Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lguest_device.c
Go to the documentation of this file.
1 /*P:050
2  * Lguest guests use a very simple method to describe devices. It's a
3  * series of device descriptors contained just above the top of normal Guest
4  * memory.
5  *
6  * We use the standard "virtio" device infrastructure, which provides us with a
7  * console, a network and a block driver. Each one expects some configuration
8  * information and a "virtqueue" or two to send and receive data.
9 :*/
10 #include <linux/init.h>
11 #include <linux/bootmem.h>
12 #include <linux/lguest_launcher.h>
13 #include <linux/virtio.h>
14 #include <linux/virtio_config.h>
15 #include <linux/interrupt.h>
16 #include <linux/virtio_ring.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/slab.h>
20 #include <asm/io.h>
21 #include <asm/paravirt.h>
22 #include <asm/lguest_hcall.h>
23 
24 /* The pointer to our (page) of device descriptions. */
25 static void *lguest_devices;
26 
27 /*
28  * For Guests, device memory can be used as normal memory, so we cast away the
29  * __iomem to quieten sparse.
30  */
31 static inline void *lguest_map(unsigned long phys_addr, unsigned long pages)
32 {
33  return (__force void *)ioremap_cache(phys_addr, PAGE_SIZE*pages);
34 }
35 
36 static inline void lguest_unmap(void *addr)
37 {
38  iounmap((__force void __iomem *)addr);
39 }
40 
41 /*D:100
42  * Each lguest device is just a virtio device plus a pointer to its entry
43  * in the lguest_devices page.
44  */
45 struct lguest_device {
47 
48  /* The entry in the lguest_devices page for this device. */
50 };
51 
52 /*
53  * Since the virtio infrastructure hands us a pointer to the virtio_device all
54  * the time, it helps to have a curt macro to get a pointer to the struct
55  * lguest_device it's enclosed in.
56  */
57 #define to_lgdev(vd) container_of(vd, struct lguest_device, vdev)
58 
59 /*D:130
60  * Device configurations
61  *
62  * The configuration information for a device consists of one or more
63  * virtqueues, a feature bitmap, and some configuration bytes. The
64  * configuration bytes don't really matter to us: the Launcher sets them up, and
65  * the driver will look at them during setup.
66  *
67  * A convenient routine to return the device's virtqueue config array:
68  * immediately after the descriptor.
69  */
70 static struct lguest_vqconfig *lg_vq(const struct lguest_device_desc *desc)
71 {
72  return (void *)(desc + 1);
73 }
74 
75 /* The features come immediately after the virtqueues. */
76 static u8 *lg_features(const struct lguest_device_desc *desc)
77 {
78  return (void *)(lg_vq(desc) + desc->num_vq);
79 }
80 
81 /* The config space comes after the two feature bitmasks. */
82 static u8 *lg_config(const struct lguest_device_desc *desc)
83 {
84  return lg_features(desc) + desc->feature_len * 2;
85 }
86 
87 /* The total size of the config page used by this device (incl. desc) */
88 static unsigned desc_size(const struct lguest_device_desc *desc)
89 {
90  return sizeof(*desc)
91  + desc->num_vq * sizeof(struct lguest_vqconfig)
92  + desc->feature_len * 2
93  + desc->config_len;
94 }
95 
96 /* This gets the device's feature bits. */
97 static u32 lg_get_features(struct virtio_device *vdev)
98 {
99  unsigned int i;
100  u32 features = 0;
101  struct lguest_device_desc *desc = to_lgdev(vdev)->desc;
102  u8 *in_features = lg_features(desc);
103 
104  /* We do this the slow but generic way. */
105  for (i = 0; i < min(desc->feature_len * 8, 32); i++)
106  if (in_features[i / 8] & (1 << (i % 8)))
107  features |= (1 << i);
108 
109  return features;
110 }
111 
112 /*
113  * To notify on reset or feature finalization, we (ab)use the NOTIFY
114  * hypercall, with the descriptor address of the device.
115  */
116 static void status_notify(struct virtio_device *vdev)
117 {
118  unsigned long offset = (void *)to_lgdev(vdev)->desc - lguest_devices;
119 
120  hcall(LHCALL_NOTIFY, (max_pfn << PAGE_SHIFT) + offset, 0, 0, 0);
121 }
122 
123 /*
124  * The virtio core takes the features the Host offers, and copies the ones
125  * supported by the driver into the vdev->features array. Once that's all
126  * sorted out, this routine is called so we can tell the Host which features we
127  * understand and accept.
