Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ipipe.c
Go to the documentation of this file.
1 /* -*- linux-c -*-
2  * linux/arch/blackfin/kernel/ipipe.c
3  *
4  * Copyright (C) 2005-2007 Philippe Gerum.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
9  * USA; either version 2 of the License, or (at your option) any later
10  * version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  *
21  * Architecture-dependent I-pipe support for the Blackfin.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/module.h>
27 #include <linux/interrupt.h>
28 #include <linux/percpu.h>
29 #include <linux/bitops.h>
30 #include <linux/errno.h>
31 #include <linux/kthread.h>
32 #include <linux/unistd.h>
33 #include <linux/io.h>
34 #include <linux/atomic.h>
35 #include <asm/irq_handler.h>
36 
37 DEFINE_PER_CPU(struct pt_regs, __ipipe_tick_regs);
38 
39 asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs);
40 
41 static void __ipipe_no_irqtail(void);
42 
43 unsigned long __ipipe_irq_tail_hook = (unsigned long)&__ipipe_no_irqtail;
45 
46 unsigned long __ipipe_core_clock;
48 
49 unsigned long __ipipe_freq_scale;
51 
53 
56 
57 static void __ipipe_ack_irq(unsigned irq, struct irq_desc *desc)
58 {
59  desc->ipipe_ack(irq, desc);
60 }
61 
62 /*
63  * __ipipe_enable_pipeline() -- We are running on the boot CPU, hw
64  * interrupts are off, and secondary CPUs are still lost in space.
65  */
67 {
68  unsigned irq;
69 
70  __ipipe_core_clock = get_cclk(); /* Fetch this once. */
72 
73  for (irq = 0; irq < NR_IRQS; ++irq)
74  ipipe_virtualize_irq(ipipe_root_domain,
75  irq,
76  (ipipe_irq_handler_t)&asm_do_IRQ,
77  NULL,
78  &__ipipe_ack_irq,
79  IPIPE_HANDLE_MASK | IPIPE_PASS_MASK);
80 }
81 
82 /*
83  * __ipipe_handle_irq() -- IPIPE's generic IRQ handler. An optimistic
84  * interrupt protection log is maintained here for each domain. Hw
85  * interrupts are masked on entry.
86  */
87 void __ipipe_handle_irq(unsigned irq, struct pt_regs *regs)
88 {
89  struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
90  struct ipipe_domain *this_domain, *next_domain;
91  struct list_head *head, *pos;
92  struct ipipe_irqdesc *idesc;
93  int m_ack, s = -1;
94 
95  /*
96  * Software-triggered IRQs do not need any ack. The contents
97  * of the register frame should only be used when processing
98  * the timer interrupt, but not for handling any other
99  * interrupt.
100  */
101  m_ack = (regs == NULL || irq == IRQ_SYSTMR || irq == IRQ_CORETMR);
102  this_domain = __ipipe_current_domain;
103  idesc = &this_domain->irqs[irq];
104 
105  if (unlikely(test_bit(IPIPE_STICKY_FLAG, &idesc->control)))
106  head = &this_domain->p_link;
107  else {
108  head = __ipipe_pipeline.next;
109  next_domain = list_entry(head, struct ipipe_domain, p_link);
110  idesc = &next_domain->irqs[irq];
111  if (likely(test_bit(IPIPE_WIRED_FLAG, &idesc->control))) {
112  if (!m_ack && idesc->acknowledge != NULL)
113  idesc->acknowledge(irq, irq_to_desc(irq));
114  if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status))
115  s = __test_and_set_bit(IPIPE_STALL_FLAG,
116  &p->status);
117  __ipipe_dispatch_wired(next_domain, irq);
118  goto out;
119  }
120  }
121 
122  /* Ack the interrupt. */
123 
124  pos = head;
125  while (pos != &__ipipe_pipeline) {
126  next_domain = list_entry(pos, struct ipipe_domain, p_link);
127  idesc = &next_domain->irqs[irq];
128  if (test_bit(IPIPE_HANDLE_FLAG, &idesc->control)) {
129  __ipipe_set_irq_pending(next_domain, irq);
130  if (!m_ack && idesc->acknowledge != NULL) {
131  idesc->acknowledge(irq, irq_to_desc(irq));
132  m_ack = 1;
133  }
134  }
135  if (!test_bit(IPIPE_PASS_FLAG, &idesc->control))
136  break;
137  pos = next_domain->p_link.next;
138  }
139 
140  /*
141  * Now walk the pipeline, yielding control to the highest
142  * priority domain that has pending interrupt(s) or
143  * immediately to the current domain if the interrupt has been
144  * marked as 'sticky'. This search does not go beyond the
145  * current domain in the pipeline. We also enforce the
146  * additional root stage lock (blackfin-specific).
