Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
swap.c
Go to the documentation of this file.
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <[email protected]>
8  * Copyright (C) 2006 Rafael J. Wysocki <[email protected]>
9  * Copyright (C) 2010-2012 Bojan Smojver <[email protected]>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG "S1SUSPEND"
37 
38 /*
39  * The swap map is a data structure used for keeping track of each page
40  * written to a swap partition. It consists of many swap_map_page
41  * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
42  * These structures are stored on the swap and linked together with the
43  * help of the .next_swap member.
44  *
45  * The swap map is created during suspend. The swap map pages are
46  * allocated and populated one at a time, so we only need one memory
47  * page to set up the entire structure.
48  *
49  * During resume we pick up all swap_map_page structures into a list.
50  */
51 
52 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
53 
54 /*
55  * Number of free pages that are not high.
56  */
57 static inline unsigned long low_free_pages(void)
58 {
59  return nr_free_pages() - nr_free_highpages();
60 }
61 
62 /*
63  * Number of pages required to be kept free while writing the image. Always
64  * half of all available low pages before the writing starts.
65  */
66 static inline unsigned long reqd_free_pages(void)
67 {
68  return low_free_pages() / 2;
69 }
70 
71 struct swap_map_page {
74 };
75 
77  struct swap_map_page *map;
79 };
80 
87  struct swap_map_page *cur;
91  unsigned int k;
92  unsigned long reqd_free_pages;
94 };
95 
96 struct swsusp_header {
97  char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
98  sizeof(u32)];
101  unsigned int flags; /* Flags to pass to the "boot" kernel */
102  char orig_sig[10];
103  char sig[10];
104 } __attribute__((packed));
105 
114  struct rb_node node;
115  unsigned long start;
116  unsigned long end;
117 };
118 
119 static struct rb_root swsusp_extents = RB_ROOT;
120 
121 static int swsusp_extents_insert(unsigned long swap_offset)
122 {
123  struct rb_node **new = &(swsusp_extents.rb_node);
124  struct rb_node *parent = NULL;
125  struct swsusp_extent *ext;
126 
127  /* Figure out where to put the new node */
128  while (*new) {
129  ext = container_of(*new, struct swsusp_extent, node);
130  parent = *new;
131  if (swap_offset < ext->start) {
132  /* Try to merge */
133  if (swap_offset == ext->start - 1) {
134  ext->start--;
135  return 0;
136  }
137  new = &((*new)->rb_left);
138  } else if (swap_offset > ext->end) {
139  /* Try to merge */
140  if (swap_offset == ext->end + 1) {
141  ext->end++;
142  return 0;
143  }
144  new = &((*new)->rb_right);
145  } else {
146  /* It already is in the tree */
147  return -EINVAL;
148  }
149  }
150  /* Add the new node and rebalance the tree. */
151  ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
152  if (!ext)
153  return -ENOMEM;
154 
155  ext->start = swap_offset;
156  ext->end = swap_offset;
157  rb_link_node(&ext->node, parent, new);
158  rb_insert_color(&ext->node, &swsusp_extents);
159  return 0;
160 }
161 
168 {
169  unsigned long offset;
170 
171  offset = swp_offset(get_swap_page_of_type(swap));
172  if (offset) {
173  if (swsusp_extents_insert(offset))
174  swap_free(swp_entry(swap, offset));
175  else
176  return swapdev_block(swap, offset);
177  }
178  return 0;
179 }
180 
188 {
189  struct rb_node *node;
190 
191  while ((node = swsusp_extents.rb_node)) {
192  struct swsusp_extent *ext;
193  unsigned long offset;
194 
195  ext = container_of(node, struct swsusp_extent, node);
196  rb_erase(node, &swsusp_extents);
197  for (offset = ext->start; offset <= ext->end; offset++)
198  swap_free(swp_entry(swap, offset));
199 
200  kfree(ext);
201  }
202 }
203 
205 {
206  return (swsusp_extents.rb_node != NULL);
207 }
208 
209 /*
210  * General things
211  */
212 
213 static unsigned short root_swap = 0xffff;
215 
216 /*
217  * Saving part
218  */
219 
220 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
221 {
222  int error;
223 
224  hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
225  if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
226  !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
227  memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
228  memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
229  swsusp_header->image = handle->first_sector;
230  swsusp_header->flags = flags;
231  if (flags & SF_CRC32_MODE)
232  swsusp_header->crc32 = handle->crc32;
234  swsusp_header, NULL);
235  } else {
