Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ip27-nmi.c
Go to the documentation of this file.
1 #include <linux/kernel.h>
2 #include <linux/mmzone.h>
3 #include <linux/nodemask.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/atomic.h>
7 #include <asm/sn/types.h>
8 #include <asm/sn/addrs.h>
9 #include <asm/sn/nmi.h>
10 #include <asm/sn/arch.h>
11 #include <asm/sn/sn0/hub.h>
12 
13 #if 0
14 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n)
15 #else
16 #define NODE_NUM_CPUS(n) CPUS_PER_NODE
17 #endif
18 
19 #define CNODEID_NONE (cnodeid_t)-1
20 
21 typedef unsigned long machreg_t;
22 
24 
25 /*
26  * Lets see what else we need to do here. Set up sp, gp?
27  */
28 void nmi_dump(void)
29 {
30  void cont_nmi_dump(void);
31 
32  cont_nmi_dump();
33 }
34 
36 {
37  nmi_t *nmi_addr;
38 
39  nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice);
40  if (nmi_addr->call_addr)
41  return;
42  nmi_addr->magic = NMI_MAGIC;
43  nmi_addr->call_addr = (void *)nmi_dump;
44  nmi_addr->call_addr_c =
45  (void *)(~((unsigned long)(nmi_addr->call_addr)));
46  nmi_addr->call_parm = 0;
47 }
48 
49 /*
50  * Copy the cpu registers which have been saved in the IP27prom format
51  * into the eframe format for the node under consideration.
52  */
53 
55 {
56  struct reg_struct *nr;
57  int i;
58 
59  /* Get the pointer to the current cpu's register set. */
60  nr = (struct reg_struct *)
61  (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) +
62  slice * IP27_NMI_KREGS_CPU_SIZE);
63 
64  printk("NMI nasid %d: slice %d\n", nasid, slice);
65 
66  /*
67  * Saved main processor registers
68  */
69  for (i = 0; i < 32; ) {
70  if ((i % 4) == 0)
71  printk("$%2d :", i);
72  printk(" %016lx", nr->gpr[i]);
73 
74  i++;
75  if ((i % 4) == 0)
76  printk("\n");
77  }
78 
79  printk("Hi : (value lost)\n");
80  printk("Lo : (value lost)\n");
81 
82  /*
83  * Saved cp0 registers
84  */
85  printk("epc : %016lx %pS\n", nr->epc, (void *) nr->epc);
86  printk("%s\n", print_tainted());
87  printk("ErrEPC: %016lx %pS\n", nr->error_epc, (void *) nr->error_epc);
88  printk("ra : %016lx %pS\n", nr->gpr[31], (void *) nr->gpr[31]);
89  printk("Status: %08lx ", nr->sr);
90 
91  if (nr->sr & ST0_KX)
92  printk("KX ");
93  if (nr->sr & ST0_SX)
94  printk("SX ");
95  if (nr->sr & ST0_UX)
96  printk("UX ");
97 
98  switch (nr->sr & ST0_KSU) {
99  case KSU_USER:
100  printk("USER ");
101  break;
102  case KSU_SUPERVISOR:
103  printk("SUPERVISOR ");
104  break;
105  case KSU_KERNEL:
106  printk("KERNEL ");
107  break;
108  default:
109  printk("BAD_MODE ");
110  break;
111  }
112 
113  if (nr->sr & ST0_ERL)
114  printk("ERL ");
115  if (nr->sr & ST0_EXL)
116  printk("EXL ");
117  if (nr->sr & ST0_IE)
118  printk("IE ");
119  printk("\n");
120 
121  printk("Cause : %08lx\n", nr->cause);
122  printk("PrId : %08x\n", read_c0_prid());
123  printk("BadVA : %016lx\n", nr->badva);
124  printk("CErr : %016lx\n", nr->cache_err);
125  printk("NMI_SR: %016lx\n", nr->nmi_sr);
126 
127  printk("\n");
128 }
129 
131 {
132  hubreg_t mask0, mask1, pend0, pend1;
133 
134  if (slice == 0) { /* Slice A */
135  mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A);
136  mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A);
137  } else { /* Slice B */
138  mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B);
139  mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B);
140  }
141 
142  pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0);
143  pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1);
144 
145  printk("PI_INT_MASK0: %16Lx PI_INT_MASK1: %16Lx\n", mask0, mask1);
146  printk("PI_INT_PEND0: %16Lx PI_INT_PEND1: %16Lx\n", pend0, pend1);
147  printk("\n\n");
148 }
149 
150 /*
151  * Copy the cpu registers which have been saved in the IP27prom format
152  * into the eframe format for the node under consideration.
153  */
155 {
156  nasid_t nasid;
157  int slice;
158 
159  /* Make sure that we have a valid node */
160  if (cnode == CNODEID_NONE)
161  return;
162 
163  nasid = COMPACT_TO_NASID_NODEID(cnode);
164  if (nasid == INVALID_NASID)
165  return;
166 
167  /* Save the registers into eframe for each cpu */
168  for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) {
169  nmi_cpu_eframe_save(nasid, slice);
170  nmi_dump_hub_irq(nasid, slice);
171  }
172 }
173 
174 /*
175  * Save the nmi cpu registers for all cpus in the system.
176  */
177 void
179 {
180  cnodeid_t cnode;
181 
182  for_each_online_node(cnode)
183  nmi_node_eframe_save(cnode);
184 }
185 
186 void
188 {
189 #ifndef REAL_NMI_SIGNAL
190  static atomic_t nmied_cpus = ATOMIC_INIT(0);
191 
192  atomic_inc(&nmied_cpus);
193 #endif
194  /*
195  * Only allow 1 cpu to proceed
196  */
197  arch_spin_lock(&nmi_lock);
198 
199 #ifdef REAL_NMI_SIGNAL
200  /*
201  * Wait up to 15 seconds for the other cpus to respond to the NMI.
202  * If a cpu has not responded after 10 sec, send it 1 additional NMI.
203  * This is for 2 reasons:
204  * - sometimes a MMSC fail to NMI all cpus.
205  * - on 512p SN0 system, the MMSC will only send NMIs to
206  * half the cpus. Unfortunately, we don't know which cpus may be
207  * NMIed - it depends on how the site chooses to configure.
208  *
209  * Note: it has been measure that it takes the MMSC up to 2.3 secs to
210  * send NMIs to all cpus on a 256p system.
211  */
212  for (i=0; i < 1500; i++) {
214  if (NODEPDA(node)->dump_count == 0)
215  break;
216  if (node == MAX_NUMNODES)
217  break;
218  if (i == 1000) {
220  if (NODEPDA(node)->dump_count == 0) {
221  cpu = cpumask_first(cpumask_of_node(node));
222  for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) {
223  CPUMASK_SETB(nmied_cpus, cpu);
224  /*
225  * cputonasid, cputoslice
226  * needs kernel cpuid
227  */
229  }
230  }
231 
232  }
233  udelay(10000);
234  }
235 #else
236  while (atomic_read(&nmied_cpus) != num_online_cpus());
237 #endif
238 
239  /*
240  * Save the nmi cpu registers for all cpu in the eframe format.
241  */
244 }