left, ll); /* ll: RH+1 */
323  RCU_INIT_POINTER(l->avl_right, node); /* node: RH+1 or RH+2 */
324  l->avl_height = node->avl_height + 1;
325  RCU_INIT_POINTER(*nodep, l);
326  } else { /* ll: RH, lr: RH+1 */
327  lrl = rcu_deref_locked(lr->avl_left, base);/* lrl: RH or RH-1 */
328  lrr = rcu_deref_locked(lr->avl_right, base);/* lrr: RH or RH-1 */
329  RCU_INIT_POINTER(node->avl_left, lrr); /* lrr: RH or RH-1 */
330  RCU_INIT_POINTER(node->avl_right, r); /* r: RH */
331  node->avl_height = rh + 1; /* node: RH+1 */
332  RCU_INIT_POINTER(l->avl_left, ll); /* ll: RH */
333  RCU_INIT_POINTER(l->avl_right, lrl); /* lrl: RH or RH-1 */
334  l->avl_height = rh + 1; /* l: RH+1 */
335  RCU_INIT_POINTER(lr->avl_left, l); /* l: RH+1 */
336  RCU_INIT_POINTER(lr->avl_right, node); /* node: RH+1 */
337  lr->avl_height = rh + 2;
338  RCU_INIT_POINTER(*nodep, lr);
339  }
340  } else if (rh > lh + 1) { /* r: LH+2 */
341  struct inet_peer *rr, *rl, *rlr, *rll;
342  int rlh;
343  rr = rcu_deref_locked(r->avl_right, base);
344  rl = rcu_deref_locked(r->avl_left, base);
345  rlh = node_height(rl);
346  if (rlh <= node_height(rr)) { /* rr: LH+1 */
347  RCU_INIT_POINTER(node->avl_right, rl); /* rl: LH or LH+1 */
348  RCU_INIT_POINTER(node->avl_left, l); /* l: LH */
349  node->avl_height = rlh + 1; /* LH+1 or LH+2 */
350  RCU_INIT_POINTER(r->avl_right, rr); /* rr: LH+1 */
351  RCU_INIT_POINTER(r->avl_left, node); /* node: LH+1 or LH+2 */
352  r->avl_height = node->avl_height + 1;
353  RCU_INIT_POINTER(*nodep, r);
354  } else { /* rr: RH, rl: RH+1 */
355  rlr = rcu_deref_locked(rl->avl_right, base);/* rlr: LH or LH-1 */
356  rll = rcu_deref_locked(rl->avl_left, base);/* rll: LH or LH-1 */
357  RCU_INIT_POINTER(node->avl_right, rll); /* rll: LH or LH-1 */
358  RCU_INIT_POINTER(node->avl_left, l); /* l: LH */
359  node->avl_height = lh + 1; /* node: LH+1 */
360  RCU_INIT_POINTER(r->avl_right, rr); /* rr: LH */
361  RCU_INIT_POINTER(r->avl_left, rlr); /* rlr: LH or LH-1 */
362  r->avl_height = lh + 1; /* r: LH+1 */
363  RCU_INIT_POINTER(rl->avl_right, r); /* r: LH+1 */
364  RCU_INIT_POINTER(rl->avl_left, node); /* node: LH+1 */
365  rl->avl_height = lh + 2;
366  RCU_INIT_POINTER(*nodep, rl);
367  }
368  } else {
369  node->avl_height = (lh > rh ? lh : rh) + 1;
370  }
371  }
372 }
373 
374 /* Called with local BH disabled and the pool lock held. */
375 #define link_to_pool(n, base) \
376 do { \
377  n->avl_height = 1; \
378  n->avl_left = peer_avl_empty_rcu; \
379  n->avl_right = peer_avl_empty_rcu; \
380  /* lockless readers can catch us now */ \
381  rcu_assign_pointer(**--stackptr, n); \
382  peer_avl_rebalance(stack, stackptr, base); \
383 } while (0)
384 
385 static void inetpeer_free_rcu(struct rcu_head *head)
386 {
387  kmem_cache_free(peer_cachep, container_of(head, struct inet_peer, rcu));
388 }
389 
390 static void unlink_from_pool(struct inet_peer *p, struct inet_peer_base *base,
392 {
393  struct inet_peer __rcu ***stackptr, ***delp;
394 
395  if (lookup(&p->daddr, stack, base) != p)
396  BUG();
397  delp = stackptr - 1; /* *delp[0] == p */
398  if (p->avl_left == peer_avl_empty_rcu) {
399  *delp[0] = p->avl_right;
400  --stackptr;
401  } else {
402  /* look for a node to insert instead of p */
403  struct inet_peer *t;
404  t = lookup_rightempty(p, base);
405  BUG_ON(rcu_deref_locked(*stackptr[-1], base) != t);
406  **--stackptr = t->avl_left;
407  /* t is removed, t->daddr > x->daddr for any
408  * x in p->avl_left subtree.