236  printk(KERN_ERR "PM: Swap header not found!\n");
237  error = -ENODEV;
238  }
239  return error;
240 }
241 
248 static int swsusp_swap_check(void)
249 {
250  int res;
251 
252  res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
253  &hib_resume_bdev);
254  if (res < 0)
255  return res;
256 
257  root_swap = res;
258  res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
259  if (res)
260  return res;
261 
262  res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
263  if (res < 0)
264  blkdev_put(hib_resume_bdev, FMODE_WRITE);
265 
266  return res;
267 }
268 
276 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
277 {
278  void *src;
279  int ret;
280 
281  if (!offset)
282  return -ENOSPC;
283 
284  if (bio_chain) {
285  src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
286  __GFP_NORETRY);
287  if (src) {
288  copy_page(src, buf);
289  } else {
290  ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
291  if (ret)
292  return ret;
293  src = (void *)__get_free_page(__GFP_WAIT |
294  __GFP_NOWARN |
295  __GFP_NORETRY);
296  if (src) {
297  copy_page(src, buf);
298  } else {
299  WARN_ON_ONCE(1);
300  bio_chain = NULL; /* Go synchronous */
301  src = buf;
302  }
303  }
304  } else {
305  src = buf;
306  }
307  return hib_bio_write_page(offset, src, bio_chain);
308 }
309 
310 static void release_swap_writer(struct swap_map_handle *handle)
311 {
312  if (handle->cur)
313  free_page((unsigned long)handle->cur);
314  handle->cur = NULL;
315 }
316 
317 static int get_swap_writer(struct swap_map_handle *handle)
318 {
319  int ret;
320 
321  ret = swsusp_swap_check();
322  if (ret) {
323  if (ret != -ENOSPC)
324  printk(KERN_ERR "PM: Cannot find swap device, try "
325  "swapon -a.\n");
326  return ret;
327  }
328  handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
329  if (!handle->cur) {
330  ret = -ENOMEM;
331  goto err_close;
332  }
333  handle->cur_swap = alloc_swapdev_block(root_swap);
334  if (!handle->cur_swap) {
335  ret = -ENOSPC;
336  goto err_rel;
337  }
338  handle->k = 0;
339  handle->reqd_free_pages = reqd_free_pages();
340  handle->first_sector = handle->cur_swap;
341  return 0;
342 err_rel:
343  release_swap_writer(handle);
344 err_close:
346  return ret;
347 }
348 
349 static int swap_write_page(struct swap_map_handle *handle, void *buf,
350  struct bio **bio_chain)
351 {
352  int error = 0;
354 
355  if (!handle->cur)
356  return -EINVAL;
357  offset = alloc_swapdev_block(root_swap);
358  error = write_page(buf, offset, bio_chain);
359  if (error)
360  return error;
361  handle->cur->entries[handle->k++] = offset;
362  if (handle->k >= MAP_PAGE_ENTRIES) {
363  offset = alloc_swapdev_block(root_swap);
364  if (!offset)
365  return -ENOSPC;
366  handle->cur->next_swap = offset;
367  error = write_page(handle->cur, handle->cur_swap, bio_chain);
368  if (error)
369  goto out;
370  clear_page(handle->cur);
371  handle->cur_swap = offset;
372  handle->k = 0;
373 
374  if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
375  error = hib_wait_on_bio_chain(bio_chain);
376  if (error)
377  goto out;
378  /*
379  * Recalculate the number of required free pages, to
380  * make sure we never take more than half.
381  */
382  handle->reqd_free_pages = reqd_free_pages();
383  }
384  }
385  out:
386  return error;
387 }
388 
389 static int flush_swap_writer(struct swap_map_handle *handle)
390 {
391  if (handle->cur && handle->cur_swap)
392  return write_page(handle->cur, handle->cur_swap, NULL);
393  else
394  return -EINVAL;
395 }
396 
397 static int swap_writer_finish(struct swap_map_handle *handle,
398  unsigned int flags, int error)
399 {
400  if (!error) {
401  flush_swap_writer(handle);
402  printk(KERN_INFO "PM: S");
403  error = mark_swapfiles(handle, flags);
404  printk("|\n");
405  }
406 
407  if (error)
408  free_all_swap_pages(root_swap);
409  release_swap_writer(handle);
411 
412  return error;
413 }
414 
415 /* We need to remember how much compressed data we need to read. */
416 #define LZO_HEADER sizeof(size_t)
417 
418 /* Number of pages/bytes we'll compress at one time. */
419 #define LZO_UNC_PAGES 32
420 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
421 
422 /* Number of pages/bytes we need for compressed data (worst case). */
423 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
424  LZO_HEADER, PAGE_SIZE)
425 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
426 
427 /* Maximum number of threads for compression/decompression. */
428 #define LZO_THREADS 3
429 
430 /* Minimum/maximum number of pages for read buffering. */
431 #define LZO_MIN_RD_PAGES 1024
432 #define LZO_MAX_RD_PAGES 8192
