Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes-arm.c
Go to the documentation of this file.
1 /*
2  * arch/arm/kernel/kprobes-decode.c
3  *
4  * Copyright (C) 2006, 2007 Motorola Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  * General Public License for more details.
14  */
15 
16 /*
17  * We do not have hardware single-stepping on ARM, This
18  * effort is further complicated by the ARM not having a
19  * "next PC" register. Instructions that change the PC
20  * can't be safely single-stepped in a MP environment, so
21  * we have a lot of work to do:
22  *
23  * In the prepare phase:
24  * *) If it is an instruction that does anything
25  * with the CPU mode, we reject it for a kprobe.
26  * (This is out of laziness rather than need. The
27  * instructions could be simulated.)
28  *
29  * *) Otherwise, decode the instruction rewriting its
30  * registers to take fixed, ordered registers and
31  * setting a handler for it to run the instruction.
32  *
33  * In the execution phase by an instruction's handler:
34  *
35  * *) If the PC is written to by the instruction, the
36  * instruction must be fully simulated in software.
37  *
38  * *) Otherwise, a modified form of the instruction is
39  * directly executed. Its handler calls the
40  * instruction in insn[0]. In insn[1] is a
41  * "mov pc, lr" to return.
42  *
43  * Before calling, load up the reordered registers
44  * from the original instruction's registers. If one
45  * of the original input registers is the PC, compute
46  * and adjust the appropriate input register.
47  *
48  * After call completes, copy the output registers to
49  * the original instruction's original registers.
50  *
51  * We don't use a real breakpoint instruction since that
52  * would have us in the kernel go from SVC mode to SVC
53  * mode losing the link register. Instead we use an
54  * undefined instruction. To simplify processing, the
55  * undefined instruction used for kprobes must be reserved
56  * exclusively for kprobes use.
57  *
58  * TODO: ifdef out some instruction decoding based on architecture.
59  */
60 
61 #include <linux/kernel.h>
62 #include <linux/kprobes.h>
63 #include <linux/module.h>
64 
65 #include "kprobes.h"
66 
67 #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
68 
69 #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
70 
71 #if __LINUX_ARM_ARCH__ >= 6
72 #define BLX(reg) "blx "reg" \n\t"
73 #else
74 #define BLX(reg) "mov lr, pc \n\t" \
75  "mov pc, "reg" \n\t"
76 #endif
77 
78 /*
79  * To avoid the complications of mimicing single-stepping on a
80  * processor without a Next-PC or a single-step mode, and to
81  * avoid having to deal with the side-effects of boosting, we
82  * simulate or emulate (almost) all ARM instructions.
83  *
84  * "Simulation" is where the instruction's behavior is duplicated in
85  * C code. "Emulation" is where the original instruction is rewritten
86  * and executed, often by altering its registers.
87  *
88  * By having all behavior of the kprobe'd instruction completed before
89  * returning from the kprobe_handler(), all locks (scheduler and
90  * interrupt) can safely be released. There is no need for secondary
91  * breakpoints, no race with MP or preemptable kernels, nor having to
92  * clean up resources counts at a later time impacting overall system
93  * performance. By rewriting the instruction, only the minimum registers
94  * need to be loaded and saved back optimizing performance.
95  *
96  * Calling the insnslot_*_rwflags version of a function doesn't hurt
97  * anything even when the CPSR flags aren't updated by the
98  * instruction. It's just a little slower in return for saving
99  * a little space by not having a duplicate function that doesn't
100  * update the flags. (The same optimization can be said for
101  * instructions that do or don't perform register writeback)
102  * Also, instructions can either read the flags, only write the
103  * flags, or read and write the flags. To save combinations
104  * rather than for sheer performance, flag functions just assume
105  * read and write of flags.
106  */
107 
108 static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
109 {
111  long iaddr = (long)p->addr;
112  int disp = branch_displacement(insn);
113 
114  if (insn & (1 << 24))
115  regs->ARM_lr = iaddr + 4;
116 
117  regs->ARM_pc = iaddr + 8 + disp;
118 }
119 
120 static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
121 {
123  long iaddr = (long)p->addr;
124  int disp = branch_displacement(insn);
125 
126  regs->ARM_lr = iaddr + 4;
127  regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
128  regs->ARM_cpsr |= PSR_T_BIT;
129 }
130 
131 static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
132 {
134  int rm = insn & 0xf;
135  long rmv = regs->uregs[rm];
136 
137  if (insn & (1 << 5))
138  regs->ARM_lr = (long)p->addr + 4;
139 
140  regs->ARM_pc = rmv & ~0x1;
141  regs->ARM_cpsr &= ~PSR_T_BIT;
142  if (rmv & 0x1)
143  regs->ARM_cpsr |= PSR_T_BIT;
144 }
145 
146 static void __kprobes simulate_mrs(struct kprobe *p, struct pt_regs *regs)
147 {
148  kprobe_opcode_t insn = p->opcode;
149  int rd = (insn >> 12) & 0xf;
