Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
uprobes.c
Go to the documentation of this file.
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  * Srikar Dronamraju
21  * Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <[email protected]>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
35 #include "../../mm/internal.h" /* munlock_vma_page */
36 
37 #include <linux/uprobes.h>
38 
39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41 
42 static struct rb_root uprobes_tree = RB_ROOT;
43 
44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45 
46 #define UPROBES_HASH_SZ 13
47 
48 /*
49  * We need separate register/unregister and mmap/munmap lock hashes because
50  * of mmap_sem nesting.
51  *
52  * uprobe_register() needs to install probes on (potentially) all processes
53  * and thus needs to acquire multiple mmap_sems (consequtively, not
54  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55  * for the particular process doing the mmap.
56  *
57  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58  * because of lock order against i_mmap_mutex. This means there's a hole in
59  * the register vma iteration where a mmap() can happen.
60  *
61  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62  * install a probe where one is already installed.
63  */
64 
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 
68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 
74 /*
75  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76  * events active at this time. Probably a fine grained per inode count is
77  * better?
78  */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80 
81 /* Have a copy of original instruction */
82 #define UPROBE_COPY_INSN 0
83 /* Dont run handlers when first register/ last unregister in progress*/
84 #define UPROBE_RUN_HANDLER 1
85 /* Can skip singlestep */
86 #define UPROBE_SKIP_SSTEP 2
87 
88 struct uprobe {
89  struct rb_node rb_node; /* node in the rb tree */
92  struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
95  struct inode *inode; /* Also hold a ref to inode */
96  loff_t offset;
97  unsigned long flags;
98  struct arch_uprobe arch;
99 };
100 
101 /*
102  * valid_vma: Verify if the specified vma is an executable vma
103  * Relax restrictions while unregistering: vm_flags might have
104  * changed after breakpoint was inserted.
105  * - is_register: indicates if we are in register context.
106  * - Return 1 if the specified virtual address is in an
107  * executable vma.
108  */
109 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
110 {
111  vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
112 
113  if (is_register)
114  flags |= VM_WRITE;
115 
116  return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
117 }
118 
119 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
120 {
121  return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
122 }
123 
124 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
125 {
126  return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
127 }
128 
140 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
141  struct page *page, struct page *kpage)
142 {
143  struct mm_struct *mm = vma->vm_mm;
144  spinlock_t *ptl;
145  pte_t *ptep;
146  int err;
147  /* For mmu_notifiers */
148  const unsigned long mmun_start = addr;
149  const unsigned long mmun_end = addr + PAGE_SIZE;
150 
151  /* For try_to_free_swap() and munlock_vma_page() below */
152  lock_page(page);
153 
154  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
155  err = -EAGAIN;
156  ptep = page_check_address(page, mm, addr, &ptl, 0);
157  if (!ptep)
158  goto unlock;
159 
160  get_page(kpage);
161  page_add_new_anon_rmap(kpage, vma, addr);
162 
163  if (!PageAnon(page)) {
164  dec_mm_counter(mm, MM_FILEPAGES);
165  inc_mm_counter(mm, MM_ANONPAGES);
166  }
167 
168  flush_cache_page(vma, addr, pte_pfn(*ptep));
169  ptep_clear_flush(vma, addr, ptep);
170  set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171 
172  page_remove_rmap(page);
173  if (!page_mapped(page))
174  try_to_free_swap(page);
175  pte_unmap_unlock(ptep, ptl);
176 
177  if (vma->vm_flags & VM_LOCKED)
178  munlock_vma_page(page);
179  put_page(page);
180 
181  err = 0;
182  unlock:
183  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
184  unlock_page(page);
185  return err;
186 }
187 
195 {
196  return *insn == UPROBE_SWBP_INSN;
197 }
198 
199 static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
200 {
201  void *kaddr = kmap_atomic(page);
202  memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
203  kunmap_atomic(kaddr);
204 }
205 
206 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
207 {
208  uprobe_opcode_t old_opcode;
209  bool is_swbp;
210 
211  copy_opcode(page, vaddr, &old_opcode);
212  is_swbp = is_swbp_insn(&old_opcode);
213 
214  if (is_swbp_insn(new_opcode)) {
215  if (is_swbp) /* register: already installed? */
216  return 0;
217  } else {
218  if (!is_swbp) /* unregister: was it changed by us? */
219  return 0;
220  }
221 
222  return 1;
223 }
224 
225 /*
226  * NOTE:
227  * Expect the breakpoint instruction to be the smallest size instruction for
228  * the architecture. If an arch has variable length instruction and the
229  * breakpoint instruction is not of the smallest length instruction
230  * supported by that architecture then we need to modify is_swbp_at_addr and
231  * write_opcode accordingly. This would never be a problem for archs that
232  * have fixed length instructions.
233  */
234 
235 /*
236  * write_opcode - write the opcode at a given virtual address.
237  * @mm: the probed process address space.
238  * @vaddr: the virtual address to store the opcode.
239  * @opcode: opcode to be written at @vaddr.
240  *
241  * Called with mm->mmap_sem held (for read and with a reference to
242  * mm).