409  * Put t in the old place of p. */
410  RCU_INIT_POINTER(*delp[0], t);
411  t->avl_left = p->avl_left;
412  t->avl_right = p->avl_right;
413  t->avl_height = p->avl_height;
414  BUG_ON(delp[1] != &p->avl_left);
415  delp[1] = &t->avl_left; /* was &p->avl_left */
416  }
417  peer_avl_rebalance(stack, stackptr, base);
418  base->total--;
419  call_rcu(&p->rcu, inetpeer_free_rcu);
420 }
421 
422 /* perform garbage collect on all items stacked during a lookup */
423 static int inet_peer_gc(struct inet_peer_base *base,
424  struct inet_peer __rcu **stack[PEER_MAXDEPTH],
425  struct inet_peer __rcu ***stackptr)
426 {
427  struct inet_peer *p, *gchead = NULL;
428  __u32 delta, ttl;
429  int cnt = 0;
430 
431  if (base->total >= inet_peer_threshold)
432  ttl = 0; /* be aggressive */
433  else
434  ttl = inet_peer_maxttl
436  base->total / inet_peer_threshold * HZ;
437  stackptr--; /* last stack slot is peer_avl_empty */
438  while (stackptr > stack) {
439  stackptr--;
440  p = rcu_deref_locked(**stackptr, base);
441  if (atomic_read(&p->refcnt) == 0) {
442  smp_rmb();
443  delta = (__u32)jiffies - p->dtime;
444  if (delta >= ttl &&
445  atomic_cmpxchg(&p->refcnt, 0, -1) == 0) {
446  p->gc_next = gchead;
447  gchead = p;
448  }
449  }
450  }
451  while ((p = gchead) != NULL) {
452  gchead = p->gc_next;
453  cnt++;
454  unlink_from_pool(p, base, stack);
455  }
456  return cnt;
457 }
458 
459 struct inet_peer *inet_getpeer(struct inet_peer_base *base,
460  const struct inetpeer_addr *daddr,
461  int create)
462 {
463  struct inet_peer __rcu **stack[PEER_MAXDEPTH], ***stackptr;
464  struct inet_peer *p;
465  unsigned int sequence;
466  int invalidated, gccnt = 0;
467 
468  flush_check(base, daddr->family);
469 
470  /* Attempt a lockless lookup first.
471  * Because of a concurrent writer, we might not find an existing entry.
472  */
473  rcu_read_lock();
474  sequence = read_seqbegin(&base->lock);
475  p = lookup_rcu(daddr, base);
476  invalidated = read_seqretry(&base->lock, sequence);
477  rcu_read_unlock();
478 
479  if (p)
480  return p;
481 
482  /* If no writer did a change during our lookup, we can return early. */
483  if (!create && !invalidated)
484  return NULL;
485 
486  /* retry an exact lookup, taking the lock before.
487  * At least, nodes should be hot in our cache.
488  */
489  write_seqlock_bh(&base->lock);
490 relookup:
491  p = lookup(daddr, stack, base);
492  if (p != peer_avl_empty) {
493  atomic_inc(&p->refcnt);
494  write_sequnlock_bh(&base->lock);
495  return p;
496  }
497  if (!gccnt) {
498  gccnt = inet_peer_gc(base, stack, stackptr);
499  if (gccnt && create)
500  goto relookup;
501  }
502  p = create ? kmem_cache_alloc(peer_cachep, GFP_ATOMIC) : NULL;
503  if (p) {
504  p->daddr = *daddr;
505  atomic_set(&p->refcnt, 1);
506  atomic_set(&p->rid, 0);
508  (daddr->family == AF_INET) ?
509  secure_ip_id(daddr->addr.a4) :
510  secure_ipv6_id(daddr->addr.a6));
512  p->rate_tokens = 0;
513  /* 60*HZ is arbitrary, but chosen enough high so that the first
514  * calculation of tokens is at its maximum.
515  */
516  p->rate_last = jiffies - 60*HZ;
517  INIT_LIST_HEAD(&p->gc_list);
518 
519  /* Link the node. */
520  link_to_pool(p, base);
521  base->total++;
522  }
523  write_sequnlock_bh(&base->lock);
524 
525  return p;
526 }
528 
529 void inet_putpeer(struct inet_peer *p)
530 {
531  p->dtime = (__u32)jiffies;
533  atomic_dec(&p->refcnt);
534 }
536 
537 /*
538  * Check transmit rate limitation for given message.
539  * The rate information is held in the inet_peer entries now.
540  * This function is generic and could be used for other purposes
541  * too. It uses a Token bucket filter as suggested by Alexey Kuznetsov.
542  *
543  * Note that the same inet_peer fields are modified by functions in
544  * route.c too, but these work for packet destinations while xrlim_allow
545  * works for icmp destinations. This means the rate limiting information
546  * for one "ip object" is shared - and these ICMPs are twice limited:
547  * by source and by destination.
548  *
549  * RFC 1812: 4.3.2.8 SHOULD be able to limit error message rate
550  * SHOULD allow setting of rate limits
551  *
552  * Shared between ICMPv4 and ICMPv6.
553  */
554 #define XRLIM_BURST_FACTOR 6
555 bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout)
556 {
557  unsigned long now, token;
558  bool rc = false;
559 
560  if (!peer)
561  return true;
562 
563  token = peer->rate_tokens;
564  now = jiffies;
565  token += now - peer->rate_last;
566  peer->rate_last = now;
567  if (token > XRLIM_BURST_FACTOR * timeout)
568  token = XRLIM_BURST_FACTOR * timeout;
569  if (token >= timeout) {
570  token -= timeout;
571  rc = true;
572  }
573  peer->rate_tokens = token;
574  return rc;
575 }
577 
578 static void inetpeer_inval_rcu(struct rcu_head *head)
579 {
580  struct inet_peer *p = container_of(head, struct inet_peer, gc_rcu);
581 
582  spin_lock_bh(&gc_lock);
584  spin_unlock_bh(&gc_lock);
585 
586  schedule_delayed_work(&gc_work, gc_delay);
587 }
588 
590 {
591  struct inet_peer *root;
592 
593  write_seqlock_bh(&base->lock);
594 
595  root = rcu_deref_locked(base->root, base);
596  if (root != peer_avl_empty) {
597  base->root = peer_avl_empty_rcu;
598  base->total = 0;
599  call_rcu(&root->gc_rcu, inetpeer_inval_rcu);
600  }
601 
602  write_sequnlock_bh(&base->lock);
603 }