150  unsigned long mask = 0xf8ff03df; /* Mask out execution state */
151  regs->uregs[rd] = regs->ARM_cpsr & mask;
152 }
153 
154 static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
155 {
156  regs->uregs[12] = regs->uregs[13];
157 }
158 
159 static void __kprobes
160 emulate_ldrdstrd(struct kprobe *p, struct pt_regs *regs)
161 {
162  kprobe_opcode_t insn = p->opcode;
163  unsigned long pc = (unsigned long)p->addr + 8;
164  int rt = (insn >> 12) & 0xf;
165  int rn = (insn >> 16) & 0xf;
166  int rm = insn & 0xf;
167 
168  register unsigned long rtv asm("r0") = regs->uregs[rt];
169  register unsigned long rt2v asm("r1") = regs->uregs[rt+1];
170  register unsigned long rnv asm("r2") = (rn == 15) ? pc
171  : regs->uregs[rn];
172  register unsigned long rmv asm("r3") = regs->uregs[rm];
173 
174  __asm__ __volatile__ (
175  BLX("%[fn]")
176  : "=r" (rtv), "=r" (rt2v), "=r" (rnv)
177  : "0" (rtv), "1" (rt2v), "2" (rnv), "r" (rmv),
178  [fn] "r" (p->ainsn.insn_fn)
179  : "lr", "memory", "cc"
180  );
181 
182  regs->uregs[rt] = rtv;
183  regs->uregs[rt+1] = rt2v;
184  if (is_writeback(insn))
185  regs->uregs[rn] = rnv;
186 }
187 
188 static void __kprobes
189 emulate_ldr(struct kprobe *p, struct pt_regs *regs)
190 {
191  kprobe_opcode_t insn = p->opcode;
192  unsigned long pc = (unsigned long)p->addr + 8;
193  int rt = (insn >> 12) & 0xf;
194  int rn = (insn >> 16) & 0xf;
195  int rm = insn & 0xf;
196 
197  register unsigned long rtv asm("r0");
198  register unsigned long rnv asm("r2") = (rn == 15) ? pc
199  : regs->uregs[rn];
200  register unsigned long rmv asm("r3") = regs->uregs[rm];
201 
202  __asm__ __volatile__ (
203  BLX("%[fn]")
204  : "=r" (rtv), "=r" (rnv)
205  : "1" (rnv), "r" (rmv), [fn] "r" (p->ainsn.insn_fn)
206  : "lr", "memory", "cc"
207  );
208 
209  if (rt == 15)
210  load_write_pc(rtv, regs);
211  else
212  regs->uregs[rt] = rtv;
213 
214  if (is_writeback(insn))
215  regs->uregs[rn] = rnv;
216 }
217 
218 static void __kprobes
219 emulate_str(struct kprobe *p, struct pt_regs *regs)
220 {
221  kprobe_opcode_t insn = p->opcode;
222  unsigned long rtpc = (unsigned long)p->addr + str_pc_offset;
223  unsigned long rnpc = (unsigned long)p->addr + 8;
224  int rt = (insn >> 12) & 0xf;
225  int rn = (insn >> 16) & 0xf;
226  int rm = insn & 0xf;
227 
228  register unsigned long rtv asm("r0") = (rt == 15) ? rtpc
229  : regs->uregs[rt];
230  register unsigned long rnv asm("r2") = (rn == 15) ? rnpc
231  : regs->uregs[rn];
232  register unsigned long rmv asm("r3") = regs->uregs[rm];
233 
234  __asm__ __volatile__ (
235  BLX("%[fn]")
236  : "=r" (rnv)
237  : "r" (rtv), "0" (rnv), "r" (rmv), [fn] "r" (p->ainsn.insn_fn)
238  : "lr", "memory", "cc"
239  );
240 
241  if (is_writeback(insn))
242  regs->uregs[rn] = rnv;
243 }
244 
245 static void __kprobes
246 emulate_rd12rn16rm0rs8_rwflags(struct kprobe *p, struct pt_regs *regs)
247 {
248  kprobe_opcode_t insn = p->opcode;
249  unsigned long pc = (unsigned long)p->addr + 8;
250  int rd = (insn >> 12) & 0xf;
251  int rn = (insn >> 16) & 0xf;
252  int rm = insn & 0xf;
253  int rs = (insn >> 8) & 0xf;
254 
255  register unsigned long rdv asm("r0") = regs->uregs[rd];
256  register unsigned long rnv asm("r2") = (rn == 15) ? pc
257  : regs->uregs[rn];
258  register unsigned long rmv asm("r3") = (rm == 15) ? pc
259  : regs->uregs[rm];
260  register unsigned long rsv asm("r1") = regs->uregs[rs];
261  unsigned long cpsr = regs->ARM_cpsr;
262 
263  __asm__ __volatile__ (
264  "msr cpsr_fs, %[cpsr] \n\t"
265  BLX("%[fn]")
266  "mrs %[cpsr], cpsr \n\t"
267  : "=r" (rdv), [cpsr] "=r" (cpsr)
268  : "0" (rdv), "r" (rnv), "r" (rmv), "r" (rsv),
269  "1" (cpsr), [fn] "r" (p->ainsn.insn_fn)
270  : "lr", "memory", "cc"
271  );
272 
273  if (rd == 15)
274  alu_write_pc(rdv, regs);
275  else
276  regs->uregs[rd] = rdv;
277  regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK);
278 }
279 
280 static void __kprobes
281 emulate_rd12rn16rm0_rwflags_nopc(struct kprobe *p, struct pt_regs *regs)
282 {
283  kprobe_opcode_t insn = p->opcode;
284  int rd = (insn >> 12) & 0xf;
285  int rn = (insn >> 16) & 0xf;
286  int rm = insn & 0xf;
287 
288  register unsigned long rdv asm("r0") = regs->uregs[rd];
289  register unsigned long rnv asm("r2") = regs->uregs[rn];
290  register unsigned long rmv asm("r3") = regs->uregs[rm];
291  unsigned long cpsr = regs->ARM_cpsr;
292 
293  __asm__ __volatile__ (
294  "msr cpsr_fs, %[cpsr] \n\t"
295  BLX("%[fn]")
296  "mrs %[cpsr], cpsr \n\t"
297  : "=r" (rdv), [cpsr] "=r" (cpsr)
298  : "0" (rdv), "r" (rnv), "r" (rmv),
299  "1" (cpsr), [fn] "r" (p->ainsn.insn_fn)
300  : "lr", "memory", "cc"
301  );
302 
303  regs->uregs[rd] = rdv;
304  regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK);
305 }
306 
307 static void __kprobes
308 emulate_rd16rn12rm0rs8_rwflags_nopc(struct kprobe *p, struct pt_regs *regs)
309 {
310  kprobe_opcode_t insn = p->opcode;
311  int rd = (insn >> 16) & 0xf;
312  int rn = (insn >> 12) & 0xf;
313  int rm = insn & 0xf;
314  int rs = (insn >> 8) & 0xf;
315 
316  register unsigned long rdv asm("r2") = regs->uregs[rd];
317  register unsigned long rnv asm("r0") = regs->uregs[rn];
318  register unsigned long rmv asm("r3") = regs->uregs[rm];
