Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inftlmount.c
Go to the documentation of this file.
1 /*
2  * inftlmount.c -- INFTL mount code with extensive checks.
3  *
4  * Author: Greg Ungerer ([email protected])
5  * Copyright © 2002-2003, Greg Ungerer ([email protected])
6  *
7  * Based heavily on the nftlmount.c code which is:
8  * Author: Fabrice Bellard ([email protected])
9  * Copyright © 2000 Netgem S.A.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <asm/errno.h>
29 #include <asm/io.h>
30 #include <asm/uaccess.h>
31 #include <linux/delay.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nftl.h>
36 #include <linux/mtd/inftl.h>
37 
38 /*
39  * find_boot_record: Find the INFTL Media Header and its Spare copy which
40  * contains the various device information of the INFTL partition and
41  * Bad Unit Table. Update the PUtable[] table according to the Bad
42  * Unit Table. PUtable[] is used for management of Erase Unit in
43  * other routines in inftlcore.c and inftlmount.c.
44  */
45 static int find_boot_record(struct INFTLrecord *inftl)
46 {
47  struct inftl_unittail h1;
48  //struct inftl_oob oob;
49  unsigned int i, block;
50  u8 buf[SECTORSIZE];
51  struct INFTLMediaHeader *mh = &inftl->MediaHdr;
52  struct mtd_info *mtd = inftl->mbd.mtd;
53  struct INFTLPartition *ip;
54  size_t retlen;
55 
56  pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl);
57 
58  /*
59  * Assume logical EraseSize == physical erasesize for starting the
60  * scan. We'll sort it out later if we find a MediaHeader which says
61  * otherwise.
62  */
63  inftl->EraseSize = inftl->mbd.mtd->erasesize;
64  inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize;
65 
66  inftl->MediaUnit = BLOCK_NIL;
67 
68  /* Search for a valid boot record */
69  for (block = 0; block < inftl->nb_blocks; block++) {
70  int ret;
71 
72  /*
73  * Check for BNAND header first. Then whinge if it's found
74  * but later checks fail.
75  */
76  ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE,
77  &retlen, buf);
78  /* We ignore ret in case the ECC of the MediaHeader is invalid
79  (which is apparently acceptable) */
80  if (retlen != SECTORSIZE) {
81  static int warncount = 5;
82 
83  if (warncount) {
84  printk(KERN_WARNING "INFTL: block read at 0x%x "
85  "of mtd%d failed: %d\n",
86  block * inftl->EraseSize,
87  inftl->mbd.mtd->index, ret);
88  if (!--warncount)
89  printk(KERN_WARNING "INFTL: further "
90  "failures for this block will "
91  "not be printed\n");
92  }
93  continue;
94  }
95 
96  if (retlen < 6 || memcmp(buf, "BNAND", 6)) {
97  /* BNAND\0 not found. Continue */
98  continue;
99  }
100 
101  /* To be safer with BIOS, also use erase mark as discriminant */
102  ret = inftl_read_oob(mtd,
103  block * inftl->EraseSize + SECTORSIZE + 8,
104  8, &retlen,(char *)&h1);
105  if (ret < 0) {
106  printk(KERN_WARNING "INFTL: ANAND header found at "
107  "0x%x in mtd%d, but OOB data read failed "
108  "(err %d)\n", block * inftl->EraseSize,
109  inftl->mbd.mtd->index, ret);
110  continue;
111  }
112 
113 
114  /*
115  * This is the first we've seen.
116  * Copy the media header structure into place.
