Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
jsflash.c
Go to the documentation of this file.
1 /*
2  * drivers/sbus/char/jsflash.c
3  *
4  * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c)
5  * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c)
6  * Copyright (C) 1997-2000 Pavel Machek <[email protected]> (drivers/block/nbd.c)
7  * Copyright (C) 1999-2000 Pete Zaitcev
8  *
9  * This driver is used to program OS into a Flash SIMM on
10  * Krups and Espresso platforms.
11  *
12  * TODO: do not allow erase/programming if file systems are mounted.
13  * TODO: Erase/program both banks of a 8MB SIMM.
14  *
15  * It is anticipated that programming an OS Flash will be a routine
16  * procedure. In the same time it is exceedingly dangerous because
17  * a user can program its OBP flash with OS image and effectively
18  * kill the machine.
19  *
20  * This driver uses an interface different from Eddie's flash.c
21  * as a silly safeguard.
22  *
23  * XXX The flash.c manipulates page caching characteristics in a certain
24  * dubious way; also it assumes that remap_pfn_range() can remap
25  * PCI bus locations, which may be false. ioremap() must be used
26  * instead. We should discuss this.
27  */
28 
29 #include <linux/module.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/miscdevice.h>
34 #include <linux/fcntl.h>
35 #include <linux/poll.h>
36 #include <linux/init.h>
37 #include <linux/string.h>
38 #include <linux/genhd.h>
39 #include <linux/blkdev.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/io.h>
43 #include <asm/pcic.h>
44 #include <asm/oplib.h>
45 
46 #include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */
47 #define JSFIDSZ (sizeof(struct jsflash_ident_arg))
48 #define JSFPRGSZ (sizeof(struct jsflash_program_arg))
49 
50 /*
51  * Our device numbers have no business in system headers.
52  * The only thing a user knows is the device name /dev/jsflash.
53  *
54  * Block devices are laid out like this:
55  * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
56  * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00]
57  * minor+2 - Whole flash area for any case... 0x20000000[0x01000000]
58  * Total 3 minors per flash device.
59  *
60  * It is easier to have static size vectors, so we define
61  * a total minor range JSF_MAX, which must cover all minors.
62  */
63 /* character device */
64 #define JSF_MINOR 178 /* 178 is registered with hpa */
65 /* block device */
66 #define JSF_MAX 3 /* 3 minors wasted total so far. */
67 #define JSF_NPART 3 /* 3 minors per flash device */
68 #define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */
69 #define JSF_PART_MASK 0x3 /* 2 bits mask */
70 
71 static DEFINE_MUTEX(jsf_mutex);
72 
73 /*
74  * Access functions.
75  * We could ioremap(), but it's easier this way.
76  */
77 static unsigned int jsf_inl(unsigned long addr)
78 {
79  unsigned long retval;
80 
81  __asm__ __volatile__("lda [%1] %2, %0\n\t" :
82  "=r" (retval) :
83  "r" (addr), "i" (ASI_M_BYPASS));
84  return retval;
85 }
86 
87 static void jsf_outl(unsigned long addr, __u32 data)
88 {
89 
90  __asm__ __volatile__("sta %0, [%1] %2\n\t" : :
91  "r" (data), "r" (addr), "i" (ASI_M_BYPASS) :
92  "memory");
93 }
94 
95 /*
96  * soft carrier
97  */
98 
99 struct jsfd_part {
100  unsigned long dbase;
101  unsigned long dsize;
102 };
103 
104 struct jsflash {
105  unsigned long base;
106  unsigned long size;
107  unsigned long busy; /* In use? */
109  /* int mbase; */ /* Minor base, typically zero */
111 };
112 
113 /*
114  * We do not map normal memory or obio as a safety precaution.
115  * But offsets are real, for ease of userland programming.
