Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ring_buffer.c
Go to the documentation of this file.
1 /*
2  * Performance events ring-buffer code:
3  *
4  * Copyright (C) 2008 Thomas Gleixner <[email protected]>
5  * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <[email protected]>
7  * Copyright © 2009 Paul Mackerras, IBM Corp. <[email protected]>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 
16 #include "internal.h"
17 
18 static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
19  unsigned long offset, unsigned long head)
20 {
21  unsigned long mask;
22 
23  if (!rb->writable)
24  return true;
25 
26  mask = perf_data_size(rb) - 1;
27 
28  offset = (offset - tail) & mask;
29  head = (head - tail) & mask;
30 
31  if ((int)(head - offset) < 0)
32  return false;
33 
34  return true;
35 }
36 
37 static void perf_output_wakeup(struct perf_output_handle *handle)
38 {
39  atomic_set(&handle->rb->poll, POLL_IN);
40 
41  handle->event->pending_wakeup = 1;
42  irq_work_queue(&handle->event->pending);
43 }
44 
45 /*
46  * We need to ensure a later event_id doesn't publish a head when a former
47  * event isn't done writing. However since we need to deal with NMIs we
48  * cannot fully serialize things.
49  *
50  * We only publish the head (and generate a wakeup) when the outer-most
51  * event completes.
52  */
53 static void perf_output_get_handle(struct perf_output_handle *handle)
54 {
55  struct ring_buffer *rb = handle->rb;
56 
58  local_inc(&rb->nest);
59  handle->wakeup = local_read(&rb->wakeup);
60 }
61 
62 static void perf_output_put_handle(struct perf_output_handle *handle)
63 {
64  struct ring_buffer *rb = handle->rb;
65  unsigned long head;
66 
67 again:
68  head = local_read(&rb->head);
69 
70  /*
71  * IRQ/NMI can happen here, which means we can miss a head update.
72  */
73 
74  if (!local_dec_and_test(&rb->nest))
75  goto out;
76 
77  /*
78  * Publish the known good head. Rely on the full barrier implied
79  * by atomic_dec_and_test() order the rb->head read and this
80  * write.
81  */
82  rb->user_page->data_head = head;
83 
84  /*
85  * Now check if we missed an update, rely on the (compiler)
86  * barrier in atomic_dec_and_test() to re-read rb->head.
87  */
88  if (unlikely(head != local_read(&rb->head))) {
89  local_inc(&rb->nest);
90  goto again;
91  }
92 
93  if (handle->wakeup != local_read(&rb->wakeup))
94  perf_output_wakeup(handle);
95 
96 out:
98 }
99 
101  struct perf_event *event, unsigned int size)
102 {
103  struct ring_buffer *rb;
104  unsigned long tail, offset, head;
105  int have_lost;
106  struct perf_sample_data sample_data;
107  struct {
108  struct perf_event_header header;
109  u64 id;
110  u64 lost;
111  } lost_event;
112 
113  rcu_read_lock();
114  /*
115  * For inherited events we send all the output towards the parent.
116  */
117  if (event->parent)
118  event = event->parent;
119 
120  rb = rcu_dereference(event->rb);
121  if (!rb)
122  goto out;
123 
124  handle->rb = rb;
125  handle->event = event;
126 
127  if (!rb->nr_pages)
128  goto out;
129 
130  have_lost = local_read(&rb->lost);
131  if (have_lost) {
132  lost_event.header.size = sizeof(lost_event);
134  event);
135  size += lost_event.header.size;
136  }
137 
138  perf_output_get_handle(handle);
139 
140  do {
141  /*
142  * Userspace could choose to issue a mb() before updating the
143  * tail pointer. So that all reads will be completed before the
144  * write is issued.