243  *
244  * For mm @mm, write the opcode at @vaddr.
245  * Return 0 (success) or a negative errno.
246  */
247 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
248  uprobe_opcode_t opcode)
249 {
250  struct page *old_page, *new_page;
251  void *vaddr_old, *vaddr_new;
252  struct vm_area_struct *vma;
253  int ret;
254 
255 retry:
256  /* Read the page with vaddr into memory */
257  ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
258  if (ret <= 0)
259  return ret;
260 
261  ret = verify_opcode(old_page, vaddr, &opcode);
262  if (ret <= 0)
263  goto put_old;
264 
265  ret = -ENOMEM;
266  new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
267  if (!new_page)
268  goto put_old;
269 
270  __SetPageUptodate(new_page);
271 
272  /* copy the page now that we've got it stable */
273  vaddr_old = kmap_atomic(old_page);
274  vaddr_new = kmap_atomic(new_page);
275 
276  memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
277  memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
278 
279  kunmap_atomic(vaddr_new);
280  kunmap_atomic(vaddr_old);
281 
282  ret = anon_vma_prepare(vma);
283  if (ret)
284  goto put_new;
285 
286  ret = __replace_page(vma, vaddr, old_page, new_page);
287 
288 put_new:
289  page_cache_release(new_page);
290 put_old:
291  put_page(old_page);
292 
293  if (unlikely(ret == -EAGAIN))
294  goto retry;
295  return ret;
296 }
297 
307 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
308 {
309  return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
310 }
311 
321 int __weak
322 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
323 {
324  return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
325 }
326 
327 static int match_uprobe(struct uprobe *l, struct uprobe *r)
328 {
329  if (l->inode < r->inode)
330  return -1;
331 
332  if (l->inode > r->inode)
333  return 1;
334 
335  if (l->offset < r->offset)
336  return -1;
337 
338  if (l->offset > r->offset)
339  return 1;
340 
341  return 0;
342 }
343 
344 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
345 {
346  struct uprobe u = { .inode = inode, .offset = offset };
347  struct rb_node *n = uprobes_tree.rb_node;
348  struct uprobe *uprobe;
349  int match;
350 
351  while (n) {
352  uprobe = rb_entry(n, struct uprobe, rb_node);
353  match = match_uprobe(&u, uprobe);
354  if (!match) {
355  atomic_inc(&uprobe->ref);
356  return uprobe;
357  }
358 
359  if (match < 0)
360  n = n->rb_left;
361  else
362  n = n->rb_right;
363  }
364  return NULL;
365 }
366 
367 /*
368  * Find a uprobe corresponding to a given inode:offset
369  * Acquires uprobes_treelock
370  */
371 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
372 {
373  struct uprobe *uprobe;
374 
375  spin_lock(&uprobes_treelock);
376  uprobe = __find_uprobe(inode, offset);
377  spin_unlock(&uprobes_treelock);
378 
379  return uprobe;
380 }
381 
382 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
383 {
384  struct rb_node **p = &uprobes_tree.rb_node;
385  struct rb_node *parent = NULL;
386  struct uprobe *u;
387  int match;
388 
389  while (*p) {
390  parent = *p;
391  u = rb_entry(parent, struct uprobe, rb_node);
392  match = match_uprobe(uprobe, u);
393  if (!match) {
394  atomic_inc(&u->ref);
395  return u;
396  }
397 
398  if (match < 0)
399  p = &parent->rb_left;
400  else
401  p = &parent->rb_right;
402 
403  }
404 
405  u = NULL;
406  rb_link_node(&uprobe->rb_node, parent, p);
407  rb_insert_color(&uprobe->rb_node, &uprobes_tree);
408  /* get access + creation ref */
409  atomic_set(&uprobe->ref, 2);
410 
411  return u;
412 }
413 
414 /*
415  * Acquire uprobes_treelock.
416  * Matching uprobe already exists in rbtree;
417  * increment (access refcount) and return the matching uprobe.
418  *
419  * No matching uprobe; insert the uprobe in rb_tree;
420  * get a double refcount (access + creation) and return NULL.
421  */
422 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
423 {
424  struct uprobe *u;
425 
426  spin_lock(&uprobes_treelock);
427  u = __insert_uprobe(uprobe);
428  spin_unlock(&uprobes_treelock);
429 
430  /* For now assume that the instruction need not be single-stepped */
431  __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
432 
433  return u;
434 }
435 
436 static void put_uprobe(struct uprobe *uprobe)
437 {
438  if (atomic_dec_and_test(&uprobe->ref))
439  kfree(uprobe);
440 }
441 
442 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
443 {
444  struct uprobe *uprobe, *cur_uprobe;
445 
446  uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
447  if (!uprobe)
448  return NULL;
449 
450  uprobe->inode = igrab(inode);
451  uprobe->offset = offset;
452  init_rwsem(&uprobe->consumer_rwsem);
453  mutex_init(&uprobe->copy_mutex);
454 
455  /* add to uprobes_tree, sorted on inode:offset */
456  cur_uprobe = insert_uprobe(uprobe);
457 
458  /* a uprobe exists for this inode:offset combination */
459  if (cur_uprobe) {
460  kfree(uprobe);
461  uprobe = cur_uprobe;
462  iput(inode);
463  } else {
464  atomic_inc(&uprobe_events);
465  }
466 
467  return uprobe;
468 }
469 
470 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
471 {
472  struct uprobe_consumer *uc;
473 
474  if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
475  return;
476 
477  down_read(&uprobe->consumer_rwsem);
478  for (uc = uprobe->consumers; uc; uc = uc->next) {
479  if (!uc->filter || uc->filter(uc, current))
480  uc->handler(uc, regs);
481  }
482  up_read(&uprobe->consumer_rwsem);
483 }
484 
485 /* Returns the previous consumer */
486 static struct uprobe_consumer *
487 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
488 {
489  down_write(&uprobe->consumer_rwsem);
490  uc->next = uprobe->consumers;
491  uprobe->consumers = uc;
492  up_write(&uprobe->consumer_rwsem);
493 
494  return uc->next;
495 }
496 
497 /*
498  * For uprobe @uprobe, delete the consumer @uc.