433 
434 
439 static int save_image(struct swap_map_handle *handle,
440  struct snapshot_handle *snapshot,
441  unsigned int nr_to_write)
442 {
443  unsigned int m;
444  int ret;
445  int nr_pages;
446  int err2;
447  struct bio *bio;
448  struct timeval start;
449  struct timeval stop;
450 
451  printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
452  nr_to_write);
453  m = nr_to_write / 10;
454  if (!m)
455  m = 1;
456  nr_pages = 0;
457  bio = NULL;
458  do_gettimeofday(&start);
459  while (1) {
460  ret = snapshot_read_next(snapshot);
461  if (ret <= 0)
462  break;
463  ret = swap_write_page(handle, data_of(*snapshot), &bio);
464  if (ret)
465  break;
466  if (!(nr_pages % m))
467  printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
468  nr_pages / m * 10);
469  nr_pages++;
470  }
471  err2 = hib_wait_on_bio_chain(&bio);
472  do_gettimeofday(&stop);
473  if (!ret)
474  ret = err2;
475  if (!ret)
476  printk(KERN_INFO "PM: Image saving done.\n");
477  swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
478  return ret;
479 }
480 
484 struct crc_data {
485  struct task_struct *thr; /* thread */
486  atomic_t ready; /* ready to start flag */
487  atomic_t stop; /* ready to stop flag */
488  unsigned run_threads; /* nr current threads */
489  wait_queue_head_t go; /* start crc update */
490  wait_queue_head_t done; /* crc update done */
491  u32 *crc32; /* points to handle's crc32 */
492  size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
493  unsigned char *unc[LZO_THREADS]; /* uncompressed data */
494 };
495 
499 static int crc32_threadfn(void *data)
500 {
501  struct crc_data *d = data;
502  unsigned i;
503 
504  while (1) {
505  wait_event(d->go, atomic_read(&d->ready) ||
507  if (kthread_should_stop()) {
508  d->thr = NULL;
509  atomic_set(&d->stop, 1);
510  wake_up(&d->done);
511  break;
512  }
513  atomic_set(&d->ready, 0);
514 
515  for (i = 0; i < d->run_threads; i++)
516  *d->crc32 = crc32_le(*d->crc32,
517  d->unc[i], *d->unc_len[i]);
518  atomic_set(&d->stop, 1);
519  wake_up(&d->done);
520  }
521  return 0;
522 }
526 struct cmp_data {
527  struct task_struct *thr; /* thread */
528  atomic_t ready; /* ready to start flag */
529  atomic_t stop; /* ready to stop flag */
530  int ret; /* return code */
531  wait_queue_head_t go; /* start compression */
532  wait_queue_head_t done; /* compression done */
533  size_t unc_len; /* uncompressed length */
534  size_t cmp_len; /* compressed length */
535  unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
536  unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
537  unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
538 };
539 
543 static int lzo_compress_threadfn(void *data)
544 {
545  struct cmp_data *d = data;
546 
547  while (1) {
548  wait_event(d->go, atomic_read(&d->ready) ||
550  if (kthread_should_stop()) {
551  d->thr = NULL;
552  d->ret = -1;
553  atomic_set(&d->stop, 1);
554  wake_up(&d->done);
555  break;
556  }
557  atomic_set(&d->ready, 0);
558 
559  d->ret = lzo1x_1_compress(d->unc, d->unc_len,
560  d->cmp + LZO_HEADER, &d->cmp_len,
561  d->wrk);
562  atomic_set(&d->stop, 1);
563  wake_up(&d->done);
564  }
565  return 0;
566 }
567 
574 static int save_image_lzo(struct swap_map_handle *handle,
575  struct snapshot_handle *snapshot,
576  unsigned int nr_to_write)
577 {
578  unsigned int m;
579  int ret = 0;
580  int nr_pages;
581  int err2;
582  struct bio *bio;
583  struct timeval start;
584  struct timeval stop;
585  size_t off;
586  unsigned thr, run_threads, nr_threads;
587  unsigned char *page = NULL;
588  struct cmp_data *data = NULL;
589  struct crc_data *crc = NULL;
590 
591  /*
592  * We'll limit the number of threads for compression to limit memory
593  * footprint.
594  */
595  nr_threads = num_online_cpus() - 1;
596  nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
597 
598  page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
599  if (!page) {
600  printk(KERN_ERR "PM: Failed to allocate LZO page\n");
601  ret = -ENOMEM;
602  goto out_clean;
603  }
604 
605  data = vmalloc(sizeof(*data) * nr_threads);
606  if (!data) {
607  printk(KERN_ERR "PM: Failed to allocate LZO data\n");
608  ret = -ENOMEM;
609  goto out_clean;
610  }
611  for (thr = 0; thr < nr_threads; thr++)
612  memset(&data[thr], 0, offsetof(struct cmp_data, go));
613 
614  crc = kmalloc(sizeof(*crc), GFP_KERNEL);
615  if (!crc) {
616  printk(KERN_ERR "PM: Failed to allocate crc\n");
617  ret = -ENOMEM;
618  goto out_clean;
619  }
620  memset(crc, 0, offsetof(struct crc_data, go));
621 
622  /*
623  * Start the compression threads.