116  */
117 #define JSF_BASE_TOP 0x30000000
118 #define JSF_BASE_ALL 0x20000000
119 
120 #define JSF_BASE_JK 0x20400000
121 
122 /*
123  */
124 static struct gendisk *jsfd_disk[JSF_MAX];
125 
126 /*
127  * Let's pretend we may have several of these...
128  */
129 static struct jsflash jsf0;
130 
131 /*
132  * Wait for AMD to finish its embedded algorithm.
133  * We use the Toggle bit DQ6 (0x40) because it does not
134  * depend on the data value as /DATA bit DQ7 does.
135  *
136  * XXX Do we need any timeout here? So far it never hanged, beware broken hw.
137  */
138 static void jsf_wait(unsigned long p) {
139  unsigned int x1, x2;
140 
141  for (;;) {
142  x1 = jsf_inl(p);
143  x2 = jsf_inl(p);
144  if ((x1 & 0x40404040) == (x2 & 0x40404040)) return;
145  }
146 }
147 
148 /*
149  * Programming will only work if Flash is clean,
150  * we leave it to the programmer application.
151  *
152  * AMD must be programmed one byte at a time;
153  * thus, Simple Tech SIMM must be written 4 bytes at a time.
154  *
155  * Write waits for the chip to become ready after the write
156  * was finished. This is done so that application would read
157  * consistent data after the write is done.
158  */
159 static void jsf_write4(unsigned long fa, u32 data) {
160 
161  jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */
162  jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */
163  jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */
164  jsf_outl(fa, data);
165 
166  jsf_wait(fa);
167 }
168 
169 /*
170  */
171 static void jsfd_read(char *buf, unsigned long p, size_t togo) {
172  union byte4 {
173  char s[4];
174  unsigned int n;
175  } b;
176 
177  while (togo >= 4) {
178  togo -= 4;
179  b.n = jsf_inl(p);
180  memcpy(buf, b.s, 4);
181  p += 4;
182  buf += 4;
183  }
184 }
185 
186 static void jsfd_do_request(struct request_queue *q)
187 {
188  struct request *req;
189 
190  req = blk_fetch_request(q);
191  while (req) {
192  struct jsfd_part *jdp = req->rq_disk->private_data;
193  unsigned long offset = blk_rq_pos(req) << 9;
194  size_t len = blk_rq_cur_bytes(req);
195  int err = -EIO;
196 
197  if ((offset + len) > jdp->dsize)
198  goto end;
199 
200  if (rq_data_dir(req) != READ) {
201  printk(KERN_ERR "jsfd: write\n");
202  goto end;
203  }
204 
205  if ((jdp->dbase & 0xff000000) != 0x20000000) {
206  printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase);
207  goto end;
208  }
209 
210  jsfd_read(req->buffer, jdp->dbase + offset, len);
211  err = 0;
212  end:
213  if (!__blk_end_request_cur(req, err))
214  req = blk_fetch_request(q);
215  }
216 }
217 
218 /*
219  * The memory devices use the full 32/64 bits of the offset, and so we cannot
220  * check against negative addresses: they are ok. The return value is weird,
221  * though, in that case (0).
222  *
223  * also note that seeking relative to the "end of file" isn't supported:
224  * it has no meaning, so it returns -EINVAL.
225  */
226 static loff_t jsf_lseek(struct file * file, loff_t offset, int orig)
227 {
228  loff_t ret;
229 
230  mutex_lock(&jsf_mutex);
231  switch (orig) {
232  case 0:
233  file->f_pos = offset;
234  ret = file->f_pos;
235  break;
236  case 1:
237  file->f_pos += offset;
238  ret = file->f_pos;
239  break;
240  default:
241  ret = -EINVAL;
242  }
243  mutex_unlock(&jsf_mutex);
244  return ret;
245 }
246 
247 /*
248  * OS SIMM Cannot be read in other size but a 32bits word.