499  * Return true if the @uc is deleted successfully
500  * or return false.
501  */
502 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
503 {
504  struct uprobe_consumer **con;
505  bool ret = false;
506 
507  down_write(&uprobe->consumer_rwsem);
508  for (con = &uprobe->consumers; *con; con = &(*con)->next) {
509  if (*con == uc) {
510  *con = uc->next;
511  ret = true;
512  break;
513  }
514  }
515  up_write(&uprobe->consumer_rwsem);
516 
517  return ret;
518 }
519 
520 static int
521 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
522  unsigned long nbytes, loff_t offset)
523 {
524  struct page *page;
525  void *vaddr;
526  unsigned long off;
527  pgoff_t idx;
528 
529  if (!filp)
530  return -EINVAL;
531 
532  if (!mapping->a_ops->readpage)
533  return -EIO;
534 
535  idx = offset >> PAGE_CACHE_SHIFT;
536  off = offset & ~PAGE_MASK;
537 
538  /*
539  * Ensure that the page that has the original instruction is
540  * populated and in page-cache.
541  */
542  page = read_mapping_page(mapping, idx, filp);
543  if (IS_ERR(page))
544  return PTR_ERR(page);
545 
546  vaddr = kmap_atomic(page);
547  memcpy(insn, vaddr + off, nbytes);
548  kunmap_atomic(vaddr);
549  page_cache_release(page);
550 
551  return 0;
552 }
553 
554 static int copy_insn(struct uprobe *uprobe, struct file *filp)
555 {
556  struct address_space *mapping;
557  unsigned long nbytes;
558  int bytes;
559 
560  nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
561  mapping = uprobe->inode->i_mapping;
562 
563  /* Instruction at end of binary; copy only available bytes */
564  if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
565  bytes = uprobe->inode->i_size - uprobe->offset;
566  else
567  bytes = MAX_UINSN_BYTES;
568 
569  /* Instruction at the page-boundary; copy bytes in second page */
570  if (nbytes < bytes) {
571  int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
572  bytes - nbytes, uprobe->offset + nbytes);
573  if (err)
574  return err;
575  bytes = nbytes;
576  }
577  return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
578 }
579 
580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581  struct mm_struct *mm, unsigned long vaddr)
582 {
583  int ret = 0;
584 
585  if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
586  return ret;
587 
588  mutex_lock(&uprobe->copy_mutex);
589  if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590  goto out;
591 
592  ret = copy_insn(uprobe, file);
593  if (ret)
594  goto out;
595 
596  ret = -ENOTSUPP;
597  if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
598  goto out;
599 
600  ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
601  if (ret)
602  goto out;
603 
604  /* write_opcode() assumes we don't cross page boundary */
605  BUG_ON((uprobe->offset & ~PAGE_MASK) +
606  UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
607 
608  smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
609  set_bit(UPROBE_COPY_INSN, &uprobe->flags);
610 
611  out:
612  mutex_unlock(&uprobe->copy_mutex);
613 
614  return ret;
615 }
616 
617 static int
618 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
619  struct vm_area_struct *vma, unsigned long vaddr)
620 {
621  bool first_uprobe;
622  int ret;
623 
624  /*
625  * If probe is being deleted, unregister thread could be done with
626  * the vma-rmap-walk through. Adding a probe now can be fatal since
627  * nobody will be able to cleanup. Also we could be from fork or
628  * mremap path, where the probe might have already been inserted.
629  * Hence behave as if probe already existed.
630  */
631  if (!uprobe->consumers)
632  return 0;
633 
634  ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
635  if (ret)
636  return ret;
637 
638  /*
639  * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
640  * the task can hit this breakpoint right after __replace_page().
641  */
642  first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
643  if (first_uprobe)
645 
646  ret = set_swbp(&uprobe->arch, mm, vaddr);
647  if (!ret)
649  else if (first_uprobe)
651 
652  return ret;
653 }
654 
655 static int
656 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
657 {
658  /* can happen if uprobe_register() fails */
659  if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
660  return 0;
661 
663  return set_orig_insn(&uprobe->arch, mm, vaddr);
664 }
665 
666 /*
667  * There could be threads that have already hit the breakpoint. They
668  * will recheck the current insn and restart if find_uprobe() fails.