624  */
625  for (thr = 0; thr < nr_threads; thr++) {
626  init_waitqueue_head(&data[thr].go);
627  init_waitqueue_head(&data[thr].done);
628 
629  data[thr].thr = kthread_run(lzo_compress_threadfn,
630  &data[thr],
631  "image_compress/%u", thr);
632  if (IS_ERR(data[thr].thr)) {
633  data[thr].thr = NULL;
635  "PM: Cannot start compression threads\n");
636  ret = -ENOMEM;
637  goto out_clean;
638  }
639  }
640 
641  /*
642  * Start the CRC32 thread.
643  */
644  init_waitqueue_head(&crc->go);
645  init_waitqueue_head(&crc->done);
646 
647  handle->crc32 = 0;
648  crc->crc32 = &handle->crc32;
649  for (thr = 0; thr < nr_threads; thr++) {
650  crc->unc[thr] = data[thr].unc;
651  crc->unc_len[thr] = &data[thr].unc_len;
652  }
653 
654  crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
655  if (IS_ERR(crc->thr)) {
656  crc->thr = NULL;
657  printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
658  ret = -ENOMEM;
659  goto out_clean;
660  }
661 
662  /*
663  * Adjust the number of required free pages after all allocations have
664  * been done. We don't want to run out of pages when writing.
665  */
666  handle->reqd_free_pages = reqd_free_pages();
667 
669  "PM: Using %u thread(s) for compression.\n"
670  "PM: Compressing and saving image data (%u pages)...\n",
671  nr_threads, nr_to_write);
672  m = nr_to_write / 10;
673  if (!m)
674  m = 1;
675  nr_pages = 0;
676  bio = NULL;
678  for (;;) {
679  for (thr = 0; thr < nr_threads; thr++) {
680  for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
681  ret = snapshot_read_next(snapshot);
682  if (ret < 0)
683  goto out_finish;
684 
685  if (!ret)
686  break;
687 
688  memcpy(data[thr].unc + off,
689  data_of(*snapshot), PAGE_SIZE);
690 
691  if (!(nr_pages % m))
693  "PM: Image saving progress: "
694  "%3d%%\n",
695  nr_pages / m * 10);
696  nr_pages++;
697  }
698  if (!off)
699  break;
700 
701  data[thr].unc_len = off;
702 
703  atomic_set(&data[thr].ready, 1);
704  wake_up(&data[thr].go);
705  }
706 
707  if (!thr)
708  break;
709 
710  crc->run_threads = thr;
711  atomic_set(&crc->ready, 1);
712  wake_up(&crc->go);
713 
714  for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
715  wait_event(data[thr].done,
716  atomic_read(&data[thr].stop));
717  atomic_set(&data[thr].stop, 0);
718 
719  ret = data[thr].ret;
720 
721  if (ret < 0) {
722  printk(KERN_ERR "PM: LZO compression failed\n");
723  goto out_finish;
724  }
725 
726  if (unlikely(!data[thr].cmp_len ||
727  data[thr].cmp_len >
728  lzo1x_worst_compress(data[thr].unc_len))) {
730  "PM: Invalid LZO compressed length\n");
731  ret = -1;
732  goto out_finish;
733  }
734 
735  *(size_t *)data[thr].cmp = data[thr].cmp_len;
736 
737  /*
738  * Given we are writing one page at a time to disk, we
739  * copy that much from the buffer, although the last
740  * bit will likely be smaller than full page. This is
741  * OK - we saved the length of the compressed data, so
742  * any garbage at the end will be discarded when we
743  * read it.
744  */
745  for (off = 0;
746  off < LZO_HEADER + data[thr].cmp_len;
747  off += PAGE_SIZE) {
748  memcpy(page, data[thr].cmp + off, PAGE_SIZE);
749 
750  ret = swap_write_page(handle, page, &bio);
751  if (ret)
752  goto out_finish;
753  }
754  }
755 
756  wait_event(crc->done, atomic_read(&crc->stop));
757  atomic_set(&crc->stop, 0);
758  }
759 
760 out_finish:
761  err2 = hib_wait_on_bio_chain(&bio);
763  if (!ret)
764  ret = err2;
765  if (!ret)
766  printk(KERN_INFO "PM: Image saving done.\n");
767  swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
768 out_clean:
769  if (crc) {
770  if (crc->thr)
771  kthread_stop(crc->thr);
772  kfree(crc);
773  }
774  if (data) {
775  for (thr = 0; thr < nr_threads; thr++)
776  if (data[thr].thr)
777  kthread_stop(data[thr].thr);
778  vfree(data);
779  }
780  if (page) free_page((unsigned long)page);
781 
782  return ret;
783 }
784 
792 static int enough_swap(unsigned int nr_pages, unsigned int flags)
793 {
794  unsigned int free_swap = count_swap_pages(root_swap, 1);
795  unsigned int required;
796 
797  pr_debug("PM: Free swap pages: %u\n", free_swap);
798 
799  required = PAGES_FOR_IO + nr_pages;
800  return free_swap > required;
801 }
802 
813 int swsusp_write(unsigned int flags)
814 {
815  struct swap_map_handle handle;
816  struct snapshot_handle snapshot;
817  struct swsusp_info *header;
818  unsigned long pages;
819  int error;
820 
821  pages = snapshot_get_image_size();
822  error = get_swap_writer(&handle);
823  if (error) {
824  printk(KERN_ERR "PM: Cannot get swap writer\n");
825  return error;
826  }
827  if (flags & SF_NOCOMPRESS_MODE) {
828  if (!enough_swap(pages, flags)) {
829  printk(KERN_ERR "PM: Not enough free swap\n");
830  error = -ENOSPC;
831  goto out_finish;
832  }
833  }
834  memset(&snapshot, 0, sizeof(struct snapshot_handle));
835  error = snapshot_read_next(&snapshot);
836  if (error < PAGE_SIZE) {
837  if (error >= 0)
838  error = -EFAULT;
839 
840  goto out_finish;
841  }
842  header = (struct swsusp_info *)data_of(snapshot);
843  error = swap_write_page(&handle, header, NULL);
844  if (!error) {
845  error = (flags & SF_NOCOMPRESS_MODE) ?