249  */
250 static ssize_t jsf_read(struct file * file, char __user * buf,
251  size_t togo, loff_t *ppos)
252 {
253  unsigned long p = *ppos;
254  char __user *tmp = buf;
255 
256  union byte4 {
257  char s[4];
258  unsigned int n;
259  } b;
260 
261  if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) {
262  return 0;
263  }
264 
265  if ((p + togo) < p /* wrap */
266  || (p + togo) >= JSF_BASE_TOP) {
267  togo = JSF_BASE_TOP - p;
268  }
269 
270  if (p < JSF_BASE_ALL && togo != 0) {
271 #if 0 /* __bzero XXX */
272  size_t x = JSF_BASE_ALL - p;
273  if (x > togo) x = togo;
274  clear_user(tmp, x);
275  tmp += x;
276  p += x;
277  togo -= x;
278 #else
279  /*
280  * Implementation of clear_user() calls __bzero
281  * without regard to modversions,
282  * so we cannot build a module.
283  */
284  return 0;
285 #endif
286  }
287 
288  while (togo >= 4) {
289  togo -= 4;
290  b.n = jsf_inl(p);
291  if (copy_to_user(tmp, b.s, 4))
292  return -EFAULT;
293  tmp += 4;
294  p += 4;
295  }
296 
297  /*
298  * XXX Small togo may remain if 1 byte is ordered.
299  * It would be nice if we did a word size read and unpacked it.
300  */
301 
302  *ppos = p;
303  return tmp-buf;
304 }
305 
306 static ssize_t jsf_write(struct file * file, const char __user * buf,
307  size_t count, loff_t *ppos)
308 {
309  return -ENOSPC;
310 }
311 
312 /*
313  */
314 static int jsf_ioctl_erase(unsigned long arg)
315 {
316  unsigned long p;
317 
318  /* p = jsf0.base; hits wrong bank */
319  p = 0x20400000;
320 
321  jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */
322  jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */
323  jsf_outl(p, 0x80808080); /* Erase setup */
324  jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */
325  jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */
326  jsf_outl(p, 0x10101010); /* Chip erase */
327 
328 #if 0
329  /*
330  * This code is ok, except that counter based timeout
331  * has no place in this world. Let's just drop timeouts...
332  */
333  {
334  int i;
335  __u32 x;
336  for (i = 0; i < 1000000; i++) {
337  x = jsf_inl(p);
338  if ((x & 0x80808080) == 0x80808080) break;
339  }
340  if ((x & 0x80808080) != 0x80808080) {
341  printk("jsf0: erase timeout with 0x%08x\n", x);
342  } else {
343  printk("jsf0: erase done with 0x%08x\n", x);
344  }
345  }
346 #else
347  jsf_wait(p);
348 #endif
349 
350  return 0;
351 }
352 
353 /*
354  * Program a block of flash.
355  * Very simple because we can do it byte by byte anyway.