669  * See find_active_uprobe().
670  */
671 static void delete_uprobe(struct uprobe *uprobe)
672 {
673  spin_lock(&uprobes_treelock);
674  rb_erase(&uprobe->rb_node, &uprobes_tree);
675  spin_unlock(&uprobes_treelock);
676  iput(uprobe->inode);
677  put_uprobe(uprobe);
678  atomic_dec(&uprobe_events);
679 }
680 
681 struct map_info {
682  struct map_info *next;
683  struct mm_struct *mm;
684  unsigned long vaddr;
685 };
686 
687 static inline struct map_info *free_map_info(struct map_info *info)
688 {
689  struct map_info *next = info->next;
690  kfree(info);
691  return next;
692 }
693 
694 static struct map_info *
695 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
696 {
697  unsigned long pgoff = offset >> PAGE_SHIFT;
698  struct vm_area_struct *vma;
699  struct map_info *curr = NULL;
700  struct map_info *prev = NULL;
701  struct map_info *info;
702  int more = 0;
703 
704  again:
705  mutex_lock(&mapping->i_mmap_mutex);
706  vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
707  if (!valid_vma(vma, is_register))
708  continue;
709 
710  if (!prev && !more) {
711  /*
712  * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
713  * reclaim. This is optimistic, no harm done if it fails.
714  */
715  prev = kmalloc(sizeof(struct map_info),
717  if (prev)
718  prev->next = NULL;
719  }
720  if (!prev) {
721  more++;
722  continue;
723  }
724 
725  if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
726  continue;
727 
728  info = prev;
729  prev = prev->next;
730  info->next = curr;
731  curr = info;
732 
733  info->mm = vma->vm_mm;
734  info->vaddr = offset_to_vaddr(vma, offset);
735  }
736  mutex_unlock(&mapping->i_mmap_mutex);
737 
738  if (!more)
739  goto out;
740 
741  prev = curr;
742  while (curr) {
743  mmput(curr->mm);
744  curr = curr->next;
745  }
746 
747  do {
748  info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
749  if (!info) {
750  curr = ERR_PTR(-ENOMEM);
751  goto out;
752  }
753  info->next = prev;
754  prev = info;
755  } while (--more);
756 
757  goto again;
758  out:
759  while (prev)
760  prev = free_map_info(prev);
761  return curr;
762 }
763 
764 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
765 {
766  struct map_info *info;
767  int err = 0;
768 
769  info = build_map_info(uprobe->inode->i_mapping,
770  uprobe->offset, is_register);
771  if (IS_ERR(info))
772  return PTR_ERR(info);
773 
774  while (info) {
775  struct mm_struct *mm = info->mm;
776  struct vm_area_struct *vma;
777 
778  if (err && is_register)
779  goto free;
780 
781  down_write(&mm->mmap_sem);
782  vma = find_vma(mm, info->vaddr);
783  if (!vma || !valid_vma(vma, is_register) ||
784  vma->vm_file->f_mapping->host != uprobe->inode)
785  goto unlock;
786 
787  if (vma->vm_start > info->vaddr ||
788  vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
789  goto unlock;
790 
791  if (is_register)
792  err = install_breakpoint(uprobe, mm, vma, info->vaddr);
793  else
794  err |= remove_breakpoint(uprobe, mm, info->vaddr);
795 
796  unlock:
797  up_write(&mm->mmap_sem);
798  free:
799  mmput(mm);
800  info = free_map_info(info);
801  }
802 
803  return err;
804 }
805 
806 static int __uprobe_register(struct uprobe *uprobe)
807 {
808  return register_for_each_vma(uprobe, true);
809 }
810 
811 static void __uprobe_unregister(struct uprobe *uprobe)
812 {
813  if (!register_for_each_vma(uprobe, false))
814  delete_uprobe(uprobe);
815 
816  /* TODO : cant unregister? schedule a worker thread */
817 }
818 
819 /*
820  * uprobe_register - register a probe
821  * @inode: the file in which the probe has to be placed.
822  * @offset: offset from the start of the file.
823  * @uc: information on howto handle the probe..
824  *
825  * Apart from the access refcount, uprobe_register() takes a creation
826  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
827  * inserted into the rbtree (i.e first consumer for a @inode:@offset
828  * tuple). Creation refcount stops uprobe_unregister from freeing the
829  * @uprobe even before the register operation is complete. Creation
830  * refcount is released when the last @uc for the @uprobe
831  * unregisters.
832  *
833  * Return errno if it cannot successully install probes
834  * else return 0 (success)
835  */
836 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
837 {
838  struct uprobe *uprobe;
839  int ret;
840 
841  if (!inode || !uc || uc->next)
842  return -EINVAL;
843 
844  if (offset > i_size_read(inode))
845  return -EINVAL;
846 
847  ret = 0;
848  mutex_lock(uprobes_hash(inode));
849  uprobe = alloc_uprobe(inode, offset);
850 
851  if (!uprobe) {
852  ret = -ENOMEM;
853  } else if (!consumer_add(uprobe, uc)) {
854  ret = __uprobe_register(uprobe);
855  if (ret) {
856  uprobe->consumers = NULL;
857  __uprobe_unregister(uprobe);
858  } else {
859  set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
860  }
861  }
862 
863  mutex_unlock(uprobes_hash(inode));
864  if (uprobe)
865  put_uprobe(uprobe);
866 
867  return ret;
868 }
869 
870 /*
871  * uprobe_unregister - unregister a already registered probe.