846  save_image(&handle, &snapshot, pages - 1) :
847  save_image_lzo(&handle, &snapshot, pages - 1);
848  }
849 out_finish:
850  error = swap_writer_finish(&handle, flags, error);
851  return error;
852 }
853 
859 static void release_swap_reader(struct swap_map_handle *handle)
860 {
861  struct swap_map_page_list *tmp;
862 
863  while (handle->maps) {
864  if (handle->maps->map)
865  free_page((unsigned long)handle->maps->map);
866  tmp = handle->maps;
867  handle->maps = handle->maps->next;
868  kfree(tmp);
869  }
870  handle->cur = NULL;
871 }
872 
873 static int get_swap_reader(struct swap_map_handle *handle,
874  unsigned int *flags_p)
875 {
876  int error;
877  struct swap_map_page_list *tmp, *last;
879 
880  *flags_p = swsusp_header->flags;
881 
882  if (!swsusp_header->image) /* how can this happen? */
883  return -EINVAL;
884 
885  handle->cur = NULL;
886  last = handle->maps = NULL;
887  offset = swsusp_header->image;
888  while (offset) {
889  tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
890  if (!tmp) {
891  release_swap_reader(handle);
892  return -ENOMEM;
893  }
894  memset(tmp, 0, sizeof(*tmp));
895  if (!handle->maps)
896  handle->maps = tmp;
897  if (last)
898  last->next = tmp;
899  last = tmp;
900 
901  tmp->map = (struct swap_map_page *)
903  if (!tmp->map) {
904  release_swap_reader(handle);
905  return -ENOMEM;
906  }
907 
908  error = hib_bio_read_page(offset, tmp->map, NULL);
909  if (error) {
910  release_swap_reader(handle);
911  return error;
912  }
913  offset = tmp->map->next_swap;
914  }
915  handle->k = 0;
916  handle->cur = handle->maps->map;
917  return 0;
918 }
919 
920 static int swap_read_page(struct swap_map_handle *handle, void *buf,
921  struct bio **bio_chain)
922 {
924  int error;
925  struct swap_map_page_list *tmp;
926 
927  if (!handle->cur)
928  return -EINVAL;
929  offset = handle->cur->entries[handle->k];
930  if (!offset)
931  return -EFAULT;
932  error = hib_bio_read_page(offset, buf, bio_chain);
933  if (error)
934  return error;
935  if (++handle->k >= MAP_PAGE_ENTRIES) {
936  handle->k = 0;
937  free_page((unsigned long)handle->maps->map);
938  tmp = handle->maps;
939  handle->maps = handle->maps->next;
940  kfree(tmp);
941  if (!handle->maps)
942  release_swap_reader(handle);
943  else
944  handle->cur = handle->maps->map;
945  }
946  return error;
947 }
948 
949 static int swap_reader_finish(struct swap_map_handle *handle)
950 {
951  release_swap_reader(handle);
952 
953  return 0;
954 }
955 
962 static int load_image(struct swap_map_handle *handle,
963  struct snapshot_handle *snapshot,
964  unsigned int nr_to_read)
965 {
966  unsigned int m;
967  int ret = 0;
968  struct timeval start;
969  struct timeval stop;
970  struct bio *bio;
971  int err2;
972  unsigned nr_pages;
973 
974  printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
975  nr_to_read);
976  m = nr_to_read / 10;
977  if (!m)
978  m = 1;
979  nr_pages = 0;
980  bio = NULL;
982  for ( ; ; ) {
983  ret = snapshot_write_next(snapshot);
984  if (ret <= 0)
985  break;
986  ret = swap_read_page(handle, data_of(*snapshot), &bio);
987  if (ret)
988  break;
989  if (snapshot->sync_read)
990  ret = hib_wait_on_bio_chain(&bio);
991  if (ret)
992  break;
993  if (!(nr_pages % m))
994  printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
995  nr_pages / m * 10);
996  nr_pages++;
997  }
998  err2 = hib_wait_on_bio_chain(&bio);
1000  if (!ret)
1001  ret = err2;
1002  if (!ret) {
1003  printk(KERN_INFO "PM: Image loading done.\n");
1004  snapshot_write_finalize(snapshot);
1005  if (!snapshot_image_loaded(snapshot))
1006  ret = -ENODATA;
1007  }
1008  swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1009  return ret;
1010 }
1011 