117  */
118  memcpy(mh, buf, sizeof(struct INFTLMediaHeader));
119 
120  /* Read the spare media header at offset 4096 */
121  mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE,
122  &retlen, buf);
123  if (retlen != SECTORSIZE) {
124  printk(KERN_WARNING "INFTL: Unable to read spare "
125  "Media Header\n");
126  return -1;
127  }
128  /* Check if this one is the same as the first one we found. */
129  if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) {
130  printk(KERN_WARNING "INFTL: Primary and spare Media "
131  "Headers disagree.\n");
132  return -1;
133  }
134 
141 
142  pr_debug("INFTL: Media Header ->\n"
143  " bootRecordID = %s\n"
144  " NoOfBootImageBlocks = %d\n"
145  " NoOfBinaryPartitions = %d\n"
146  " NoOfBDTLPartitions = %d\n"
147  " BlockMultiplerBits = %d\n"
148  " FormatFlgs = %d\n"
149  " OsakVersion = 0x%x\n"
150  " PercentUsed = %d\n",
153  mh->NoOfBDTLPartitions,
155  mh->OsakVersion, mh->PercentUsed);
156 
157  if (mh->NoOfBDTLPartitions == 0) {
158  printk(KERN_WARNING "INFTL: Media Header sanity check "
159  "failed: NoOfBDTLPartitions (%d) == 0, "
160  "must be at least 1\n", mh->NoOfBDTLPartitions);
161  return -1;
162  }
163 
164  if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) {
165  printk(KERN_WARNING "INFTL: Media Header sanity check "
166  "failed: Total Partitions (%d) > 4, "
167  "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions +
169  mh->NoOfBDTLPartitions,
171  return -1;
172  }
173 
174  if (mh->BlockMultiplierBits > 1) {
175  printk(KERN_WARNING "INFTL: sorry, we don't support "
176  "UnitSizeFactor 0x%02x\n",
177  mh->BlockMultiplierBits);
178  return -1;
179  } else if (mh->BlockMultiplierBits == 1) {
180  printk(KERN_WARNING "INFTL: support for INFTL with "
181  "UnitSizeFactor 0x%02x is experimental\n",
182  mh->BlockMultiplierBits);
183  inftl->EraseSize = inftl->mbd.mtd->erasesize <<
185  inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize;
186  block >>= mh->BlockMultiplierBits;
187  }
188 
189  /* Scan the partitions */
190  for (i = 0; (i < 4); i++) {
191  ip = &mh->Partitions[i];
193  ip->firstUnit = le32_to_cpu(ip->firstUnit);
194  ip->lastUnit = le32_to_cpu(ip->lastUnit);
195  ip->flags = le32_to_cpu(ip->flags);
196  ip->spareUnits = le32_to_cpu(ip->spareUnits);
197  ip->Reserved0 = le32_to_cpu(ip->Reserved0);
198 
199  pr_debug(" PARTITION[%d] ->\n"
200  " virtualUnits = %d\n"
201  " firstUnit = %d\n"
202  " lastUnit = %d\n"
203  " flags = 0x%x\n"
204  " spareUnits = %d\n",
205  i, ip->virtualUnits, ip->firstUnit,
206  ip->lastUnit, ip->flags,
207  ip->spareUnits);
208 
209  if (ip->Reserved0 != ip->firstUnit) {
210  struct erase_info *instr = &inftl->instr;
211 
212  instr->mtd = inftl->mbd.mtd;
213 
214  /*
215  * Most likely this is using the
216  * undocumented qiuck mount feature.
217  * We don't support that, we will need
218  * to erase the hidden block for full
219  * compatibility.
220  */
221  instr->addr = ip->Reserved0 * inftl->EraseSize;
222  instr->len = inftl->EraseSize;
223  mtd_erase(mtd, instr);
224  }
225  if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) {
226  printk(KERN_WARNING "INFTL: Media Header "
227  "Partition %d sanity check failed\n"
228  " firstUnit %d : lastUnit %d > "
229  "virtualUnits %d\n", i, ip->lastUnit,
230  ip->firstUnit, ip->Reserved0);
231  return -1;
232  }
233  if (ip->Reserved1 != 0) {
234  printk(KERN_WARNING "INFTL: Media Header "
235  "Partition %d sanity check failed: "
236  "Reserved1 %d != 0\n",
237  i, ip->Reserved1);
238  return -1;
239  }
240 
241  if (ip->flags & INFTL_BDTL)
242  break;
243  }
244 
245  if (i >= 4) {
246  printk(KERN_WARNING "INFTL: Media Header Partition "
247  "sanity check failed:\n No partition "
248  "marked as Disk Partition\n");
249  return -1;
250  }
251 
252  inftl->nb_boot_blocks = ip->firstUnit;
253  inftl->numvunits = ip->virtualUnits;
254  if (inftl->numvunits > (inftl->nb_blocks -
255  inftl->nb_boot_blocks - 2)) {
256  printk(KERN_WARNING "INFTL: Media Header sanity check "
257  "failed:\n numvunits (%d) > nb_blocks "
258  "(%d) - nb_boot_blocks(%d) - 2\n",
259  inftl->numvunits, inftl->nb_blocks,
260  inftl->nb_boot_blocks);
261  return -1;
262  }
263 
264  inftl->mbd.size = inftl->numvunits *
265  (inftl->EraseSize / SECTORSIZE);
266 
267  /*
268  * Block count is set to last used EUN (we won't need to keep
269  * any meta-data past that point).