872  * @inode: the file in which the probe has to be removed.
873  * @offset: offset from the start of the file.
874  * @uc: identify which probe if multiple probes are colocated.
875  */
876 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877 {
878  struct uprobe *uprobe;
879 
880  if (!inode || !uc)
881  return;
882 
883  uprobe = find_uprobe(inode, offset);
884  if (!uprobe)
885  return;
886 
887  mutex_lock(uprobes_hash(inode));
888 
889  if (consumer_del(uprobe, uc)) {
890  if (!uprobe->consumers) {
891  __uprobe_unregister(uprobe);
893  }
894  }
895 
896  mutex_unlock(uprobes_hash(inode));
897  if (uprobe)
898  put_uprobe(uprobe);
899 }
900 
901 static struct rb_node *
902 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
903 {
904  struct rb_node *n = uprobes_tree.rb_node;
905 
906  while (n) {
907  struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
908 
909  if (inode < u->inode) {
910  n = n->rb_left;
911  } else if (inode > u->inode) {
912  n = n->rb_right;
913  } else {
914  if (max < u->offset)
915  n = n->rb_left;
916  else if (min > u->offset)
917  n = n->rb_right;
918  else
919  break;
920  }
921  }
922 
923  return n;
924 }
925 
926 /*
927  * For a given range in vma, build a list of probes that need to be inserted.
928  */
929 static void build_probe_list(struct inode *inode,
930  struct vm_area_struct *vma,
931  unsigned long start, unsigned long end,
932  struct list_head *head)
933 {
934  loff_t min, max;
935  struct rb_node *n, *t;
936  struct uprobe *u;
937 
938  INIT_LIST_HEAD(head);
939  min = vaddr_to_offset(vma, start);
940  max = min + (end - start) - 1;
941 
942  spin_lock(&uprobes_treelock);
943  n = find_node_in_range(inode, min, max);
944  if (n) {
945  for (t = n; t; t = rb_prev(t)) {
946  u = rb_entry(t, struct uprobe, rb_node);
947  if (u->inode != inode || u->offset < min)
948  break;
949  list_add(&u->pending_list, head);
950  atomic_inc(&u->ref);
951  }
952  for (t = n; (t = rb_next(t)); ) {
953  u = rb_entry(t, struct uprobe, rb_node);
954  if (u->inode != inode || u->offset > max)
955  break;
956  list_add(&u->pending_list, head);
957  atomic_inc(&u->ref);
958  }
959  }
960  spin_unlock(&uprobes_treelock);
961 }
962 
963 /*
964  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
965  *
966  * Currently we ignore all errors and always return 0, the callers
967  * can't handle the failure anyway.
968  */
969 int uprobe_mmap(struct vm_area_struct *vma)
970 {
971  struct list_head tmp_list;
972  struct uprobe *uprobe, *u;
973  struct inode *inode;
974 
975  if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
976  return 0;
977 
978  inode = vma->vm_file->f_mapping->host;
979  if (!inode)
980  return 0;
981 
983  build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
984 
985  list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
986  if (!fatal_signal_pending(current)) {
987  unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
988  install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
989  }
990  put_uprobe(uprobe);
991  }
993 
994  return 0;
995 }
996 
997 static bool
998 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
999 {
1000  loff_t min, max;
1001  struct inode *inode;
1002  struct rb_node *n;
1003 
1004  inode = vma->vm_file->f_mapping->host;
1005 
1006  min = vaddr_to_offset(vma, start);
1007  max = min + (end - start) - 1;
1008 
1009  spin_lock(&uprobes_treelock);
1010  n = find_node_in_range(inode, min, max);
1011  spin_unlock(&uprobes_treelock);
1012 
1013  return !!n;
1014 }
1015 
1016 /*
1017  * Called in context of a munmap of a vma.
1018  */
1019 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1020 {
1021  if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1022  return;
1023 
1024  if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1025  return;
1026 
1027  if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1028  test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1029  return;
1030 
1031  if (vma_has_uprobes(vma, start, end))
1032  set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1033 }
1034 
1035 /* Slot allocation for XOL */
1036 static int xol_add_vma(struct xol_area *area)
1037 {
1038  struct mm_struct *mm;
1039  int ret;
1040 
1041  area->page = alloc_page(GFP_HIGHUSER);
1042  if (!area->page)
1043  return -ENOMEM;
1044 
1045  ret = -EALREADY;
1046  mm = current->mm;
1047 
1048  down_write(&mm->mmap_sem);
1049  if (mm->uprobes_state.xol_area)
1050  goto fail;
1051 
1052  ret = -ENOMEM;
1053 
1054  /* Try to map as high as possible, this is only a hint. */
1055  area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1056  if (area->vaddr & ~PAGE_MASK) {
1057  ret = area->vaddr;
1058  goto fail;
1059  }
1060 
1061  ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1062  VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1063  if (ret)
1064  goto fail;
1065 
1066  smp_wmb(); /* pairs with get_xol_area() */
1067  mm->uprobes_state.xol_area = area;
1068  ret = 0;
1069 
1070 fail:
1071  up_write(&mm->mmap_sem);
1072  if (ret)
1073  __free_page(area->page);
1074 
1075  return ret;
1076 }
1077 
1078 static struct xol_area *get_xol_area(struct mm_struct *mm)
1079 {
1080  struct xol_area *area;
1081 
1082  area = mm->uprobes_state.xol_area;
1083  smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1084 
1085  return area;
1086 }
1087 
1088 /*
1089  * xol_alloc_area - Allocate process's xol_area.