1015 struct dec_data {
1016  struct task_struct *thr; /* thread */
1017  atomic_t ready; /* ready to start flag */
1018  atomic_t stop; /* ready to stop flag */
1019  int ret; /* return code */
1020  wait_queue_head_t go; /* start decompression */
1021  wait_queue_head_t done; /* decompression done */
1022  size_t unc_len; /* uncompressed length */
1023  size_t cmp_len; /* compressed length */
1024  unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1025  unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1026 };
1027 
1031 static int lzo_decompress_threadfn(void *data)
1032 {
1033  struct dec_data *d = data;
1034 
1035  while (1) {
1036  wait_event(d->go, atomic_read(&d->ready) ||
1038  if (kthread_should_stop()) {
1039  d->thr = NULL;
1040  d->ret = -1;
1041  atomic_set(&d->stop, 1);
1042  wake_up(&d->done);
1043  break;
1044  }
1045  atomic_set(&d->ready, 0);
1046 
1047  d->unc_len = LZO_UNC_SIZE;
1049  d->unc, &d->unc_len);
1050  atomic_set(&d->stop, 1);
1051  wake_up(&d->done);
1052  }
1053  return 0;
1054 }
1055 
1062 static int load_image_lzo(struct swap_map_handle *handle,
1063  struct snapshot_handle *snapshot,
1064  unsigned int nr_to_read)
1065 {
1066  unsigned int m;
1067  int ret = 0;
1068  int eof = 0;
1069  struct bio *bio;
1070  struct timeval start;
1071  struct timeval stop;
1072  unsigned nr_pages;
1073  size_t off;
1074  unsigned i, thr, run_threads, nr_threads;
1075  unsigned ring = 0, pg = 0, ring_size = 0,
1076  have = 0, want, need, asked = 0;
1077  unsigned long read_pages = 0;
1078  unsigned char **page = NULL;
1079  struct dec_data *data = NULL;
1080  struct crc_data *crc = NULL;
1081 
1082  /*
1083  * We'll limit the number of threads for decompression to limit memory
1084  * footprint.
1085  */
1086  nr_threads = num_online_cpus() - 1;
1087  nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1088 
1089  page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1090  if (!page) {
1091  printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1092  ret = -ENOMEM;
1093  goto out_clean;
1094  }
1095 
1096  data = vmalloc(sizeof(*data) * nr_threads);
1097  if (!data) {
1098  printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1099  ret = -ENOMEM;
1100  goto out_clean;
1101  }
1102  for (thr = 0; thr < nr_threads; thr++)
1103  memset(&data[thr], 0, offsetof(struct dec_data, go));
1104 
1105  crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1106  if (!crc) {
1107  printk(KERN_ERR "PM: Failed to allocate crc\n");
1108  ret = -ENOMEM;
1109  goto out_clean;
1110  }
1111  memset(crc, 0, offsetof(struct crc_data, go));
1112 
1113  /*
1114  * Start the decompression threads.
1115  */
1116  for (thr = 0; thr < nr_threads; thr++) {
1117  init_waitqueue_head(&data[thr].go);
1118  init_waitqueue_head(&data[thr].done);
1119 
1120  data[thr].thr = kthread_run(lzo_decompress_threadfn,
1121  &data[thr],
1122  "image_decompress/%u", thr);
1123  if (IS_ERR(data[thr].thr)) {
1124  data[thr].thr = NULL;
1126  "PM: Cannot start decompression threads\n");
1127  ret = -ENOMEM;
1128  goto out_clean;
1129  }
1130  }
1131 
1132  /*
1133  * Start the CRC32 thread.
1134  */
1135  init_waitqueue_head(&crc->go);
1136  init_waitqueue_head(&crc->done);
1137 
1138  handle->crc32 = 0;
1139  crc->crc32 = &handle->crc32;
1140  for (thr = 0; thr < nr_threads; thr++) {
1141  crc->unc[thr] = data[thr].unc;
1142  crc->unc_len[thr] = &data[thr].unc_len;
1143  }
1144 
1145  crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1146  if (IS_ERR(crc->thr)) {
1147  crc->thr = NULL;
1148  printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1149  ret = -ENOMEM;
1150  goto out_clean;
1151  }
1152 
1153  /*
1154  * Set the number of pages for read buffering.