319  register unsigned long rsv asm("r1") = regs->uregs[rs];
320  unsigned long cpsr = regs->ARM_cpsr;
321 
322  __asm__ __volatile__ (
323  "msr cpsr_fs, %[cpsr] \n\t"
324  BLX("%[fn]")
325  "mrs %[cpsr], cpsr \n\t"
326  : "=r" (rdv), [cpsr] "=r" (cpsr)
327  : "0" (rdv), "r" (rnv), "r" (rmv), "r" (rsv),
328  "1" (cpsr), [fn] "r" (p->ainsn.insn_fn)
329  : "lr", "memory", "cc"
330  );
331 
332  regs->uregs[rd] = rdv;
333  regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK);
334 }
335 
336 static void __kprobes
337 emulate_rd12rm0_noflags_nopc(struct kprobe *p, struct pt_regs *regs)
338 {
339  kprobe_opcode_t insn = p->opcode;
340  int rd = (insn >> 12) & 0xf;
341  int rm = insn & 0xf;
342 
343  register unsigned long rdv asm("r0") = regs->uregs[rd];
344  register unsigned long rmv asm("r3") = regs->uregs[rm];
345 
346  __asm__ __volatile__ (
347  BLX("%[fn]")
348  : "=r" (rdv)
349  : "0" (rdv), "r" (rmv), [fn] "r" (p->ainsn.insn_fn)
350  : "lr", "memory", "cc"
351  );
352 
353  regs->uregs[rd] = rdv;
354 }
355 
356 static void __kprobes
357 emulate_rdlo12rdhi16rn0rm8_rwflags_nopc(struct kprobe *p, struct pt_regs *regs)
358 {
359  kprobe_opcode_t insn = p->opcode;
360  int rdlo = (insn >> 12) & 0xf;
361  int rdhi = (insn >> 16) & 0xf;
362  int rn = insn & 0xf;
363  int rm = (insn >> 8) & 0xf;
364 
365  register unsigned long rdlov asm("r0") = regs->uregs[rdlo];
366  register unsigned long rdhiv asm("r2") = regs->uregs[rdhi];
367  register unsigned long rnv asm("r3") = regs->uregs[rn];
368  register unsigned long rmv asm("r1") = regs->uregs[rm];
369  unsigned long cpsr = regs->ARM_cpsr;
370 
371  __asm__ __volatile__ (
372  "msr cpsr_fs, %[cpsr] \n\t"
373  BLX("%[fn]")
374  "mrs %[cpsr], cpsr \n\t"
375  : "=r" (rdlov), "=r" (rdhiv), [cpsr] "=r" (cpsr)
376  : "0" (rdlov), "1" (rdhiv), "r" (rnv), "r" (rmv),
377  "2" (cpsr), [fn] "r" (p->ainsn.insn_fn)
378  : "lr", "memory", "cc"
379  );
380 
381  regs->uregs[rdlo] = rdlov;
382  regs->uregs[rdhi] = rdhiv;
383  regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK);
384 }
385 
386 /*
387  * For the instruction masking and comparisons in all the "space_*"
388  * functions below, Do _not_ rearrange the order of tests unless
389  * you're very, very sure of what you are doing. For the sake of
390  * efficiency, the masks for some tests sometimes assume other test
391  * have been done prior to them so the number of patterns to test
392  * for an instruction set can be as broad as possible to reduce the
393  * number of tests needed.
394  */
395 
396 static const union decode_item arm_1111_table[] = {
397  /* Unconditional instructions */
398 
399  /* memory hint 1111 0100 x001 xxxx xxxx xxxx xxxx xxxx */
400  /* PLDI (immediate) 1111 0100 x101 xxxx xxxx xxxx xxxx xxxx */
401  /* PLDW (immediate) 1111 0101 x001 xxxx xxxx xxxx xxxx xxxx */
402  /* PLD (immediate) 1111 0101 x101 xxxx xxxx xxxx xxxx xxxx */
403  DECODE_SIMULATE (0xfe300000, 0xf4100000, kprobe_simulate_nop),
404 
405  /* memory hint 1111 0110 x001 xxxx xxxx xxxx xxx0 xxxx */
406  /* PLDI (register) 1111 0110 x101 xxxx xxxx xxxx xxx0 xxxx */
407  /* PLDW (register) 1111 0111 x001 xxxx xxxx xxxx xxx0 xxxx */
408  /* PLD (register) 1111 0111 x101 xxxx xxxx xxxx xxx0 xxxx */
409  DECODE_SIMULATE (0xfe300010, 0xf6100000, kprobe_simulate_nop),
410 
411  /* BLX (immediate) 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx */
412  DECODE_SIMULATE (0xfe000000, 0xfa000000, simulate_blx1),
413 
414  /* CPS 1111 0001 0000 xxx0 xxxx xxxx xx0x xxxx */
415  /* SETEND 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
416  /* SRS 1111 100x x1x0 xxxx xxxx xxxx xxxx xxxx */
417  /* RFE 1111 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
418 
419  /* Coprocessor instructions... */
420  /* MCRR2 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx */
421  /* MRRC2 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx */
422  /* LDC2 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
423  /* STC2 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
424  /* CDP2 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
425  /* MCR2 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
426  /* MRC2 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
427 
428  /* Other unallocated instructions... */
429  DECODE_END
430 };
431 
432 static const union decode_item arm_cccc_0001_0xx0____0xxx_table[] = {
433  /* Miscellaneous instructions */
434 
435  /* MRS cpsr cccc 0001 0000 xxxx xxxx xxxx 0000 xxxx */
436  DECODE_SIMULATEX(0x0ff000f0, 0x01000000, simulate_mrs,
437  REGS(0, NOPC, 0, 0, 0)),
438 
439  /* BX cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
440  DECODE_SIMULATE (0x0ff000f0, 0x01200010, simulate_blx2bx),
441 
442  /* BLX (register) cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
443  DECODE_SIMULATEX(0x0ff000f0, 0x01200030, simulate_blx2bx,
444  REGS(0, 0, 0, 0, NOPC)),
445 
446  /* CLZ cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
447  DECODE_EMULATEX (0x0ff000f0, 0x01600010, emulate_rd12rm0_noflags_nopc,
448  REGS(0, NOPC, 0, 0, NOPC)),
449 
450  /* QADD cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx */
451  /* QSUB cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx */
452  /* QDADD cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx */
453  /* QDSUB cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx */
454  DECODE_EMULATEX (0x0f9000f0, 0x01000050, emulate_rd12rn16rm0_rwflags_nopc,
455  REGS(NOPC, NOPC, 0, 0, NOPC)),
456 
457  /* BXJ cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
458  /* MSR cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
459  /* MRS spsr cccc 0001 0100 xxxx xxxx xxxx 0000 xxxx */
460  /* BKPT 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
461  /* SMC cccc 0001 0110 xxxx xxxx xxxx 0111 xxxx */
462  /* And unallocated instructions... */
463  DECODE_END
464 };
465 
466 static const union decode_item arm_cccc_0001_0xx0____1xx0_table[] = {
467  /* Halfword multiply and multiply-accumulate */
468 
469  /* SMLALxy cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
470  DECODE_EMULATEX (0x0ff00090, 0x01400080, emulate_rdlo12rdhi16rn0rm8_rwflags_nopc,
471  REGS(NOPC, NOPC, NOPC, 0, NOPC)),
472 
473  /* SMULWy cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
474  DECODE_OR (0x0ff000b0, 0x012000a0),
475  /* SMULxy cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
476  DECODE_EMULATEX (0x0ff00090, 0x01600080, emulate_rd16rn12rm0rs8_rwflags_nopc,
477  REGS(NOPC, 0, NOPC, 0, NOPC)),
478 
479  /* SMLAxy cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx */
480  DECODE_OR (0x0ff00090, 0x01000080),
481  /* SMLAWy cccc 0001 0010 xxxx xxxx xxxx 1x00 xxxx */
482  DECODE_EMULATEX (0x0ff000b0, 0x01200080, emulate_rd16rn12rm0rs8_rwflags_nopc,
483  REGS(NOPC, NOPC, NOPC, 0, NOPC)),
484 
485  DECODE_END
486 };
487 
488 static const union decode_item arm_cccc_0000_____1001_table[] = {
489  /* Multiply and multiply-accumulate */
490 
491  /* MUL cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx */
492  /* MULS cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx */
493  DECODE_EMULATEX (0x0fe000f0, 0x00000090, emulate_rd16rn12rm0rs8_rwflags_nopc,
494  REGS(NOPC, 0, NOPC, 0, NOPC)),
495 
496  /* MLA cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx */
497  /* MLAS cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx */
498  DECODE_OR (0x0fe000f0, 0x00200090),
499  /* MLS cccc 0000 0110 xxxx xxxx xxxx 1001 xxxx */
500  DECODE_EMULATEX (0x0ff000f0, 0x00600090, emulate_rd16rn12rm0rs8_rwflags_nopc,
501  REGS(NOPC, NOPC, NOPC, 0, NOPC)),
502 
503  /* UMAAL cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx */
504  DECODE_OR (0x0ff000f0, 0x00400090),
505  /* UMULL cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx */
506  /* UMULLS cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx */
507  /* UMLAL cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx */
508  /* UMLALS cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx */
509  /* SMULL cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx */
510  /* SMULLS cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx */
511  /* SMLAL cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx */
512  /* SMLALS cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx */
513  DECODE_EMULATEX (0x0f8000f0, 0x00800090, emulate_rdlo12rdhi16rn0rm8_rwflags_nopc,
514  REGS(NOPC, NOPC, NOPC, 0, NOPC)),
515 
516  DECODE_END
517 };
518 
519 static const union decode_item arm_cccc_0001_____1001_table[] = {
520  /* Synchronization primitives */
521 
522 #if __LINUX_ARM_ARCH__ < 6
523  /* Deprecated on ARMv6 and may be UNDEFINED on v7 */
524  /* SMP/SWPB cccc 0001 0x00 xxxx xxxx xxxx 1001 xxxx */
525  DECODE_EMULATEX (0x0fb000f0, 0x01000090, emulate_rd12rn16rm0_rwflags_nopc,
526  REGS(NOPC, NOPC, 0, 0, NOPC)),
527 #endif
528  /* LDREX/STREX{,D,B,H} cccc 0001 1xxx xxxx xxxx xxxx 1001 xxxx */
529  /* And unallocated instructions... */
530  DECODE_END
531 };
532 
533 static const union decode_item arm_cccc_000x_____1xx1_table[] = {
534  /* Extra load/store instructions */
535 
536  /* STRHT cccc 0000 xx10 xxxx xxxx xxxx 1011 xxxx */
537  /* ??? cccc 0000 xx10 xxxx xxxx xxxx 11x1 xxxx */
538  /* LDRHT cccc 0000 xx11 xxxx xxxx xxxx 1011 xxxx */
539  /* LDRSBT cccc 0000 xx11 xxxx xxxx xxxx 1101 xxxx */
540  /* LDRSHT cccc 0000 xx11 xxxx xxxx xxxx 1111 xxxx */
541  DECODE_REJECT (0x0f200090, 0x00200090),
542 
543  /* LDRD/STRD lr,pc,{... cccc 000x x0x0 xxxx 111x xxxx 1101 xxxx */
544  DECODE_REJECT (0x0e10e0d0, 0x0000e0d0),
545 
546  /* LDRD (register) cccc 000x x0x0 xxxx xxxx xxxx 1101 xxxx */
547  /* STRD (register) cccc 000x x0x0 xxxx xxxx xxxx 1111 xxxx */
548  DECODE_EMULATEX (0x0e5000d0, 0x000000d0, emulate_ldrdstrd,
549  REGS(NOPCWB, NOPCX, 0, 0, NOPC)),
550 
551  /* LDRD (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1101 xxxx */
552  /* STRD (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1111 xxxx */
553  DECODE_EMULATEX (0x0e5000d0, 0x004000d0, emulate_ldrdstrd,
554  REGS(NOPCWB, NOPCX, 0, 0, 0)),
555 
556  /* STRH (register) cccc 000x x0x0 xxxx xxxx xxxx 1011 xxxx */
557  DECODE_EMULATEX (0x0e5000f0, 0x000000b0, emulate_str,
558  REGS(NOPCWB, NOPC, 0, 0, NOPC)),
559 
560  /* LDRH (register) cccc 000x x0x1 xxxx xxxx xxxx 1011 xxxx */
561  /* LDRSB (register) cccc 000x x0x1 xxxx xxxx xxxx 1101 xxxx */