1090  * This area will be used for storing instructions for execution out of
1091  * line.
1092  *
1093  * Returns the allocated area or NULL.
1094  */
1095 static struct xol_area *xol_alloc_area(void)
1096 {
1097  struct xol_area *area;
1098 
1099  area = kzalloc(sizeof(*area), GFP_KERNEL);
1100  if (unlikely(!area))
1101  return NULL;
1102 
1103  area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1104 
1105  if (!area->bitmap)
1106  goto fail;
1107 
1108  init_waitqueue_head(&area->wq);
1109  if (!xol_add_vma(area))
1110  return area;
1111 
1112 fail:
1113  kfree(area->bitmap);
1114  kfree(area);
1115 
1116  return get_xol_area(current->mm);
1117 }
1118 
1119 /*
1120  * uprobe_clear_state - Free the area allocated for slots.
1121  */
1123 {
1124  struct xol_area *area = mm->uprobes_state.xol_area;
1125 
1126  if (!area)
1127  return;
1128 
1129  put_page(area->page);
1130  kfree(area->bitmap);
1131  kfree(area);
1132 }
1133 
1134 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1135 {
1136  newmm->uprobes_state.xol_area = NULL;
1137 
1138  if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1139  set_bit(MMF_HAS_UPROBES, &newmm->flags);
1140  /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1141  set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1142  }
1143 }
1144 
1145 /*
1146  * - search for a free slot.
1147  */
1148 static unsigned long xol_take_insn_slot(struct xol_area *area)
1149 {
1150  unsigned long slot_addr;
1151  int slot_nr;
1152 
1153  do {
1154  slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1155  if (slot_nr < UINSNS_PER_PAGE) {
1156  if (!test_and_set_bit(slot_nr, area->bitmap))
1157  break;
1158 
1159  slot_nr = UINSNS_PER_PAGE;
1160  continue;
1161  }
1162  wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1163  } while (slot_nr >= UINSNS_PER_PAGE);
1164 
1165  slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1166  atomic_inc(&area->slot_count);
1167 
1168  return slot_addr;
1169 }
1170 
1171 /*
1172  * xol_get_insn_slot - If was not allocated a slot, then
1173  * allocate a slot.
1174  * Returns the allocated slot address or 0.
1175  */
1176 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1177 {
1178  struct xol_area *area;
1179  unsigned long offset;
1180  void *vaddr;
1181 
1182  area = get_xol_area(current->mm);
1183  if (!area) {
1184  area = xol_alloc_area();
1185  if (!area)
1186  return 0;
1187  }
1188  current->utask->xol_vaddr = xol_take_insn_slot(area);
1189 
1190  /*
1191  * Initialize the slot if xol_vaddr points to valid
1192  * instruction slot.
1193  */
1194  if (unlikely(!current->utask->xol_vaddr))
1195  return 0;
1196 
1197  current->utask->vaddr = slot_addr;
1198  offset = current->utask->xol_vaddr & ~PAGE_MASK;
1199  vaddr = kmap_atomic(area->page);
1200  memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1201  kunmap_atomic(vaddr);
1202 
1203  return current->utask->xol_vaddr;
1204 }
1205 
1206 /*
1207  * xol_free_insn_slot - If slot was earlier allocated by
1208  * @xol_get_insn_slot(), make the slot available for
1209  * subsequent requests.
1210  */
1211 static void xol_free_insn_slot(struct task_struct *tsk)
1212 {
1213  struct xol_area *area;
1214  unsigned long vma_end;
1215  unsigned long slot_addr;
1216 
1217  if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1218  return;
1219 
1220  slot_addr = tsk->utask->xol_vaddr;
1221 
1222  if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1223  return;
1224 
1225  area = tsk->mm->uprobes_state.xol_area;
1226  vma_end = area->vaddr + PAGE_SIZE;
1227  if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1228  unsigned long offset;
1229  int slot_nr;
1230 
1231  offset = slot_addr - area->vaddr;
1232  slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1233  if (slot_nr >= UINSNS_PER_PAGE)
1234  return;
1235 
1236  clear_bit(slot_nr, area->bitmap);
1237  atomic_dec(&area->slot_count);
1238  if (waitqueue_active(&area->wq))
1239  wake_up(&area->wq);
1240 
1241  tsk->utask->xol_vaddr = 0;
1242  }
1243 }
1244 
1251 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1252 {
1254 }
1255 
1256 /*
1257  * Called with no locks held.