270  */
271  inftl->firstEUN = ip->firstUnit;
272  inftl->lastEUN = ip->lastUnit;
273  inftl->nb_blocks = ip->lastUnit + 1;
274 
275  /* Memory alloc */
276  inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
277  if (!inftl->PUtable) {
278  printk(KERN_WARNING "INFTL: allocation of PUtable "
279  "failed (%zd bytes)\n",
280  inftl->nb_blocks * sizeof(u16));
281  return -ENOMEM;
282  }
283 
284  inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
285  if (!inftl->VUtable) {
286  kfree(inftl->PUtable);
287  printk(KERN_WARNING "INFTL: allocation of VUtable "
288  "failed (%zd bytes)\n",
289  inftl->nb_blocks * sizeof(u16));
290  return -ENOMEM;
291  }
292 
293  /* Mark the blocks before INFTL MediaHeader as reserved */
294  for (i = 0; i < inftl->nb_boot_blocks; i++)
295  inftl->PUtable[i] = BLOCK_RESERVED;
296  /* Mark all remaining blocks as potentially containing data */
297  for (; i < inftl->nb_blocks; i++)
298  inftl->PUtable[i] = BLOCK_NOTEXPLORED;
299 
300  /* Mark this boot record (NFTL MediaHeader) block as reserved */
301  inftl->PUtable[block] = BLOCK_RESERVED;
302 
303  /* Read Bad Erase Unit Table and modify PUtable[] accordingly */
304  for (i = 0; i < inftl->nb_blocks; i++) {
305  int physblock;
306  /* If any of the physical eraseblocks are bad, don't
307  use the unit. */
308  for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) {
309  if (mtd_block_isbad(inftl->mbd.mtd,
310  i * inftl->EraseSize + physblock))
311  inftl->PUtable[i] = BLOCK_RESERVED;
312  }
313  }
314 
315  inftl->MediaUnit = block;
316  return 0;
317  }
318 
319  /* Not found. */
320  return -1;
321 }
322 
323 static int memcmpb(void *a, int c, int n)
324 {
325  int i;
326  for (i = 0; i < n; i++) {
327  if (c != ((unsigned char *)a)[i])
328  return 1;
329  }
330  return 0;
331 }
332 
333 /*
334  * check_free_sector: check if a free sector is actually FREE,
335  * i.e. All 0xff in data and oob area.
336  */
337 static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address,
338  int len, int check_oob)
339 {
340  u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize];
341  struct mtd_info *mtd = inftl->mbd.mtd;
342  size_t retlen;
343  int i;
344 
345  for (i = 0; i < len; i += SECTORSIZE) {
346  if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
347  return -1;
348  if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
349  return -1;
350 
351  if (check_oob) {
352  if(inftl_read_oob(mtd, address, mtd->oobsize,
353  &retlen, &buf[SECTORSIZE]) < 0)
354  return -1;
355  if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
356  return -1;
357  }
358  address += SECTORSIZE;
359  }
360 
361  return 0;
362 }
363 
364 /*
365  * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase
366  * Unit and Update INFTL metadata. Each erase operation is
367  * checked with check_free_sectors.
368  *
369  * Return: 0 when succeed, -1 on error.
370  *
371  * ToDo: 1. Is it necessary to check_free_sector after erasing ??
372  */
373 int INFTL_formatblock(struct INFTLrecord *inftl, int block)
374 {
375  size_t retlen;
376  struct inftl_unittail uci;
377  struct erase_info *instr = &inftl->instr;
378  struct mtd_info *mtd = inftl->mbd.mtd;
379  int physblock;
380 
381  pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block);
382 
383  memset(instr, 0, sizeof(struct erase_info));
384 
385  /* FIXME: Shouldn't we be setting the 'discarded' flag to zero
386  _first_? */
387 
388  /* Use async erase interface, test return code */
389  instr->mtd = inftl->mbd.mtd;
390  instr->addr = block * inftl->EraseSize;
391  instr->len = inftl->mbd.mtd->erasesize;
392  /* Erase one physical eraseblock at a time, even though the NAND api
393  allows us to group them. This way we if we have a failure, we can
394  mark only the failed block in the bbt. */
395  for (physblock = 0; physblock < inftl->EraseSize;
396  physblock += instr->len, instr->addr += instr->len) {
397  mtd_erase(inftl->mbd.mtd, instr);
398 
399  if (instr->state == MTD_ERASE_FAILED) {
400  printk(KERN_WARNING "INFTL: error while formatting block %d\n",
401  block);
402  goto fail;
403  }
404 
405  /*
406  * Check the "freeness" of Erase Unit before updating metadata.