562  /* LDRSH (register) cccc 000x x0x1 xxxx xxxx xxxx 1111 xxxx */
563  DECODE_EMULATEX (0x0e500090, 0x00100090, emulate_ldr,
564  REGS(NOPCWB, NOPC, 0, 0, NOPC)),
565 
566  /* STRH (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1011 xxxx */
567  DECODE_EMULATEX (0x0e5000f0, 0x004000b0, emulate_str,
568  REGS(NOPCWB, NOPC, 0, 0, 0)),
569 
570  /* LDRH (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1011 xxxx */
571  /* LDRSB (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1101 xxxx */
572  /* LDRSH (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1111 xxxx */
573  DECODE_EMULATEX (0x0e500090, 0x00500090, emulate_ldr,
574  REGS(NOPCWB, NOPC, 0, 0, 0)),
575 
576  DECODE_END
577 };
578 
579 static const union decode_item arm_cccc_000x_table[] = {
580  /* Data-processing (register) */
581 
582  /* <op>S PC, ... cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx */
583  DECODE_REJECT (0x0e10f000, 0x0010f000),
584 
585  /* MOV IP, SP 1110 0001 1010 0000 1100 0000 0000 1101 */
586  DECODE_SIMULATE (0xffffffff, 0xe1a0c00d, simulate_mov_ipsp),
587 
588  /* TST (register) cccc 0001 0001 xxxx xxxx xxxx xxx0 xxxx */
589  /* TEQ (register) cccc 0001 0011 xxxx xxxx xxxx xxx0 xxxx */
590  /* CMP (register) cccc 0001 0101 xxxx xxxx xxxx xxx0 xxxx */
591  /* CMN (register) cccc 0001 0111 xxxx xxxx xxxx xxx0 xxxx */
592  DECODE_EMULATEX (0x0f900010, 0x01100000, emulate_rd12rn16rm0rs8_rwflags,
593  REGS(ANY, 0, 0, 0, ANY)),
594 
595  /* MOV (register) cccc 0001 101x xxxx xxxx xxxx xxx0 xxxx */
596  /* MVN (register) cccc 0001 111x xxxx xxxx xxxx xxx0 xxxx */
597  DECODE_EMULATEX (0x0fa00010, 0x01a00000, emulate_rd12rn16rm0rs8_rwflags,
598  REGS(0, ANY, 0, 0, ANY)),
599 
600  /* AND (register) cccc 0000 000x xxxx xxxx xxxx xxx0 xxxx */
601  /* EOR (register) cccc 0000 001x xxxx xxxx xxxx xxx0 xxxx */
602  /* SUB (register) cccc 0000 010x xxxx xxxx xxxx xxx0 xxxx */
603  /* RSB (register) cccc 0000 011x xxxx xxxx xxxx xxx0 xxxx */
604  /* ADD (register) cccc 0000 100x xxxx xxxx xxxx xxx0 xxxx */
605  /* ADC (register) cccc 0000 101x xxxx xxxx xxxx xxx0 xxxx */
606  /* SBC (register) cccc 0000 110x xxxx xxxx xxxx xxx0 xxxx */
607  /* RSC (register) cccc 0000 111x xxxx xxxx xxxx xxx0 xxxx */
608  /* ORR (register) cccc 0001 100x xxxx xxxx xxxx xxx0 xxxx */
609  /* BIC (register) cccc 0001 110x xxxx xxxx xxxx xxx0 xxxx */
610  DECODE_EMULATEX (0x0e000010, 0x00000000, emulate_rd12rn16rm0rs8_rwflags,
611  REGS(ANY, ANY, 0, 0, ANY)),
612 
613  /* TST (reg-shift reg) cccc 0001 0001 xxxx xxxx xxxx 0xx1 xxxx */
614  /* TEQ (reg-shift reg) cccc 0001 0011 xxxx xxxx xxxx 0xx1 xxxx */
615  /* CMP (reg-shift reg) cccc 0001 0101 xxxx xxxx xxxx 0xx1 xxxx */
616  /* CMN (reg-shift reg) cccc 0001 0111 xxxx xxxx xxxx 0xx1 xxxx */
617  DECODE_EMULATEX (0x0f900090, 0x01100010, emulate_rd12rn16rm0rs8_rwflags,
618  REGS(ANY, 0, NOPC, 0, ANY)),
619 
620  /* MOV (reg-shift reg) cccc 0001 101x xxxx xxxx xxxx 0xx1 xxxx */
621  /* MVN (reg-shift reg) cccc 0001 111x xxxx xxxx xxxx 0xx1 xxxx */
622  DECODE_EMULATEX (0x0fa00090, 0x01a00010, emulate_rd12rn16rm0rs8_rwflags,
623  REGS(0, ANY, NOPC, 0, ANY)),
624 
625  /* AND (reg-shift reg) cccc 0000 000x xxxx xxxx xxxx 0xx1 xxxx */
626  /* EOR (reg-shift reg) cccc 0000 001x xxxx xxxx xxxx 0xx1 xxxx */
627  /* SUB (reg-shift reg) cccc 0000 010x xxxx xxxx xxxx 0xx1 xxxx */
628  /* RSB (reg-shift reg) cccc 0000 011x xxxx xxxx xxxx 0xx1 xxxx */
629  /* ADD (reg-shift reg) cccc 0000 100x xxxx xxxx xxxx 0xx1 xxxx */
630  /* ADC (reg-shift reg) cccc 0000 101x xxxx xxxx xxxx 0xx1 xxxx */
631  /* SBC (reg-shift reg) cccc 0000 110x xxxx xxxx xxxx 0xx1 xxxx */
632  /* RSC (reg-shift reg) cccc 0000 111x xxxx xxxx xxxx 0xx1 xxxx */
633  /* ORR (reg-shift reg) cccc 0001 100x xxxx xxxx xxxx 0xx1 xxxx */
634  /* BIC (reg-shift reg) cccc 0001 110x xxxx xxxx xxxx 0xx1 xxxx */
635  DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
636  REGS(ANY, ANY, NOPC, 0, ANY)),
637 
638  DECODE_END
639 };
640 
641 static const union decode_item arm_cccc_001x_table[] = {
642  /* Data-processing (immediate) */
643 
644  /* MOVW cccc 0011 0000 xxxx xxxx xxxx xxxx xxxx */
645  /* MOVT cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx */
646  DECODE_EMULATEX (0x0fb00000, 0x03000000, emulate_rd12rm0_noflags_nopc,
647  REGS(0, NOPC, 0, 0, 0)),
648 
649  /* YIELD cccc 0011 0010 0000 xxxx xxxx 0000 0001 */
650  DECODE_OR (0x0fff00ff, 0x03200001),
651  /* SEV cccc 0011 0010 0000 xxxx xxxx 0000 0100 */
652  DECODE_EMULATE (0x0fff00ff, 0x03200004, kprobe_emulate_none),
653  /* NOP cccc 0011 0010 0000 xxxx xxxx 0000 0000 */
654  /* WFE cccc 0011 0010 0000 xxxx xxxx 0000 0010 */
655  /* WFI cccc 0011 0010 0000 xxxx xxxx 0000 0011 */
656  DECODE_SIMULATE (0x0fff00fc, 0x03200000, kprobe_simulate_nop),
657  /* DBG cccc 0011 0010 0000 xxxx xxxx ffff xxxx */
658  /* unallocated hints cccc 0011 0010 0000 xxxx xxxx xxxx xxxx */
659  /* MSR (immediate) cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx */
660  DECODE_REJECT (0x0fb00000, 0x03200000),
661 
662  /* <op>S PC, ... cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx */
663  DECODE_REJECT (0x0e10f000, 0x0210f000),