1258  * Called in context of a exiting or a exec-ing thread.
1259  */
1261 {
1262  struct uprobe_task *utask = t->utask;
1263 
1264  if (!utask)
1265  return;
1266 
1267  if (utask->active_uprobe)
1268  put_uprobe(utask->active_uprobe);
1269 
1270  xol_free_insn_slot(t);
1271  kfree(utask);
1272  t->utask = NULL;
1273 }
1274 
1275 /*
1276  * Called in context of a new clone/fork from copy_process.
1277  */
1279 {
1280  t->utask = NULL;
1281 }
1282 
1283 /*
1284  * Allocate a uprobe_task object for the task.
1285  * Called when the thread hits a breakpoint for the first time.
1286  *
1287  * Returns:
1288  * - pointer to new uprobe_task on success
1289  * - NULL otherwise
1290  */
1291 static struct uprobe_task *add_utask(void)
1292 {
1293  struct uprobe_task *utask;
1294 
1295  utask = kzalloc(sizeof *utask, GFP_KERNEL);
1296  if (unlikely(!utask))
1297  return NULL;
1298 
1299  current->utask = utask;
1300  return utask;
1301 }
1302 
1303 /* Prepare to single-step probed instruction out of line. */
1304 static int
1305 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1306 {
1307  if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1308  return 0;
1309 
1310  return -EFAULT;
1311 }
1312 
1313 /*
1314  * If we are singlestepping, then ensure this thread is not connected to
1315  * non-fatal signals until completion of singlestep. When xol insn itself
1316  * triggers the signal, restart the original insn even if the task is
1317  * already SIGKILL'ed (since coredump should report the correct ip). This
1318  * is even more important if the task has a handler for SIGSEGV/etc, The
1319  * _same_ instruction should be repeated again after return from the signal
1320  * handler, and SSTEP can never finish in this case.
1321  */
1323 {
1324  struct task_struct *t = current;
1325  struct uprobe_task *utask = t->utask;
1326 
1327  if (likely(!utask || !utask->active_uprobe))
1328  return false;
1329 
1330  WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1331 
1332  if (signal_pending(t)) {
1333  spin_lock_irq(&t->sighand->siglock);
1334  clear_tsk_thread_flag(t, TIF_SIGPENDING);
1335  spin_unlock_irq(&t->sighand->siglock);
1336 
1337  if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1338  utask->state = UTASK_SSTEP_TRAPPED;
1339  set_tsk_thread_flag(t, TIF_UPROBE);
1340  set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1341  }
1342  }
1343 
1344  return true;
1345 }
1346 
1347 /*
1348  * Avoid singlestepping the original instruction if the original instruction
1349  * is a NOP or can be emulated.
1350  */
1351 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1352 {
1353  if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1354  if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1355  return true;
1356  clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1357  }
1358  return false;
1359 }
1360 
1361 static void mmf_recalc_uprobes(struct mm_struct *mm)
1362 {
1363  struct vm_area_struct *vma;
1364 
1365  for (vma = mm->mmap; vma; vma = vma->vm_next) {
1366  if (!valid_vma(vma, false))
1367  continue;
1368  /*
1369  * This is not strictly accurate, we can race with
1370  * uprobe_unregister() and see the already removed
1371  * uprobe if delete_uprobe() was not yet called.
1372  */
1373  if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1374  return;
1375  }
1376 
1378 }
1379 
1380 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1381 {
1382  struct page *page;
1384  int result;
1385 
1386  pagefault_disable();
1387  result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1388  sizeof(opcode));
1389  pagefault_enable();
1390 
1391  if (likely(result == 0))
1392  goto out;
1393 
1394  result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1395  if (result < 0)
1396  return result;
1397 
1398  copy_opcode(page, vaddr, &opcode);
1399  put_page(page);
1400  out:
1401  return is_swbp_insn(&opcode);
1402 }
1403 
1404 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1405 {
1406  struct mm_struct *mm = current->mm;
1407  struct uprobe *uprobe = NULL;
1408  struct vm_area_struct *vma;
1409 
1410  down_read(&mm->mmap_sem);
1411  vma = find_vma(mm, bp_vaddr);
1412  if (vma && vma->vm_start <= bp_vaddr) {
1413  if (valid_vma(vma, false)) {
1414  struct inode *inode = vma->vm_file->f_mapping->host;
1415  loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1416 
1417  uprobe = find_uprobe(inode, offset);
1418  }
1419 
1420  if (!uprobe)
1421  *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1422  } else {
1423  *is_swbp = -EFAULT;
1424  }
1425 
1426  if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1427  mmf_recalc_uprobes(mm);
1428  up_read(&mm->mmap_sem);
1429 
1430  return uprobe;
1431 }
1432 
1434 {
1436 }
1437 
1439 {
1441 }
1442 
1443 /*
1444  * Run handler and ask thread to singlestep.