356  */
357 static int jsf_ioctl_program(void __user *arg)
358 {
359  struct jsflash_program_arg abuf;
360  char __user *uptr;
361  unsigned long p;
362  unsigned int togo;
363  union {
364  unsigned int n;
365  char s[4];
366  } b;
367 
368  if (copy_from_user(&abuf, arg, JSFPRGSZ))
369  return -EFAULT;
370  p = abuf.off;
371  togo = abuf.size;
372  if ((togo & 3) || (p & 3)) return -EINVAL;
373 
374  uptr = (char __user *) (unsigned long) abuf.data;
375  while (togo != 0) {
376  togo -= 4;
377  if (copy_from_user(&b.s[0], uptr, 4))
378  return -EFAULT;
379  jsf_write4(p, b.n);
380  p += 4;
381  uptr += 4;
382  }
383 
384  return 0;
385 }
386 
387 static long jsf_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
388 {
389  mutex_lock(&jsf_mutex);
390  int error = -ENOTTY;
391  void __user *argp = (void __user *)arg;
392 
393  if (!capable(CAP_SYS_ADMIN)) {
394  mutex_unlock(&jsf_mutex);
395  return -EPERM;
396  }
397  switch (cmd) {
398  case JSFLASH_IDENT:
399  if (copy_to_user(argp, &jsf0.id, JSFIDSZ)) {
400  mutex_unlock(&jsf_mutex);
401  return -EFAULT;
402  }
403  break;
404  case JSFLASH_ERASE:
405  error = jsf_ioctl_erase(arg);
406  break;
407  case JSFLASH_PROGRAM:
408  error = jsf_ioctl_program(argp);
409  break;
410  }
411 
412  mutex_unlock(&jsf_mutex);
413  return error;
414 }
415 
416 static int jsf_mmap(struct file * file, struct vm_area_struct * vma)
417 {
418  return -ENXIO;
419 }
420 
421 static int jsf_open(struct inode * inode, struct file * filp)
422 {
423  mutex_lock(&jsf_mutex);
424  if (jsf0.base == 0) {
425  mutex_unlock(&jsf_mutex);
426  return -ENXIO;
427  }
428  if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) {
429  mutex_unlock(&jsf_mutex);
430  return -EBUSY;
431  }
432 
433  mutex_unlock(&jsf_mutex);
434  return 0; /* XXX What security? */
435 }
436 
437 static int jsf_release(struct inode *inode, struct file *file)
438 {
439  jsf0.busy = 0;
440  return 0;
441 }
442 
443 static const struct file_operations jsf_fops = {
444  .owner = THIS_MODULE,
445  .llseek = jsf_lseek,
446  .read = jsf_read,
447  .write = jsf_write,
448  .unlocked_ioctl = jsf_ioctl,
449  .mmap = jsf_mmap,
450  .open = jsf_open,
451  .release = jsf_release,
452 };
453 
454 static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops };
455 
456 static const struct block_device_operations jsfd_fops = {
457  .owner = THIS_MODULE,
458 };
459 
460 static int jsflash_init(void)
461 {
462  int rc;
463  struct jsflash *jsf;
464  phandle node;
465  char banner[128];
466  struct linux_prom_registers reg0;
467 
469  node = prom_searchsiblings(node, "flash-memory");
470  if (node != 0 && (s32)node != -1) {
471  if (prom_getproperty(node, "reg",
472  (char *)&reg0, sizeof(reg0)) == -1) {
473  printk("jsflash: no \"reg\" property\n");
474  return -ENXIO;
475  }
476  if (reg0.which_io != 0) {
477  printk("jsflash: bus number nonzero: 0x%x:%x\n",
478  reg0.which_io, reg0.phys_addr);
479  return -ENXIO;
480  }
481  /*
482  * Flash may be somewhere else, for instance on Ebus.
483  * So, don't do the following check for IIep flash space.