407  * FixMe: is this check really necessary? Since we have check
408  * the return code after the erase operation.
409  */
410  if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0)
411  goto fail;
412  }
413 
416  uci.Reserved[0] = 0;
417  uci.Reserved[1] = 0;
418  uci.Reserved[2] = 0;
419  uci.Reserved[3] = 0;
420  instr->addr = block * inftl->EraseSize + SECTORSIZE * 2;
421  if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0)
422  goto fail;
423  return 0;
424 fail:
425  /* could not format, update the bad block table (caller is responsible
426  for setting the PUtable to BLOCK_RESERVED on failure) */
427  mtd_block_markbad(inftl->mbd.mtd, instr->addr);
428  return -1;
429 }
430 
431 /*
432  * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase
433  * Units in a Virtual Unit Chain, i.e. all the units are disconnected.
434  *
435  * Since the chain is invalid then we will have to erase it from its
436  * head (normally for INFTL we go from the oldest). But if it has a
437  * loop then there is no oldest...
438  */
439 static void format_chain(struct INFTLrecord *inftl, unsigned int first_block)
440 {
441  unsigned int block = first_block, block1;
442 
443  printk(KERN_WARNING "INFTL: formatting chain at block %d\n",
444  first_block);
445 
446  for (;;) {
447  block1 = inftl->PUtable[block];
448 
449  printk(KERN_WARNING "INFTL: formatting block %d\n", block);
450  if (INFTL_formatblock(inftl, block) < 0) {
451  /*
452  * Cannot format !!!! Mark it as Bad Unit,
453  */
454  inftl->PUtable[block] = BLOCK_RESERVED;
455  } else {
456  inftl->PUtable[block] = BLOCK_FREE;
457  }
458 
459  /* Goto next block on the chain */
460  block = block1;
461 
462  if (block == BLOCK_NIL || block >= inftl->lastEUN)
463  break;
464  }
465 }
466 
467 void INFTL_dumptables(struct INFTLrecord *s)
468 {
469  int i;
470 
471  pr_debug("-------------------------------------------"
472  "----------------------------------\n");
473 
474  pr_debug("VUtable[%d] ->", s->nb_blocks);
475  for (i = 0; i < s->nb_blocks; i++) {
476  if ((i % 8) == 0)
477  pr_debug("\n%04x: ", i);
478  pr_debug("%04x ", s->VUtable[i]);
479  }
480 
481  pr_debug("\n-------------------------------------------"
482  "----------------------------------\n");
483 
484  pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks);
485  for (i = 0; i <= s->lastEUN; i++) {
486  if ((i % 8) == 0)
487  pr_debug("\n%04x: ", i);
488  pr_debug("%04x ", s->PUtable[i]);
489  }
490 
491  pr_debug("\n-------------------------------------------"
492  "----------------------------------\n");
493 
494  pr_debug("INFTL ->\n"
495  " EraseSize = %d\n"
496  " h/s/c = %d/%d/%d\n"
497  " numvunits = %d\n"
498  " firstEUN = %d\n"
499  " lastEUN = %d\n"
500  " numfreeEUNs = %d\n"
501  " LastFreeEUN = %d\n"
502  " nb_blocks = %d\n"
503  " nb_boot_blocks = %d",
504  s->EraseSize, s->heads, s->sectors, s->cylinders,
505  s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs,
506  s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks);
507 
508  pr_debug("\n-------------------------------------------"
509  "----------------------------------\n");
510 }
511 
512 void INFTL_dumpVUchains(struct INFTLrecord *s)
513 {
514  int logical, block, i;
515 
516  pr_debug("-------------------------------------------"
517  "----------------------------------\n");
518 
519  pr_debug("INFTL Virtual Unit Chains:\n");
520  for (logical = 0; logical < s->nb_blocks; logical++) {
521  block = s->VUtable[logical];
522  if (block > s->nb_blocks)
523  continue;