664 
665  /* TST (immediate) cccc 0011 0001 xxxx xxxx xxxx xxxx xxxx */
666  /* TEQ (immediate) cccc 0011 0011 xxxx xxxx xxxx xxxx xxxx */
667  /* CMP (immediate) cccc 0011 0101 xxxx xxxx xxxx xxxx xxxx */
668  /* CMN (immediate) cccc 0011 0111 xxxx xxxx xxxx xxxx xxxx */
669  DECODE_EMULATEX (0x0f900000, 0x03100000, emulate_rd12rn16rm0rs8_rwflags,
670  REGS(ANY, 0, 0, 0, 0)),
671 
672  /* MOV (immediate) cccc 0011 101x xxxx xxxx xxxx xxxx xxxx */
673  /* MVN (immediate) cccc 0011 111x xxxx xxxx xxxx xxxx xxxx */
674  DECODE_EMULATEX (0x0fa00000, 0x03a00000, emulate_rd12rn16rm0rs8_rwflags,
675  REGS(0, ANY, 0, 0, 0)),
676 
677  /* AND (immediate) cccc 0010 000x xxxx xxxx xxxx xxxx xxxx */
678  /* EOR (immediate) cccc 0010 001x xxxx xxxx xxxx xxxx xxxx */
679  /* SUB (immediate) cccc 0010 010x xxxx xxxx xxxx xxxx xxxx */
680  /* RSB (immediate) cccc 0010 011x xxxx xxxx xxxx xxxx xxxx */
681  /* ADD (immediate) cccc 0010 100x xxxx xxxx xxxx xxxx xxxx */
682  /* ADC (immediate) cccc 0010 101x xxxx xxxx xxxx xxxx xxxx */
683  /* SBC (immediate) cccc 0010 110x xxxx xxxx xxxx xxxx xxxx */
684  /* RSC (immediate) cccc 0010 111x xxxx xxxx xxxx xxxx xxxx */
685  /* ORR (immediate) cccc 0011 100x xxxx xxxx xxxx xxxx xxxx */
686  /* BIC (immediate) cccc 0011 110x xxxx xxxx xxxx xxxx xxxx */
687  DECODE_EMULATEX (0x0e000000, 0x02000000, emulate_rd12rn16rm0rs8_rwflags,
688  REGS(ANY, ANY, 0, 0, 0)),
689 
690  DECODE_END
691 };
692 
693 static const union decode_item arm_cccc_0110_____xxx1_table[] = {
694  /* Media instructions */
695 
696  /* SEL cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx */
697  DECODE_EMULATEX (0x0ff000f0, 0x068000b0, emulate_rd12rn16rm0_rwflags_nopc,
698  REGS(NOPC, NOPC, 0, 0, NOPC)),
699 
700  /* SSAT cccc 0110 101x xxxx xxxx xxxx xx01 xxxx */
701  /* USAT cccc 0110 111x xxxx xxxx xxxx xx01 xxxx */
702  DECODE_OR(0x0fa00030, 0x06a00010),
703  /* SSAT16 cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx */
704  /* USAT16 cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx */
705  DECODE_EMULATEX (0x0fb000f0, 0x06a00030, emulate_rd12rn16rm0_rwflags_nopc,
706  REGS(0, NOPC, 0, 0, NOPC)),
707 
708  /* REV cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
709  /* REV16 cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
710  /* RBIT cccc 0110 1111 xxxx xxxx xxxx 0011 xxxx */
711  /* REVSH cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
712  DECODE_EMULATEX (0x0fb00070, 0x06b00030, emulate_rd12rm0_noflags_nopc,
713  REGS(0, NOPC, 0, 0, NOPC)),
714 
715  /* ??? cccc 0110 0x00 xxxx xxxx xxxx xxx1 xxxx */
716  DECODE_REJECT (0x0fb00010, 0x06000010),
717  /* ??? cccc 0110 0xxx xxxx xxxx xxxx 1011 xxxx */
718  DECODE_REJECT (0x0f8000f0, 0x060000b0),
719  /* ??? cccc 0110 0xxx xxxx xxxx xxxx 1101 xxxx */
720  DECODE_REJECT (0x0f8000f0, 0x060000d0),
721  /* SADD16 cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx */
722  /* SADDSUBX cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx */
723  /* SSUBADDX cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx */
724  /* SSUB16 cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx */
725  /* SADD8 cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx */
726  /* SSUB8 cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx */
727  /* QADD16 cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx */
728  /* QADDSUBX cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx */
729  /* QSUBADDX cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx */
730  /* QSUB16 cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx */
731  /* QADD8 cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx */
732  /* QSUB8 cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx */
733  /* SHADD16 cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx */
734  /* SHADDSUBX cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx */
735  /* SHSUBADDX cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx */
736  /* SHSUB16 cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx */
737  /* SHADD8 cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx */
738  /* SHSUB8 cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx */
739  /* UADD16 cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx */
740  /* UADDSUBX cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx */
741  /* USUBADDX cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx */
742  /* USUB16 cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx */
743  /* UADD8 cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx */
744  /* USUB8 cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx */
745  /* UQADD16 cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx */
746  /* UQADDSUBX cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx */
747  /* UQSUBADDX cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx */
748  /* UQSUB16 cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx */
749  /* UQADD8 cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx */
750  /* UQSUB8 cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx */
751  /* UHADD16 cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx */
752  /* UHADDSUBX cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx */
753  /* UHSUBADDX cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx */
754  /* UHSUB16 cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx */
755  /* UHADD8 cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx */
756  /* UHSUB8 cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx */
757  DECODE_EMULATEX (0x0f800010, 0x06000010, emulate_rd12rn16rm0_rwflags_nopc,
758  REGS(NOPC, NOPC, 0, 0, NOPC)),
759 
760  /* PKHBT cccc 0110 1000 xxxx xxxx xxxx x001 xxxx */
761  /* PKHTB cccc 0110 1000 xxxx xxxx xxxx x101 xxxx */
762  DECODE_EMULATEX (0x0ff00030, 0x06800010, emulate_rd12rn16rm0_rwflags_nopc,
763  REGS(NOPC, NOPC, 0, 0, NOPC)),
764 
765  /* ??? cccc 0110 1001 xxxx xxxx xxxx 0111 xxxx */
766  /* ??? cccc 0110 1101 xxxx xxxx xxxx 0111 xxxx */
767  DECODE_REJECT (0x0fb000f0, 0x06900070),
768 
769  /* SXTB16 cccc 0110 1000 1111 xxxx xxxx 0111 xxxx */
770  /* SXTB cccc 0110 1010 1111 xxxx xxxx 0111 xxxx */
771  /* SXTH cccc 0110 1011 1111 xxxx xxxx 0111 xxxx */
772  /* UXTB16 cccc 0110 1100 1111 xxxx xxxx 0111 xxxx */
773  /* UXTB cccc 0110 1110 1111 xxxx xxxx 0111 xxxx */
774  /* UXTH cccc 0110 1111 1111 xxxx xxxx 0111 xxxx */
775  DECODE_EMULATEX (0x0f8f00f0, 0x068f0070, emulate_rd12rm0_noflags_nopc,
776  REGS(0, NOPC, 0, 0, NOPC)),
777 
778  /* SXTAB16 cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx */
779  /* SXTAB cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx */
780  /* SXTAH cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx */
781  /* UXTAB16 cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx */
782  /* UXTAB cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx */
783  /* UXTAH cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx */
784  DECODE_EMULATEX (0x0f8000f0, 0x06800070, emulate_rd12rn16rm0_rwflags_nopc,
785  REGS(NOPCX, NOPC, 0, 0, NOPC)),
786 
787  DECODE_END
788 };
789 
790 static const union decode_item arm_cccc_0111_____xxx1_table[] = {
791  /* Media instructions */
792 
793  /* UNDEFINED cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
794  DECODE_REJECT (0x0ff000f0, 0x07f000f0),
795 
796  /* SMLALD cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
797  /* SMLSLD cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
798  DECODE_EMULATEX (0x0ff00090, 0x07400010, emulate_rdlo12rdhi16rn0rm8_rwflags_nopc,
799  REGS(NOPC, NOPC, NOPC, 0, NOPC)),
800 
801  /* SMUAD cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx */
802  /* SMUSD cccc 0111 0000 xxxx 1111 xxxx 01x1 xxxx */
803  DECODE_OR (0x0ff0f090, 0x0700f010),
804  /* SMMUL cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx */
805  DECODE_OR (0x0ff0f0d0, 0x0750f010),
806  /* USAD8 cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
807  DECODE_EMULATEX (0x0ff0f0f0, 0x0780f010, emulate_rd16rn12rm0rs8_rwflags_nopc,
808  REGS(NOPC, 0, NOPC, 0, NOPC)),
809 
810  /* SMLAD cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx */
811  /* SMLSD cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx */
812  DECODE_OR (0x0ff00090, 0x07000010),
813  /* SMMLA cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx */
814  DECODE_OR (0x0ff000d0, 0x07500010),
815  /* USADA8 cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
816  DECODE_EMULATEX (0x0ff000f0, 0x07800010, emulate_rd16rn12rm0rs8_rwflags_nopc,
817  REGS(NOPC, NOPCX, NOPC, 0, NOPC)),
818 
819  /* SMMLS cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx */
820  DECODE_EMULATEX (0x0ff000d0, 0x075000d0, emulate_rd16rn12rm0rs8_rwflags_nopc,
821  REGS(NOPC, NOPC, NOPC, 0, NOPC)),
822 
823  /* SBFX cccc 0111 101x xxxx xxxx xxxx x101 xxxx */
824  /* UBFX cccc 0111 111x xxxx xxxx xxxx x101 xxxx */
825  DECODE_EMULATEX (0x0fa00070, 0x07a00050, emulate_rd12rm0_noflags_nopc,
826  REGS(0, NOPC, 0, 0, NOPC)),
827 
828  /* BFC cccc 0111 110x xxxx xxxx xxxx x001 1111 */
829  DECODE_EMULATEX (0x0fe0007f, 0x07c0001f, emulate_rd12rm0_noflags_nopc,
830  REGS(0, NOPC, 0, 0, 0)),
831 
832  /* BFI cccc 0111 110x xxxx xxxx xxxx x001 xxxx */
833  DECODE_EMULATEX (0x0fe00070, 0x07c00010, emulate_rd12rm0_noflags_nopc,
834  REGS(0, NOPC, 0, 0, NOPCX)),
835 
836  DECODE_END
837 };
838 
839 static const union decode_item arm_cccc_01xx_table[] = {
840  /* Load/store word and unsigned byte */
841 
842  /* LDRB/STRB pc,[...] cccc 01xx x0xx xxxx xxxx xxxx xxxx xxxx */
843  DECODE_REJECT (0x0c40f000, 0x0440f000),
844 
845  /* STRT cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
846  /* LDRT cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
847  /* STRBT cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
848  /* LDRBT cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
849  DECODE_REJECT (0x0d200000, 0x04200000),
850 
851  /* STR (immediate) cccc 010x x0x0 xxxx xxxx xxxx xxxx xxxx */
852  /* STRB (immediate) cccc 010x x1x0 xxxx xxxx xxxx xxxx xxxx */
853  DECODE_EMULATEX (0x0e100000, 0x04000000, emulate_str,
854  REGS(NOPCWB, ANY, 0, 0, 0)),
855 
856  /* LDR (immediate) cccc 010x x0x1 xxxx xxxx xxxx xxxx xxxx */
857  /* LDRB (immediate) cccc 010x x1x1 xxxx xxxx xxxx xxxx xxxx */
858  DECODE_EMULATEX (0x0e100000, 0x04100000, emulate_ldr,