1155  * This is complete guesswork, because we'll only know the real
1156  * picture once prepare_image() is called, which is much later on
1157  * during the image load phase. We'll assume the worst case and
1158  * say that none of the image pages are from high memory.
1159  */
1160  if (low_free_pages() > snapshot_get_image_size())
1161  read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1162  read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1163 
1164  for (i = 0; i < read_pages; i++) {
1165  page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1168  __GFP_NORETRY);
1169 
1170  if (!page[i]) {
1171  if (i < LZO_CMP_PAGES) {
1172  ring_size = i;
1174  "PM: Failed to allocate LZO pages\n");
1175  ret = -ENOMEM;
1176  goto out_clean;
1177  } else {
1178  break;
1179  }
1180  }
1181  }
1182  want = ring_size = i;
1183 
1185  "PM: Using %u thread(s) for decompression.\n"
1186  "PM: Loading and decompressing image data (%u pages)...\n",
1187  nr_threads, nr_to_read);
1188  m = nr_to_read / 10;
1189  if (!m)
1190  m = 1;
1191  nr_pages = 0;
1192  bio = NULL;
1194 
1195  ret = snapshot_write_next(snapshot);
1196  if (ret <= 0)
1197  goto out_finish;
1198 
1199  for(;;) {
1200  for (i = 0; !eof && i < want; i++) {
1201  ret = swap_read_page(handle, page[ring], &bio);
1202  if (ret) {
1203  /*
1204  * On real read error, finish. On end of data,
1205  * set EOF flag and just exit the read loop.
1206  */
1207  if (handle->cur &&
1208  handle->cur->entries[handle->k]) {
1209  goto out_finish;
1210  } else {
1211  eof = 1;
1212  break;
1213  }
1214  }
1215  if (++ring >= ring_size)
1216  ring = 0;
1217  }
1218  asked += i;
1219  want -= i;
1220 
1221  /*
1222  * We are out of data, wait for some more.
1223  */
1224  if (!have) {
1225  if (!asked)
1226  break;
1227 
1228  ret = hib_wait_on_bio_chain(&bio);
1229  if (ret)
1230  goto out_finish;
1231  have += asked;
1232  asked = 0;
1233  if (eof)
1234  eof = 2;
1235  }
1236 
1237  if (crc->run_threads) {
1238  wait_event(crc->done, atomic_read(&crc->stop));
1239  atomic_set(&crc->stop, 0);
1240  crc->run_threads = 0;
1241  }
1242 
1243  for (thr = 0; have && thr < nr_threads; thr++) {
1244  data[thr].cmp_len = *(size_t *)page[pg];
1245  if (unlikely(!data[thr].cmp_len ||
1246  data[thr].cmp_len >
1247  lzo1x_worst_compress(LZO_UNC_SIZE))) {
1249  "PM: Invalid LZO compressed length\n");
1250  ret = -1;
1251  goto out_finish;
1252  }
1253 
1254  need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1255  PAGE_SIZE);
1256  if (need > have) {
1257  if (eof > 1) {
1258  ret = -1;
1259  goto out_finish;
1260  }
1261  break;
1262  }
1263 
1264  for (off = 0;
1265  off < LZO_HEADER + data[thr].cmp_len;
1266  off += PAGE_SIZE) {
1267  memcpy(data[thr].cmp + off,
1268  page[pg], PAGE_SIZE);
1269  have--;
1270  want++;
1271  if (++pg >= ring_size)
1272  pg = 0;
1273  }
1274 
1275  atomic_set(&data[thr].ready, 1);
1276  wake_up(&data[thr].go);
1277  }
1278 
1279  /*
1280  * Wait for more data while we are decompressing.