484  */
485 #if 0
486  if ((reg0.phys_addr >> 24) != 0x20) {
487  printk("jsflash: suspicious address: 0x%x:%x\n",
488  reg0.which_io, reg0.phys_addr);
489  return -ENXIO;
490  }
491 #endif
492  if ((int)reg0.reg_size <= 0) {
493  printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size);
494  return -ENXIO;
495  }
496  } else {
497  /* XXX Remove this code once PROLL ID12 got widespread */
498  printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
499  prom_getproperty(prom_root_node, "banner-name", banner, 128);
500  if (strcmp (banner, "JavaStation-NC") != 0 &&
501  strcmp (banner, "JavaStation-E") != 0) {
502  return -ENXIO;
503  }
504  reg0.which_io = 0;
505  reg0.phys_addr = 0x20400000;
506  reg0.reg_size = 0x00800000;
507  }
508 
509  /* Let us be really paranoid for modifications to probing code. */
510  /* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */
511  if (sparc_cpu_model != sun4m) {
512  /* We must be on sun4m because we use MMU Bypass ASI. */
513  return -ENXIO;
514  }
515 
516  if (jsf0.base == 0) {
517  jsf = &jsf0;
518 
519  jsf->base = reg0.phys_addr;
520  jsf->size = reg0.reg_size;
521 
522  /* XXX Redo the userland interface. */
523  jsf->id.off = JSF_BASE_ALL;
524  jsf->id.size = 0x01000000; /* 16M - all segments */
525  strcpy(jsf->id.name, "Krups_all");
526 
527  jsf->dv[0].dbase = jsf->base;
528  jsf->dv[0].dsize = jsf->size;
529  jsf->dv[1].dbase = jsf->base + 1024;
530  jsf->dv[1].dsize = jsf->size - 1024;
531  jsf->dv[2].dbase = JSF_BASE_ALL;
532  jsf->dv[2].dsize = 0x01000000;
533 
534  printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base,
535  (int) (jsf->size / (1024*1024)));
536  }
537 
538  if ((rc = misc_register(&jsf_dev)) != 0) {
539  printk(KERN_ERR "jsf: unable to get misc minor %d\n",
540  JSF_MINOR);
541  jsf0.base = 0;
542  return rc;
543  }
544 
545  return 0;
546 }
547 
548 static struct request_queue *jsf_queue;
549 
550 static int jsfd_init(void)
551 {
552  static DEFINE_SPINLOCK(lock);
553  struct jsflash *jsf;
554  struct jsfd_part *jdp;
555  int err;
556  int i;
557 
558  if (jsf0.base == 0)
559  return -ENXIO;
560 
561  err = -ENOMEM;
562  for (i = 0; i < JSF_MAX; i++) {
563  struct gendisk *disk = alloc_disk(1);
564  if (!disk)
565  goto out;
566  jsfd_disk[i] = disk;
567  }
568 
569  if (register_blkdev(JSFD_MAJOR, "jsfd")) {
570  err = -EIO;
571  goto out;
572  }
573 
574  jsf_queue = blk_init_queue(jsfd_do_request, &lock);
575  if (!jsf_queue) {
576  err = -ENOMEM;
577  unregister_blkdev(JSFD_MAJOR, "jsfd");
578  goto out;
579  }
580 
581  for (i = 0; i < JSF_MAX; i++) {
582  struct gendisk *disk = jsfd_disk[i];
583  if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
584  jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */
585  jdp = &jsf->dv[i&JSF_PART_MASK];
586 
587  disk->major = JSFD_MAJOR;
588  disk->first_minor = i;
589  sprintf(disk->disk_name, "jsfd%d", i);
590  disk->fops = &jsfd_fops;
591  set_capacity(disk, jdp->dsize >> 9);
592  disk->private_data = jdp;
593  disk->queue = jsf_queue;
594  add_disk(disk);
595  set_disk_ro(disk, 1);
596  }
597  return 0;
598 out:
599  while (i--)
600  put_disk(jsfd_disk[i]);
601  return err;
602 }
603 
604 MODULE_LICENSE("GPL");
605 
606 static int __init jsflash_init_module(void) {
607  int rc;
608 
609  if ((rc = jsflash_init()) == 0) {
610  jsfd_init();
611  return 0;
612  }
613  return rc;
614 }
615 
616 static void __exit jsflash_cleanup_module(void)
617 {
618  int i;
619 
620  for (i = 0; i < JSF_MAX; i++) {
621  if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
622  del_gendisk(jsfd_disk[i]);
623  put_disk(jsfd_disk[i]);
624  }
625  if (jsf0.busy)
626  printk("jsf0: cleaning busy unit\n");
627  jsf0.base = 0;
628  jsf0.busy = 0;
629 
630  misc_deregister(&jsf_dev);
631  unregister_blkdev(JSFD_MAJOR, "jsfd");
632  blk_cleanup_queue(jsf_queue);
633 }
634 
635 module_init(jsflash_init_module);
636 module_exit(jsflash_cleanup_module);