859  REGS(NOPCWB, ANY, 0, 0, 0)),
860 
861  /* STR (register) cccc 011x x0x0 xxxx xxxx xxxx xxxx xxxx */
862  /* STRB (register) cccc 011x x1x0 xxxx xxxx xxxx xxxx xxxx */
863  DECODE_EMULATEX (0x0e100000, 0x06000000, emulate_str,
864  REGS(NOPCWB, ANY, 0, 0, NOPC)),
865 
866  /* LDR (register) cccc 011x x0x1 xxxx xxxx xxxx xxxx xxxx */
867  /* LDRB (register) cccc 011x x1x1 xxxx xxxx xxxx xxxx xxxx */
868  DECODE_EMULATEX (0x0e100000, 0x06100000, emulate_ldr,
869  REGS(NOPCWB, ANY, 0, 0, NOPC)),
870 
871  DECODE_END
872 };
873 
874 static const union decode_item arm_cccc_100x_table[] = {
875  /* Block data transfer instructions */
876 
877  /* LDM cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
878  /* STM cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
879  DECODE_CUSTOM (0x0e400000, 0x08000000, kprobe_decode_ldmstm),
880 
881  /* STM (user registers) cccc 100x x1x0 xxxx xxxx xxxx xxxx xxxx */
882  /* LDM (user registers) cccc 100x x1x1 xxxx 0xxx xxxx xxxx xxxx */
883  /* LDM (exception ret) cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
884  DECODE_END
885 };
886 
888  /*
889  * Unconditional instructions
890  * 1111 xxxx xxxx xxxx xxxx xxxx xxxx xxxx
891  */
892  DECODE_TABLE (0xf0000000, 0xf0000000, arm_1111_table),
893 
894  /*
895  * Miscellaneous instructions
896  * cccc 0001 0xx0 xxxx xxxx xxxx 0xxx xxxx
897  */
898  DECODE_TABLE (0x0f900080, 0x01000000, arm_cccc_0001_0xx0____0xxx_table),
899 
900  /*
901  * Halfword multiply and multiply-accumulate
902  * cccc 0001 0xx0 xxxx xxxx xxxx 1xx0 xxxx
903  */
904  DECODE_TABLE (0x0f900090, 0x01000080, arm_cccc_0001_0xx0____1xx0_table),
905 
906  /*
907  * Multiply and multiply-accumulate
908  * cccc 0000 xxxx xxxx xxxx xxxx 1001 xxxx
909  */
910  DECODE_TABLE (0x0f0000f0, 0x00000090, arm_cccc_0000_____1001_table),
911 
912  /*
913  * Synchronization primitives
914  * cccc 0001 xxxx xxxx xxxx xxxx 1001 xxxx
915  */
916  DECODE_TABLE (0x0f0000f0, 0x01000090, arm_cccc_0001_____1001_table),
917 
918  /*
919  * Extra load/store instructions
920  * cccc 000x xxxx xxxx xxxx xxxx 1xx1 xxxx
921  */
922  DECODE_TABLE (0x0e000090, 0x00000090, arm_cccc_000x_____1xx1_table),
923 
924  /*
925  * Data-processing (register)
926  * cccc 000x xxxx xxxx xxxx xxxx xxx0 xxxx
927  * Data-processing (register-shifted register)
928  * cccc 000x xxxx xxxx xxxx xxxx 0xx1 xxxx
929  */
930  DECODE_TABLE (0x0e000000, 0x00000000, arm_cccc_000x_table),
931 
932  /*
933  * Data-processing (immediate)
934  * cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
935  */
936  DECODE_TABLE (0x0e000000, 0x02000000, arm_cccc_001x_table),
937 
938  /*
939  * Media instructions
940  * cccc 011x xxxx xxxx xxxx xxxx xxx1 xxxx
941  */
942  DECODE_TABLE (0x0f000010, 0x06000010, arm_cccc_0110_____xxx1_table),
943  DECODE_TABLE (0x0f000010, 0x07000010, arm_cccc_0111_____xxx1_table),
944 
945  /*
946  * Load/store word and unsigned byte
947  * cccc 01xx xxxx xxxx xxxx xxxx xxxx xxxx
948  */
949  DECODE_TABLE (0x0c000000, 0x04000000, arm_cccc_01xx_table),
950 
951  /*
952  * Block data transfer instructions
953  * cccc 100x xxxx xxxx xxxx xxxx xxxx xxxx
954  */
955  DECODE_TABLE (0x0e000000, 0x08000000, arm_cccc_100x_table),
956 
957  /* B cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
958  /* BL cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
959  DECODE_SIMULATE (0x0e000000, 0x0a000000, simulate_bbl),
960 
961  /*
962  * Supervisor Call, and coprocessor instructions
963  */
964 
965  /* MCRR cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx */
966  /* MRRC cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx */
967  /* LDC cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
968  /* STC cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
969  /* CDP cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
970  /* MCR cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
971  /* MRC cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
972  /* SVC cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
973  DECODE_REJECT (0x0c000000, 0x0c000000),
974 
975  DECODE_END
976 };
977 #ifdef CONFIG_ARM_KPROBES_TEST_MODULE
978 EXPORT_SYMBOL_GPL(kprobe_decode_arm_table);
979 #endif
980 
981 static void __kprobes arm_singlestep(struct kprobe *p, struct pt_regs *regs)
982 {
983  regs->ARM_pc += 4;
984  p->ainsn.insn_handler(p, regs);
985 }
986 
987 /* Return:
988  * INSN_REJECTED If instruction is one not allowed to kprobe,
989  * INSN_GOOD If instruction is supported and uses instruction slot,
990  * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
991  *
992  * For instructions we don't want to kprobe (INSN_REJECTED return result):
993  * These are generally ones that modify the processor state making
994  * them "hard" to simulate such as switches processor modes or
995  * make accesses in alternate modes. Any of these could be simulated
996  * if the work was put into it, but low return considering they
997  * should also be very rare.
998  */
1001 {
1002  asi->insn_singlestep = arm_singlestep;
1003  asi->insn_check_cc = kprobe_condition_checks[insn>>28];
1004  return kprobe_decode_insn(insn, asi, kprobe_decode_arm_table, false);
1005 }