1281  */
1282  if (have < LZO_CMP_PAGES && asked) {
1283  ret = hib_wait_on_bio_chain(&bio);
1284  if (ret)
1285  goto out_finish;
1286  have += asked;
1287  asked = 0;
1288  if (eof)
1289  eof = 2;
1290  }
1291 
1292  for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1293  wait_event(data[thr].done,
1294  atomic_read(&data[thr].stop));
1295  atomic_set(&data[thr].stop, 0);
1296 
1297  ret = data[thr].ret;
1298 
1299  if (ret < 0) {
1301  "PM: LZO decompression failed\n");
1302  goto out_finish;
1303  }
1304 
1305  if (unlikely(!data[thr].unc_len ||
1306  data[thr].unc_len > LZO_UNC_SIZE ||
1307  data[thr].unc_len & (PAGE_SIZE - 1))) {
1309  "PM: Invalid LZO uncompressed length\n");
1310  ret = -1;
1311  goto out_finish;
1312  }
1313 
1314  for (off = 0;
1315  off < data[thr].unc_len; off += PAGE_SIZE) {
1316  memcpy(data_of(*snapshot),
1317  data[thr].unc + off, PAGE_SIZE);
1318 
1319  if (!(nr_pages % m))
1321  "PM: Image loading progress: "
1322  "%3d%%\n",
1323  nr_pages / m * 10);
1324  nr_pages++;
1325 
1326  ret = snapshot_write_next(snapshot);
1327  if (ret <= 0) {
1328  crc->run_threads = thr + 1;
1329  atomic_set(&crc->ready, 1);
1330  wake_up(&crc->go);
1331  goto out_finish;
1332  }
1333  }
1334  }
1335 
1336  crc->run_threads = thr;
1337  atomic_set(&crc->ready, 1);
1338  wake_up(&crc->go);
1339  }
1340 
1341 out_finish:
1342  if (crc->run_threads) {
1343  wait_event(crc->done, atomic_read(&crc->stop));
1344  atomic_set(&crc->stop, 0);
1345  }
1347  if (!ret) {
1348  printk(KERN_INFO "PM: Image loading done.\n");
1349  snapshot_write_finalize(snapshot);
1350  if (!snapshot_image_loaded(snapshot))
1351  ret = -ENODATA;
1352  if (!ret) {
1353  if (swsusp_header->flags & SF_CRC32_MODE) {
1354  if(handle->crc32 != swsusp_header->crc32) {
1356  "PM: Invalid image CRC32!\n");
1357  ret = -ENODATA;
1358  }
1359  }
1360  }
1361  }
1362  swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363 out_clean:
1364  for (i = 0; i < ring_size; i++)
1365  free_page((unsigned long)page[i]);
1366  if (crc) {
1367  if (crc->thr)
1368  kthread_stop(crc->thr);
1369  kfree(crc);
1370  }
1371  if (data) {
1372  for (thr = 0; thr < nr_threads; thr++)
1373  if (data[thr].thr)
1374  kthread_stop(data[thr].thr);
1375  vfree(data);
1376  }
1377  if (page) vfree(page);
1378 
1379  return ret;
1380 }
1381 
1388 int swsusp_read(unsigned int *flags_p)
1389 {
1390  int error;
1391  struct swap_map_handle handle;
1392  struct snapshot_handle snapshot;
1393  struct swsusp_info *header;
1394 
1395  memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396  error = snapshot_write_next(&snapshot);
1397  if (error < PAGE_SIZE)
1398  return error < 0 ? error : -EFAULT;
1399  header = (struct swsusp_info *)data_of(snapshot);
1400  error = get_swap_reader(&handle, flags_p);
1401  if (error)
1402  goto end;
1403  if (!error)
1404  error = swap_read_page(&handle, header, NULL);
1405  if (!error) {
1406  error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407  load_image(&handle, &snapshot, header->pages - 1) :
1408  load_image_lzo(&handle, &snapshot, header->pages - 1);
1409  }
1410  swap_reader_finish(&handle);
1411 end:
1412  if (!error)
1413  pr_debug("PM: Image successfully loaded\n");
1414  else
1415  pr_debug("PM: Error %d resuming\n", error);
1416  return error;
1417 }
1418 
1423 int swsusp_check(void)
1424 {
1425  int error;
1426 
1427  hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428  FMODE_READ, NULL);
1429  if (!IS_ERR(hib_resume_bdev)) {
1430  set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431  clear_page(swsusp_header);
1433  swsusp_header, NULL);
1434  if (error)
1435  goto put;
1436 
1437  if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438  memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1439  /* Reset swap signature now */
1441  swsusp_header, NULL);
1442  } else {
1443  error = -EINVAL;
1444  }
1445 
1446 put:
1447  if (error)
1448  blkdev_put(hib_resume_bdev, FMODE_READ);
1449  else
1450  pr_debug("PM: Image signature found, resuming\n");
1451  } else {
1452  error = PTR_ERR(hib_resume_bdev);
1453  }
1454 
1455  if (error)
1456  pr_debug("PM: Image not found (code %d)\n", error);
1457 
1458  return error;
1459 }
1460 
1466 {
1467  if (IS_ERR(hib_resume_bdev)) {
1468  pr_debug("PM: Image device not initialised\n");
1469  return;
1470  }
1471 
1472  blkdev_put(hib_resume_bdev, mode);
1473 }
1474 
1479 #ifdef CONFIG_SUSPEND
1480 int swsusp_unmark(void)
1481 {
1482  int error;
1483 
1484  hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
1485  if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1486  memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1488  swsusp_header, NULL);
1489  } else {
1490  printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1491  error = -ENODEV;
1492  }
1493 
1494  /*
1495  * We just returned from suspend, we don't need the image any more.
1496  */
1497  free_all_swap_pages(root_swap);
1498 
1499  return error;
1500 }
1501 #endif
1502 
1503 static int swsusp_header_init(void)
1504 {
1505  swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1506  if (!swsusp_header)
1507  panic("Could not allocate memory for swsusp_header\n");
1508  return 0;
1509 }
1510 
1511 core_initcall(swsusp_header_init);