128  */
129 static void lg_finalize_features(struct virtio_device *vdev)
130 {
131  unsigned int i, bits;
132  struct lguest_device_desc *desc = to_lgdev(vdev)->desc;
133  /* Second half of bitmap is features we accept. */
134  u8 *out_features = lg_features(desc) + desc->feature_len;
135 
136  /* Give virtio_ring a chance to accept features. */
138 
139  /*
140  * The vdev->feature array is a Linux bitmask: this isn't the same as a
141  * the simple array of bits used by lguest devices for features. So we
142  * do this slow, manual conversion which is completely general.
143  */
144  memset(out_features, 0, desc->feature_len);
145  bits = min_t(unsigned, desc->feature_len, sizeof(vdev->features)) * 8;
146  for (i = 0; i < bits; i++) {
147  if (test_bit(i, vdev->features))
148  out_features[i / 8] |= (1 << (i % 8));
149  }
150 
151  /* Tell Host we've finished with this device's feature negotiation */
152  status_notify(vdev);
153 }
154 
155 /* Once they've found a field, getting a copy of it is easy. */
156 static void lg_get(struct virtio_device *vdev, unsigned int offset,
157  void *buf, unsigned len)
158 {
159  struct lguest_device_desc *desc = to_lgdev(vdev)->desc;
160 
161  /* Check they didn't ask for more than the length of the config! */
162  BUG_ON(offset + len > desc->config_len);
163  memcpy(buf, lg_config(desc) + offset, len);
164 }
165 
166 /* Setting the contents is also trivial. */
167 static void lg_set(struct virtio_device *vdev, unsigned int offset,
168  const void *buf, unsigned len)
169 {
170  struct lguest_device_desc *desc = to_lgdev(vdev)->desc;
171 
172  /* Check they didn't ask for more than the length of the config! */
173  BUG_ON(offset + len > desc->config_len);
174  memcpy(lg_config(desc) + offset, buf, len);
175 }
176 
177 /*
178  * The operations to get and set the status word just access the status field
179  * of the device descriptor.
180  */
181 static u8 lg_get_status(struct virtio_device *vdev)
182 {
183  return to_lgdev(vdev)->desc->status;
184 }
185 
186 static void lg_set_status(struct virtio_device *vdev, u8 status)
187 {
188  BUG_ON(!status);
189  to_lgdev(vdev)->desc->status = status;
190 
191  /* Tell Host immediately if we failed. */
192  if (status & VIRTIO_CONFIG_S_FAILED)
193  status_notify(vdev);
194 }
195 
196 static void lg_reset(struct virtio_device *vdev)
197 {
198  /* 0 status means "reset" */
199  to_lgdev(vdev)->desc->status = 0;
200  status_notify(vdev);
201 }
202 
203 /*
204  * Virtqueues
205  *
206  * The other piece of infrastructure virtio needs is a "virtqueue": a way of
207  * the Guest device registering buffers for the other side to read from or
208  * write into (ie. send and receive buffers). Each device can have multiple
209  * virtqueues: for example the console driver uses one queue for sending and
210  * another for receiving.
211  *
212  * Fortunately for us, a very fast shared-memory-plus-descriptors virtqueue
213  * already exists in virtio_ring.c. We just need to connect it up.
214  *
215  * We start with the information we need to keep about each virtqueue.
216  */
217 
218 /*D:140 This is the information we remember about each virtqueue. */
220  /* A copy of the information contained in the device config. */
222 
223  /* The address where we mapped the virtio ring, so we can unmap it. */
224  void *pages;
225 };
226 
227 /*
228  * When the virtio_ring code wants to prod the Host, it calls us here and we
229  * make a hypercall. We hand the physical address of the virtqueue so the Host
230  * knows which virtqueue we're talking about.
231  */
232 static void lg_notify(struct virtqueue *vq)
233 {
234  /*
235  * We store our virtqueue information in the "priv" pointer of the
236  * virtqueue structure.
237  */
238  struct lguest_vq_info *lvq = vq->priv;
239 
240  hcall(LHCALL_NOTIFY, lvq->config.pfn << PAGE_SHIFT, 0, 0, 0);
241 }
242 
243 /* An extern declaration inside a C file is bad form. Don't do it. */
244 extern int lguest_setup_irq(unsigned int irq);
245 
246 /*
247  * This routine finds the Nth virtqueue described in the configuration of
248  * this device and sets it up.
249  *
250  * This is kind of an ugly duckling. It'd be nicer to have a standard
251  * representation of a virtqueue in the configuration space, but it seems that
252  * everyone wants to do it differently. The KVM coders want the Guest to
253  * allocate its own pages and tell the Host where they are, but for lguest it's
254  * simpler for the Host to simply tell us where the pages are.