145  */
146  tail = ACCESS_ONCE(rb->user_page->data_tail);
147  smp_rmb();
148  offset = head = local_read(&rb->head);
149  head += size;
150  if (unlikely(!perf_output_space(rb, tail, offset, head)))
151  goto fail;
152  } while (local_cmpxchg(&rb->head, offset, head) != offset);
153 
154  if (head - local_read(&rb->wakeup) > rb->watermark)
155  local_add(rb->watermark, &rb->wakeup);
156 
157  handle->page = offset >> (PAGE_SHIFT + page_order(rb));
158  handle->page &= rb->nr_pages - 1;
159  handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
160  handle->addr = rb->data_pages[handle->page];
161  handle->addr += handle->size;
162  handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
163 
164  if (have_lost) {
166  lost_event.header.misc = 0;
167  lost_event.id = event->id;
168  lost_event.lost = local_xchg(&rb->lost, 0);
169 
170  perf_output_put(handle, lost_event);
171  perf_event__output_id_sample(event, handle, &sample_data);
172  }
173 
174  return 0;
175 
176 fail:
177  local_inc(&rb->lost);
178  perf_output_put_handle(handle);
179 out:
180  rcu_read_unlock();
181 
182  return -ENOSPC;
183 }
184 
185 unsigned int perf_output_copy(struct perf_output_handle *handle,
186  const void *buf, unsigned int len)
187 {
188  return __output_copy(handle, buf, len);
189 }
190 
191 unsigned int perf_output_skip(struct perf_output_handle *handle,
192  unsigned int len)
193 {
194  return __output_skip(handle, NULL, len);
195 }
196 
198 {
199  perf_output_put_handle(handle);
200  rcu_read_unlock();
201 }
202 
203 static void
204 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
205 {
206  long max_size = perf_data_size(rb);
207 
208  if (watermark)
209  rb->watermark = min(max_size, watermark);
210 
211  if (!rb->watermark)
212  rb->watermark = max_size / 2;
213 
214  if (flags & RING_BUFFER_WRITABLE)
215  rb->writable = 1;
216 
217  atomic_set(&rb->refcount, 1);
218 
219  INIT_LIST_HEAD(&rb->event_list);
221 }
222 
223 #ifndef CONFIG_PERF_USE_VMALLOC
224 
225 /*
226  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
227  */
228 
229 struct page *
230 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
231 {
232  if (pgoff > rb->nr_pages)
233  return NULL;
234 
235  if (pgoff == 0)
236  return virt_to_page(rb->user_page);
237 
238  return virt_to_page(rb->data_pages[pgoff - 1]);
239 }
240 
241 static void *perf_mmap_alloc_page(int cpu)
242 {
243  struct page *page;
244  int node;
245 
246  node = (cpu == -1) ? cpu : cpu_to_node(cpu);
247  page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
248  if (!page)
249  return NULL;
250 
251  return page_address(page);
252 }
253 
254 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
255 {
256  struct ring_buffer *rb;
257  unsigned long size;
258  int i;
259 
260  size = sizeof(struct ring_buffer);
261  size += nr_pages * sizeof(void *);
262 
263  rb = kzalloc(size, GFP_KERNEL);
264  if (!rb)
265  goto fail;
266 
267  rb->user_page = perf_mmap_alloc_page(cpu);
268  if (!rb->user_page)
269  goto fail_user_page;
270 
271  for (i = 0; i < nr_pages; i++) {
272  rb->data_pages[i] = perf_mmap_alloc_page(cpu);
273  if (!rb->data_pages[i])
274  goto fail_data_pages;
275  }
276 
277  rb->nr_pages = nr_pages;
278 
279  ring_buffer_init(rb, watermark, flags);
280 
281  return rb;
282 
283 fail_data_pages:
284  for (i--; i >= 0; i--)
285  free_page((unsigned long)rb->data_pages[i]);
286 
287  free_page((unsigned long)rb->user_page);
288 
289 fail_user_page:
290  kfree(rb);
291 
292 fail:
293  return NULL;
294 }
295 
296 static void perf_mmap_free_page(unsigned long addr)
297 {
298  struct page *page = virt_to_page((void *)addr);
299 
300  page->mapping = NULL;
301  __free_page(page);
302 }
303 
304 void rb_free(struct ring_buffer *rb)
305 {
306  int i;
307 
308  perf_mmap_free_page((unsigned long)rb->user_page);
309  for (i = 0; i < rb->nr_pages; i++)
310  perf_mmap_free_page((unsigned long)rb->data_pages[i]);
311  kfree(rb);
312 }
313 
314 #else
315 
316 struct page *
317 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
318 {
319  if (pgoff > (1UL << page_order(rb)))
320  return NULL;
321 
322  return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
323 }
324 
325 static void perf_mmap_unmark_page(void *addr)
326 {
327  struct page *page = vmalloc_to_page(addr);
328 
329  page->mapping = NULL;
330 }
331 
332 static void rb_free_work(struct work_struct *work)
333 {
334  struct ring_buffer *rb;
335  void *base;
336  int i, nr;
337 
338  rb = container_of(work, struct ring_buffer, work);
339  nr = 1 << page_order(rb);
340 
341  base = rb->user_page;
342  for (i = 0; i < nr + 1; i++)
343  perf_mmap_unmark_page(base + (i * PAGE_SIZE));
344 
345  vfree(base);
346  kfree(rb);
347 }
348 
349 void rb_free(struct ring_buffer *rb)
350 {
351  schedule_work(&rb->work);
352 }
353 
354 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
355 {
356  struct ring_buffer *rb;
357  unsigned long size;
358  void *all_buf;
359 
360  size = sizeof(struct ring_buffer);
361  size += sizeof(void *);
362 
363  rb = kzalloc(size, GFP_KERNEL);
364  if (!rb)
365  goto fail;
366 
367  INIT_WORK(&rb->work, rb_free_work);
368 
369  all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
370  if (!all_buf)
371  goto fail_all_buf;
372 
373  rb->user_page = all_buf;
374  rb->data_pages[0] = all_buf + PAGE_SIZE;
375  rb->page_order = ilog2(nr_pages);
376  rb->nr_pages = 1;
377 
378  ring_buffer_init(rb, watermark, flags);
379 
380  return rb;
381 
382 fail_all_buf:
383  kfree(rb);
384 
385 fail:
386  return NULL;
387 }
388 
389 #endif