524  pr_debug(" LOGICAL %d --> %d ", logical, block);
525  for (i = 0; i < s->nb_blocks; i++) {
526  if (s->PUtable[block] == BLOCK_NIL)
527  break;
528  block = s->PUtable[block];
529  pr_debug("%d ", block);
530  }
531  pr_debug("\n");
532  }
533 
534  pr_debug("-------------------------------------------"
535  "----------------------------------\n");
536 }
537 
538 int INFTL_mount(struct INFTLrecord *s)
539 {
540  struct mtd_info *mtd = s->mbd.mtd;
541  unsigned int block, first_block, prev_block, last_block;
542  unsigned int first_logical_block, logical_block, erase_mark;
543  int chain_length, do_format_chain;
544  struct inftl_unithead1 h0;
545  struct inftl_unittail h1;
546  size_t retlen;
547  int i;
548  u8 *ANACtable, ANAC;
549 
550  pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s);
551 
552  /* Search for INFTL MediaHeader and Spare INFTL Media Header */
553  if (find_boot_record(s) < 0) {
554  printk(KERN_WARNING "INFTL: could not find valid boot record?\n");
555  return -ENXIO;
556  }
557 
558  /* Init the logical to physical table */
559  for (i = 0; i < s->nb_blocks; i++)
560  s->VUtable[i] = BLOCK_NIL;
561 
562  logical_block = block = BLOCK_NIL;
563 
564  /* Temporary buffer to store ANAC numbers. */
565  ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL);
566  if (!ANACtable) {
567  printk(KERN_WARNING "INFTL: allocation of ANACtable "
568  "failed (%zd bytes)\n",
569  s->nb_blocks * sizeof(u8));
570  return -ENOMEM;
571  }
572 
573  /*
574  * First pass is to explore each physical unit, and construct the
575  * virtual chains that exist (newest physical unit goes into VUtable).
576  * Any block that is in any way invalid will be left in the
577  * NOTEXPLORED state. Then at the end we will try to format it and
578  * mark it as free.
579  */
580  pr_debug("INFTL: pass 1, explore each unit\n");
581  for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) {
582  if (s->PUtable[first_block] != BLOCK_NOTEXPLORED)
583  continue;
584 
585  do_format_chain = 0;
586  first_logical_block = BLOCK_NIL;
587  last_block = BLOCK_NIL;
588  block = first_block;
589 
590  for (chain_length = 0; ; chain_length++) {
591 
592  if ((chain_length == 0) &&
593  (s->PUtable[block] != BLOCK_NOTEXPLORED)) {
594  /* Nothing to do here, onto next block */
595  break;
596  }
597 
598  if (inftl_read_oob(mtd, block * s->EraseSize + 8,
599  8, &retlen, (char *)&h0) < 0 ||
600  inftl_read_oob(mtd, block * s->EraseSize +
601  2 * SECTORSIZE + 8, 8, &retlen,
602  (char *)&h1) < 0) {
603  /* Should never happen? */
604  do_format_chain++;
605  break;
606  }
607 
608  logical_block = le16_to_cpu(h0.virtualUnitNo);
609  prev_block = le16_to_cpu(h0.prevUnitNo);
610  erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1));
611  ANACtable[block] = h0.ANAC;
612 
613  /* Previous block is relative to start of Partition */
614  if (prev_block < s->nb_blocks)
615  prev_block += s->firstEUN;
616 
617  /* Already explored partial chain? */
618  if (s->PUtable[block] != BLOCK_NOTEXPLORED) {
619  /* Check if chain for this logical */
620  if (logical_block == first_logical_block) {
621  if (last_block != BLOCK_NIL)
622  s->PUtable[last_block] = block;
623  }
624  break;
625  }
626 
627  /* Check for invalid block */
628  if (erase_mark != ERASE_MARK) {
629  printk(KERN_WARNING "INFTL: corrupt block %d "
630  "in chain %d, chain length %d, erase "
631  "mark 0x%x?\n", block, first_block,
632  chain_length, erase_mark);
633  /*
634  * Assume end of chain, probably incomplete
635  * fold/erase...