255  */
256 static struct virtqueue *lg_find_vq(struct virtio_device *vdev,
257  unsigned index,
258  void (*callback)(struct virtqueue *vq),
259  const char *name)
260 {
261  struct lguest_device *ldev = to_lgdev(vdev);
262  struct lguest_vq_info *lvq;
263  struct virtqueue *vq;
264  int err;
265 
266  if (!name)
267  return NULL;
268 
269  /* We must have this many virtqueues. */
270  if (index >= ldev->desc->num_vq)
271  return ERR_PTR(-ENOENT);
272 
273  lvq = kmalloc(sizeof(*lvq), GFP_KERNEL);
274  if (!lvq)
275  return ERR_PTR(-ENOMEM);
276 
277  /*
278  * Make a copy of the "struct lguest_vqconfig" entry, which sits after
279  * the descriptor. We need a copy because the config space might not
280  * be aligned correctly.
281  */
282  memcpy(&lvq->config, lg_vq(ldev->desc)+index, sizeof(lvq->config));
283 
284  printk("Mapping virtqueue %i addr %lx\n", index,
285  (unsigned long)lvq->config.pfn << PAGE_SHIFT);
286  /* Figure out how many pages the ring will take, and map that memory */
287  lvq->pages = lguest_map((unsigned long)lvq->config.pfn << PAGE_SHIFT,
288  DIV_ROUND_UP(vring_size(lvq->config.num,
290  PAGE_SIZE));
291  if (!lvq->pages) {
292  err = -ENOMEM;
293  goto free_lvq;
294  }
295 
296  /*
297  * OK, tell virtio_ring.c to set up a virtqueue now we know its size
298  * and we've got a pointer to its pages. Note that we set weak_barriers
299  * to 'true': the host just a(nother) SMP CPU, so we only need inter-cpu
300  * barriers.
301  */
302  vq = vring_new_virtqueue(index, lvq->config.num, LGUEST_VRING_ALIGN, vdev,
303  true, lvq->pages, lg_notify, callback, name);
304  if (!vq) {
305  err = -ENOMEM;
306  goto unmap;
307  }
308 
309  /* Make sure the interrupt is allocated. */
310  err = lguest_setup_irq(lvq->config.irq);
311  if (err)
312  goto destroy_vring;
313 
314  /*
315  * Tell the interrupt for this virtqueue to go to the virtio_ring
316  * interrupt handler.
317  *
318  * FIXME: We used to have a flag for the Host to tell us we could use
319  * the interrupt as a source of randomness: it'd be nice to have that
320  * back.
321  */
323  dev_name(&vdev->dev), vq);
324  if (err)
325  goto free_desc;
326 
327  /*
328  * Last of all we hook up our 'struct lguest_vq_info" to the
329  * virtqueue's priv pointer.
330  */
331  vq->priv = lvq;
332  return vq;
333 
334 free_desc:
335  irq_free_desc(lvq->config.irq);
336 destroy_vring:
338 unmap:
339  lguest_unmap(lvq->pages);
340 free_lvq:
341  kfree(lvq);
342  return ERR_PTR(err);
343 }
344 /*:*/
345 
346 /* Cleaning up a virtqueue is easy */
347 static void lg_del_vq(struct virtqueue *vq)
348 {
349  struct lguest_vq_info *lvq = vq->priv;
350 
351  /* Release the interrupt */
352  free_irq(lvq->config.irq, vq);
353  /* Tell virtio_ring.c to free the virtqueue. */
355  /* Unmap the pages containing the ring. */
356  lguest_unmap(lvq->pages);
357  /* Free our own queue information. */
358  kfree(lvq);
359 }
360 
361 static void lg_del_vqs(struct virtio_device *vdev)
362 {
363  struct virtqueue *vq, *n;
364 
365  list_for_each_entry_safe(vq, n, &vdev->vqs, list)
366  lg_del_vq(vq);
367 }
368 
369 static int lg_find_vqs(struct virtio_device *vdev, unsigned nvqs,
370  struct virtqueue *vqs[],
371  vq_callback_t *callbacks[],
372  const char *names[])
373 {
374  struct lguest_device *ldev = to_lgdev(vdev);
375  int i;
376 
377  /* We must have this many virtqueues. */
378  if (nvqs > ldev->desc->num_vq)
379  return -ENOENT;
380 
381  for (i = 0; i < nvqs; ++i) {
382  vqs[i] = lg_find_vq(vdev, i, callbacks[i], names[i]);
383  if (IS_ERR(vqs[i]))
384  goto error;
385  }
386  return 0;
387 
388 error:
389  lg_del_vqs(vdev);
390  return PTR_ERR(vqs[i]);
391 }
392 
393 static const char *lg_bus_name(struct virtio_device *vdev)
394 {
395  return "";
396 }
397 
398 /* The ops structure which hooks everything together. */
399 static struct virtio_config_ops lguest_config_ops = {
400  .get_features = lg_get_features,
401  .finalize_features = lg_finalize_features,
402  .get = lg_get,
403  .set = lg_set,
404  .get_status = lg_get_status,
405  .set_status = lg_set_status,
406  .reset = lg_reset,
407  .find_vqs = lg_find_vqs,
408  .del_vqs = lg_del_vqs,
409  .bus_name = lg_bus_name,
410 };
411 
412 /*
413  * The root device for the lguest virtio devices. This makes them appear as
414  * /sys/devices/lguest/0,1,2 not /sys/devices/0,1,2.