1445  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1446  */
1447 static void handle_swbp(struct pt_regs *regs)
1448 {
1449  struct uprobe_task *utask;
1450  struct uprobe *uprobe;
1451  unsigned long bp_vaddr;
1452  int uninitialized_var(is_swbp);
1453 
1454  bp_vaddr = uprobe_get_swbp_addr(regs);
1455  uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1456 
1457  if (!uprobe) {
1458  if (is_swbp > 0) {
1459  /* No matching uprobe; signal SIGTRAP. */
1460  send_sig(SIGTRAP, current, 0);
1461  } else {
1462  /*
1463  * Either we raced with uprobe_unregister() or we can't
1464  * access this memory. The latter is only possible if
1465  * another thread plays with our ->mm. In both cases
1466  * we can simply restart. If this vma was unmapped we
1467  * can pretend this insn was not executed yet and get
1468  * the (correct) SIGSEGV after restart.
1469  */
1470  instruction_pointer_set(regs, bp_vaddr);
1471  }
1472  return;
1473  }
1474  /*
1475  * TODO: move copy_insn/etc into _register and remove this hack.
1476  * After we hit the bp, _unregister + _register can install the
1477  * new and not-yet-analyzed uprobe at the same address, restart.
1478  */
1479  smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1480  if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1481  goto restart;
1482 
1483  utask = current->utask;
1484  if (!utask) {
1485  utask = add_utask();
1486  /* Cannot allocate; re-execute the instruction. */
1487  if (!utask)
1488  goto restart;
1489  }
1490 
1491  handler_chain(uprobe, regs);
1492  if (can_skip_sstep(uprobe, regs))
1493  goto out;
1494 
1495  if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1496  arch_uprobe_enable_step(&uprobe->arch);
1497  utask->active_uprobe = uprobe;
1498  utask->state = UTASK_SSTEP;
1499  return;
1500  }
1501 
1502 restart:
1503  /*
1504  * cannot singlestep; cannot skip instruction;
1505  * re-execute the instruction.
1506  */
1507  instruction_pointer_set(regs, bp_vaddr);
1508 out:
1509  put_uprobe(uprobe);
1510 }
1511 
1512 /*
1513  * Perform required fix-ups and disable singlestep.
1514  * Allow pending signals to take effect.
1515  */
1516 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1517 {
1518  struct uprobe *uprobe;
1519 
1520  uprobe = utask->active_uprobe;
1521  if (utask->state == UTASK_SSTEP_ACK)
1522  arch_uprobe_post_xol(&uprobe->arch, regs);
1523  else if (utask->state == UTASK_SSTEP_TRAPPED)
1524  arch_uprobe_abort_xol(&uprobe->arch, regs);
1525  else
1526  WARN_ON_ONCE(1);
1527 
1528  arch_uprobe_disable_step(&uprobe->arch);
1529  put_uprobe(uprobe);
1530  utask->active_uprobe = NULL;
1531  utask->state = UTASK_RUNNING;
1532  xol_free_insn_slot(current);
1533 
1534  spin_lock_irq(&current->sighand->siglock);
1535  recalc_sigpending(); /* see uprobe_deny_signal() */
1536  spin_unlock_irq(&current->sighand->siglock);
1537 }
1538 
1539 /*
1540  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1541  * allows the thread to return from interrupt. After that handle_swbp()
1542  * sets utask->active_uprobe.
1543  *
1544  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1545  * and allows the thread to return from interrupt.
1546  *
1547  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1548  * uprobe_notify_resume().
1549  */
1550 void uprobe_notify_resume(struct pt_regs *regs)
1551 {
1552  struct uprobe_task *utask;
1553 
1554  clear_thread_flag(TIF_UPROBE);
1555 
1556  utask = current->utask;
1557  if (utask && utask->active_uprobe)
1558  handle_singlestep(utask, regs);
1559  else
1560  handle_swbp(regs);
1561 }
1562 
1563 /*
1564  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1565  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1566  */
1568 {
1569  if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1570  return 0;
1571 
1572  set_thread_flag(TIF_UPROBE);
1573  return 1;
1574 }
1575 
1576 /*
1577  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1578  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1579  */
1581 {
1582  struct uprobe_task *utask = current->utask;
1583 
1584  if (!current->mm || !utask || !utask->active_uprobe)
1585  /* task is currently not uprobed */
1586  return 0;
1587 
1588  utask->state = UTASK_SSTEP_ACK;
1589  set_thread_flag(TIF_UPROBE);
1590  return 1;
1591 }
1592 
1593 static struct notifier_block uprobe_exception_nb = {
1594  .notifier_call = arch_uprobe_exception_notify,
1595  .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1596 };
1597 
1598 static int __init init_uprobes(void)
1599 {
1600  int i;
1601 
1602  for (i = 0; i < UPROBES_HASH_SZ; i++) {
1603  mutex_init(&uprobes_mutex[i]);
1604  mutex_init(&uprobes_mmap_mutex[i]);
1605  }
1606 
1607  return register_die_notifier(&uprobe_exception_nb);
1608 }
1609 module_init(init_uprobes);
1610 
1611 static void __exit exit_uprobes(void)
1612 {
1613 }
1614 module_exit(exit_uprobes);