636  */
637  if (chain_length == 0)
638  do_format_chain++;
639  break;
640  }
641 
642  /* Check for it being free already then... */
643  if ((logical_block == BLOCK_FREE) ||
644  (logical_block == BLOCK_NIL)) {
645  s->PUtable[block] = BLOCK_FREE;
646  break;
647  }
648 
649  /* Sanity checks on block numbers */
650  if ((logical_block >= s->nb_blocks) ||
651  ((prev_block >= s->nb_blocks) &&
652  (prev_block != BLOCK_NIL))) {
653  if (chain_length > 0) {
654  printk(KERN_WARNING "INFTL: corrupt "
655  "block %d in chain %d?\n",
656  block, first_block);
657  do_format_chain++;
658  }
659  break;
660  }
661 
662  if (first_logical_block == BLOCK_NIL) {
663  first_logical_block = logical_block;
664  } else {
665  if (first_logical_block != logical_block) {
666  /* Normal for folded chain... */
667  break;
668  }
669  }
670 
671  /*
672  * Current block is valid, so if we followed a virtual
673  * chain to get here then we can set the previous
674  * block pointer in our PUtable now. Then move onto
675  * the previous block in the chain.
676  */
677  s->PUtable[block] = BLOCK_NIL;
678  if (last_block != BLOCK_NIL)
679  s->PUtable[last_block] = block;
680  last_block = block;
681  block = prev_block;
682 
683  /* Check for end of chain */
684  if (block == BLOCK_NIL)
685  break;
686 
687  /* Validate next block before following it... */
688  if (block > s->lastEUN) {
689  printk(KERN_WARNING "INFTL: invalid previous "
690  "block %d in chain %d?\n", block,
691  first_block);
692  do_format_chain++;
693  break;
694  }
695  }
696 
697  if (do_format_chain) {
698  format_chain(s, first_block);
699  continue;
700  }
701 
702  /*
703  * Looks like a valid chain then. It may not really be the
704  * newest block in the chain, but it is the newest we have
705  * found so far. We might update it in later iterations of
706  * this loop if we find something newer.
707  */
708  s->VUtable[first_logical_block] = first_block;
709  logical_block = BLOCK_NIL;
710  }
711 
712  INFTL_dumptables(s);
713 
714  /*
715  * Second pass, check for infinite loops in chains. These are
716  * possible because we don't update the previous pointers when
717  * we fold chains. No big deal, just fix them up in PUtable.
718  */
719  pr_debug("INFTL: pass 2, validate virtual chains\n");
720  for (logical_block = 0; logical_block < s->numvunits; logical_block++) {
721  block = s->VUtable[logical_block];
722  last_block = BLOCK_NIL;
723 
724  /* Check for free/reserved/nil */
725  if (block >= BLOCK_RESERVED)
726  continue;
727 
728  ANAC = ANACtable[block];
729  for (i = 0; i < s->numvunits; i++) {
730  if (s->PUtable[block] == BLOCK_NIL)
731  break;
732  if (s->PUtable[block] > s->lastEUN) {
733  printk(KERN_WARNING "INFTL: invalid prev %d, "
734  "in virtual chain %d\n",
735  s->PUtable[block], logical_block);
736  s->PUtable[block] = BLOCK_NIL;
737 
738  }
739  if (ANACtable[block] != ANAC) {
740  /*
741  * Chain must point back to itself. This is ok,
742  * but we will need adjust the tables with this
743  * newest block and oldest block.
744  */
745  s->VUtable[logical_block] = block;
746  s->PUtable[last_block] = BLOCK_NIL;
747  break;
748  }
749 
750  ANAC--;
751  last_block = block;
752  block = s->PUtable[block];
753  }
754 
755  if (i >= s->nb_blocks) {
756  /*
757  * Uhoo, infinite chain with valid ANACS!
758  * Format whole chain...
759  */
760  format_chain(s, first_block);
761  }
762  }
763 
764  INFTL_dumptables(s);
766 
767  /*
768  * Third pass, format unreferenced blocks and init free block count.
769  */
770  s->numfreeEUNs = 0;
771  s->LastFreeEUN = BLOCK_NIL;
772 
773  pr_debug("INFTL: pass 3, format unused blocks\n");
774  for (block = s->firstEUN; block <= s->lastEUN; block++) {
775  if (s->PUtable[block] == BLOCK_NOTEXPLORED) {
776  printk("INFTL: unreferenced block %d, formatting it\n",
777  block);
778  if (INFTL_formatblock(s, block) < 0)
779  s->PUtable[block] = BLOCK_RESERVED;
780  else
781  s->PUtable[block] = BLOCK_FREE;
782  }
783  if (s->PUtable[block] == BLOCK_FREE) {
784  s->numfreeEUNs++;
785  if (s->LastFreeEUN == BLOCK_NIL)
786  s->LastFreeEUN = block;
787  }
788  }
789 
790  kfree(ANACtable);
791  return 0;
792 }