415  */
416 static struct device *lguest_root;
417 
418 /*D:120
419  * This is the core of the lguest bus: actually adding a new device.
420  * It's a separate function because it's neater that way, and because an
421  * earlier version of the code supported hotplug and unplug. They were removed
422  * early on because they were never used.
423  *
424  * As Andrew Tridgell says, "Untested code is buggy code".
425  *
426  * It's worth reading this carefully: we start with a pointer to the new device
427  * descriptor in the "lguest_devices" page, and the offset into the device
428  * descriptor page so we can uniquely identify it if things go badly wrong.
429  */
430 static void add_lguest_device(struct lguest_device_desc *d,
431  unsigned int offset)
432 {
433  struct lguest_device *ldev;
434 
435  /* Start with zeroed memory; Linux's device layer counts on it. */
436  ldev = kzalloc(sizeof(*ldev), GFP_KERNEL);
437  if (!ldev) {
438  printk(KERN_EMERG "Cannot allocate lguest dev %u type %u\n",
439  offset, d->type);
440  return;
441  }
442 
443  /* This devices' parent is the lguest/ dir. */
444  ldev->vdev.dev.parent = lguest_root;
445  /*
446  * The device type comes straight from the descriptor. There's also a
447  * device vendor field in the virtio_device struct, which we leave as
448  * 0.
449  */
450  ldev->vdev.id.device = d->type;
451  /*
452  * We have a simple set of routines for querying the device's
453  * configuration information and setting its status.
454  */
455  ldev->vdev.config = &lguest_config_ops;
456  /* And we remember the device's descriptor for lguest_config_ops. */
457  ldev->desc = d;
458 
459  /*
460  * register_virtio_device() sets up the generic fields for the struct
461  * virtio_device and calls device_register(). This makes the bus
462  * infrastructure look for a matching driver.
463  */
464  if (register_virtio_device(&ldev->vdev) != 0) {
465  printk(KERN_ERR "Failed to register lguest dev %u type %u\n",
466  offset, d->type);
467  kfree(ldev);
468  }
469 }
470 
471 /*D:110
472  * scan_devices() simply iterates through the device page. The type 0 is
473  * reserved to mean "end of devices".
474  */
475 static void scan_devices(void)
476 {
477  unsigned int i;
478  struct lguest_device_desc *d;
479 
480  /* We start at the page beginning, and skip over each entry. */
481  for (i = 0; i < PAGE_SIZE; i += desc_size(d)) {
482  d = lguest_devices + i;
483 
484  /* Once we hit a zero, stop. */
485  if (d->type == 0)
486  break;
487 
488  printk("Device at %i has size %u\n", i, desc_size(d));
489  add_lguest_device(d, i);
490  }
491 }
492 
493 /*D:105
494  * Fairly early in boot, lguest_devices_init() is called to set up the
495  * lguest device infrastructure. We check that we are a Guest by checking
496  * pv_info.name: there are other ways of checking, but this seems most
497  * obvious to me.
498  *
499  * So we can access the "struct lguest_device_desc"s easily, we map that memory
500  * and store the pointer in the global "lguest_devices". Then we register a
501  * root device from which all our devices will hang (this seems to be the
502  * correct sysfs incantation).
503  *
504  * Finally we call scan_devices() which adds all the devices found in the
505  * lguest_devices page.
506  */
507 static int __init lguest_devices_init(void)
508 {
509  if (strcmp(pv_info.name, "lguest") != 0)
510  return 0;
511 
512  lguest_root = root_device_register("lguest");
513  if (IS_ERR(lguest_root))
514  panic("Could not register lguest root");
515 
516  /* Devices are in a single page above top of "normal" mem */
517  lguest_devices = lguest_map(max_pfn<<PAGE_SHIFT, 1);
518 
519  scan_devices();
520  return 0;
521 }
522 /* We do this after core stuff, but before the drivers. */
523 postcore_initcall(lguest_devices_init);
524 
525 /*D:150
526  * At this point in the journey we used to now wade through the lguest
527  * devices themselves: net, block and console. Since they're all now virtio
528  * devices rather than lguest-specific, I've decided to ignore them. Mostly,
529  * they're kind of boring. But this does mean you'll never experience the
530  * thrill of reading the forbidden love scene buried deep in the block driver.
531  *
532  * "make Launcher" beckons, where we answer questions like "Where do Guests
533  * come from?", and "What do you do when someone asks for optimization?".
534  */