147  */
148  if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status))
149  s = __test_and_set_bit(IPIPE_STALL_FLAG, &p->status);
150 
151  /*
152  * If the interrupt preempted the head domain, then do not
153  * even try to walk the pipeline, unless an interrupt is
154  * pending for it.
155  */
156  if (test_bit(IPIPE_AHEAD_FLAG, &this_domain->flags) &&
157  !__ipipe_ipending_p(ipipe_head_cpudom_ptr()))
158  goto out;
159 
160  __ipipe_walk_pipeline(head);
161 out:
162  if (!s)
163  __clear_bit(IPIPE_STALL_FLAG, &p->status);
164 }
165 
166 void __ipipe_enable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
167 {
168  struct irq_desc *desc = irq_to_desc(irq);
169  int prio = __ipipe_get_irq_priority(irq);
170 
171  desc->depth = 0;
172  if (ipd != &ipipe_root &&
173  atomic_inc_return(&__ipipe_irq_lvdepth[prio]) == 1)
175 }
177 
178 void __ipipe_disable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
179 {
180  int prio = __ipipe_get_irq_priority(irq);
181 
182  if (ipd != &ipipe_root &&
183  atomic_dec_and_test(&__ipipe_irq_lvdepth[prio]))
185 }
187 
189 {
190  struct ipipe_percpu_domain_data *p;
191  void (*hook)(void);
192  int ret;
193 
195 
196  /*
197  * We need to run the IRQ tail hook each time we intercept a
198  * syscall, because we know that important operations might be
199  * pending there (e.g. Xenomai deferred rescheduling).
200  */
201  hook = (__typeof__(hook))__ipipe_irq_tail_hook;
202  hook();
203 
204  /*
205  * This routine either returns:
206  * 0 -- if the syscall is to be passed to Linux;
207  * >0 -- if the syscall should not be passed to Linux, and no
208  * tail work should be performed;
209  * <0 -- if the syscall should not be passed to Linux but the
210  * tail work has to be performed (for handling signals etc).
211  */
212 
213  if (!__ipipe_syscall_watched_p(current, regs->orig_p0) ||
214  !__ipipe_event_monitored_p(IPIPE_EVENT_SYSCALL))
215  return 0;
216 
217  ret = __ipipe_dispatch_event(IPIPE_EVENT_SYSCALL, regs);
218 
220 
221  /*
222  * This is the end of the syscall path, so we may
223  * safely assume a valid Linux task stack here.
224  */
225  if (current->ipipe_flags & PF_EVTRET) {
226  current->ipipe_flags &= ~PF_EVTRET;
227  __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
228  }
229 
230  if (!__ipipe_root_domain_p)
231  ret = -1;
232  else {
233  p = ipipe_root_cpudom_ptr();
234  if (__ipipe_ipending_p(p))
235  __ipipe_sync_pipeline();
236  }
237 
239 
240  return -ret;
241 }
242 
243 static void __ipipe_no_irqtail(void)
244 {
245 }
246 
247 int ipipe_get_sysinfo(struct ipipe_sysinfo *info)
248 {
249  info->sys_nr_cpus = num_online_cpus();
250  info->sys_cpu_freq = ipipe_cpu_freq();
251  info->sys_hrtimer_irq = IPIPE_TIMER_IRQ;
252  info->sys_hrtimer_freq = __ipipe_core_clock;
253  info->sys_hrclock_freq = __ipipe_core_clock;
254 
255  return 0;
256 }
257 
258 /*
259  * ipipe_trigger_irq() -- Push the interrupt at front of the pipeline
260  * just like if it has been actually received from a hw source. Also
261  * works for virtual interrupts.
262  */
263 int ipipe_trigger_irq(unsigned irq)
264 {
265  unsigned long flags;
266 
267 #ifdef CONFIG_IPIPE_DEBUG
268  if (irq >= IPIPE_NR_IRQS ||
269  (ipipe_virtual_irq_p(irq)
270  && !test_bit(irq - IPIPE_VIRQ_BASE, &__ipipe_virtual_irq_map)))
271  return -EINVAL;
272 #endif
273 
274  flags = hard_local_irq_save();
275  __ipipe_handle_irq(irq, NULL);
276  hard_local_irq_restore(flags);
277 
278  return 1;
279 }
280 
282 {
283  void (*irq_tail_hook)(void) = (void (*)(void))__ipipe_irq_tail_hook;
284  struct ipipe_percpu_domain_data *p;
285  unsigned long flags;
286 
288 
289  flags = hard_local_irq_save();
290 
291  if (irq_tail_hook)
292  irq_tail_hook();
293 
294  clear_thread_flag(TIF_IRQ_SYNC);
295 
296  p = ipipe_root_cpudom_ptr();
297  if (__ipipe_ipending_p(p))
298  __ipipe_sync_pipeline();
299 
300  hard_local_irq_restore(flags);
301 }
302 
304 {
305  if (__ipipe_root_domain_p &&
306  test_bit(IPIPE_SYNCDEFER_FLAG, &ipipe_root_cpudom_var(status)))
307  return;
308 
309  __ipipe_sync_stage();
310 }
311 
313 {
314  /*
315  * This code is called by the ins{bwl} routines (see
316  * arch/blackfin/lib/ins.S), which are heavily used by the
317  * network stack. It masks all interrupts but those handled by
318  * non-root domains, so that we keep decent network transfer
319  * rates for Linux without inducing pathological jitter for
320  * the real-time domain.
321  */
322  bfin_sti(__ipipe_irq_lvmask);
323  __set_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status));
324 }
325 
327 {
328  __clear_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status));
329  bfin_sti(bfin_irq_flags);
330 }
331 
332 /*
333  * We could use standard atomic bitops in the following root status
334  * manipulation routines, but let's prepare for SMP support in the
335  * same move, preventing CPU migration as required.
336  */
338 {
339  unsigned long *p, flags;
340 
341  flags = hard_local_irq_save();
342  p = &__ipipe_root_status;
343  __set_bit(IPIPE_STALL_FLAG, p);
344  hard_local_irq_restore(flags);
345 }
347 
348 unsigned long __ipipe_test_and_stall_root(void)
349 {
350  unsigned long *p, flags;
351  int x;
352 
353  flags = hard_local_irq_save();
354  p = &__ipipe_root_status;
355  x = __test_and_set_bit(IPIPE_STALL_FLAG, p);
356  hard_local_irq_restore(flags);
357 
358  return x;
359 }
361 
362 unsigned long __ipipe_test_root(void)
363 {
364  const unsigned long *p;
365  unsigned long flags;
366  int x;
367 
368  flags = hard_local_irq_save_smp();
369  p = &__ipipe_root_status;
370  x = test_bit(IPIPE_STALL_FLAG, p);
372 
373  return x;
374 }
376 
378 {
379  unsigned long *p, flags;
380 
381  flags = hard_local_irq_save();
382  p = &__ipipe_root_status;
383  __set_bit(IPIPE_SYNCDEFER_FLAG, p);
384  hard_local_irq_restore(flags);
385 }
387 
389 {
390  unsigned long *p, flags;
391 
392  flags = hard_local_irq_save();
393  p = &__ipipe_root_status;
394  __clear_bit(IPIPE_SYNCDEFER_FLAG, p);
395  hard_local_irq_restore(flags);
396 }