Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lineage-pem.c
Go to the documentation of this file.
1 /*
2  * Driver for Lineage Compact Power Line series of power entry modules.
3  *
4  * Copyright (C) 2010, 2011 Ericsson AB.
5  *
6  * Documentation:
7  * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/hwmon.h>
31 #include <linux/hwmon-sysfs.h>
32 #include <linux/jiffies.h>
33 
34 /*
35  * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
36  * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
37  *
38  * The devices are nominally PMBus compliant. However, most standard PMBus
39  * commands are not supported. Specifically, all hardware monitoring and
40  * status reporting commands are non-standard. For this reason, a standard
41  * PMBus driver can not be used.
42  *
43  * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
44  * To ensure device access, this driver should only be used as client driver
45  * to the pca9541 I2C master selector driver.
46  */
47 
48 /* Command codes */
49 #define PEM_OPERATION 0x01
50 #define PEM_CLEAR_INFO_FLAGS 0x03
51 #define PEM_VOUT_COMMAND 0x21
52 #define PEM_VOUT_OV_FAULT_LIMIT 0x40
53 #define PEM_READ_DATA_STRING 0xd0
54 #define PEM_READ_INPUT_STRING 0xdc
55 #define PEM_READ_FIRMWARE_REV 0xdd
56 #define PEM_READ_RUN_TIMER 0xde
57 #define PEM_FAN_HI_SPEED 0xdf
58 #define PEM_FAN_NORMAL_SPEED 0xe0
59 #define PEM_READ_FAN_SPEED 0xe1
60 
61 /* offsets in data string */
62 #define PEM_DATA_STATUS_2 0
63 #define PEM_DATA_STATUS_1 1
64 #define PEM_DATA_ALARM_2 2
65 #define PEM_DATA_ALARM_1 3
66 #define PEM_DATA_VOUT_LSB 4
67 #define PEM_DATA_VOUT_MSB 5
68 #define PEM_DATA_CURRENT 6
69 #define PEM_DATA_TEMP 7
70 
71 /* Virtual entries, to report constants */
72 #define PEM_DATA_TEMP_MAX 10
73 #define PEM_DATA_TEMP_CRIT 11
74 
75 /* offsets in input string */
76 #define PEM_INPUT_VOLTAGE 0
77 #define PEM_INPUT_POWER_LSB 1
78 #define PEM_INPUT_POWER_MSB 2
79 
80 /* offsets in fan data */
81 #define PEM_FAN_ADJUSTMENT 0
82 #define PEM_FAN_FAN1 1
83 #define PEM_FAN_FAN2 2
84 #define PEM_FAN_FAN3 3
85 
86 /* Status register bits */
87 #define STS1_OUTPUT_ON (1 << 0)
88 #define STS1_LEDS_FLASHING (1 << 1)
89 #define STS1_EXT_FAULT (1 << 2)
90 #define STS1_SERVICE_LED_ON (1 << 3)
91 #define STS1_SHUTDOWN_OCCURRED (1 << 4)
92 #define STS1_INT_FAULT (1 << 5)
93 #define STS1_ISOLATION_TEST_OK (1 << 6)
94 
95 #define STS2_ENABLE_PIN_HI (1 << 0)
96 #define STS2_DATA_OUT_RANGE (1 << 1)
97 #define STS2_RESTARTED_OK (1 << 1)
98 #define STS2_ISOLATION_TEST_FAIL (1 << 3)
99 #define STS2_HIGH_POWER_CAP (1 << 4)
100 #define STS2_INVALID_INSTR (1 << 5)
101 #define STS2_WILL_RESTART (1 << 6)
102 #define STS2_PEC_ERR (1 << 7)
103 
104 /* Alarm register bits */
105 #define ALRM1_VIN_OUT_LIMIT (1 << 0)
106 #define ALRM1_VOUT_OUT_LIMIT (1 << 1)
107 #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
108 #define ALRM1_VIN_OVERCURRENT (1 << 3)
109 #define ALRM1_TEMP_WARNING (1 << 4)
110 #define ALRM1_TEMP_SHUTDOWN (1 << 5)
111 #define ALRM1_PRIMARY_FAULT (1 << 6)
112 #define ALRM1_POWER_LIMIT (1 << 7)
113 
114 #define ALRM2_5V_OUT_LIMIT (1 << 1)
115 #define ALRM2_TEMP_FAULT (1 << 2)
116 #define ALRM2_OV_LOW (1 << 3)
117 #define ALRM2_DCDC_TEMP_HIGH (1 << 4)
118 #define ALRM2_PRI_TEMP_HIGH (1 << 5)
119 #define ALRM2_NO_PRIMARY (1 << 6)
120 #define ALRM2_FAN_FAULT (1 << 7)
121 
122 #define FIRMWARE_REV_LEN 4
123 #define DATA_STRING_LEN 9
124 #define INPUT_STRING_LEN 5 /* 4 for most devices */
125 #define FAN_SPEED_LEN 5
126 
127 struct pem_data {
128  struct device *hwmon_dev;
129 
131  bool valid;
134  unsigned long last_updated; /* in jiffies */
135 
140 };
141 
142 static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
143  int data_len)
144 {
145  u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
146  int result;
147 
148  result = i2c_smbus_read_block_data(client, command, block_buffer);
149  if (unlikely(result < 0))
150  goto abort;
151  if (unlikely(result == 0xff || result != data_len)) {
152  result = -EIO;
153  goto abort;
154  }
155  memcpy(data, block_buffer, data_len);
156  result = 0;
157 abort:
158  return result;
159 }
160 
161 static struct pem_data *pem_update_device(struct device *dev)
162 {
163  struct i2c_client *client = to_i2c_client(dev);
164  struct pem_data *data = i2c_get_clientdata(client);
165  struct pem_data *ret = data;
166 
167  mutex_lock(&data->update_lock);
168 
169  if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
170  int result;
171 
172  /* Read data string */
173  result = pem_read_block(client, PEM_READ_DATA_STRING,
174  data->data_string,
175  sizeof(data->data_string));
176  if (unlikely(result < 0)) {
177  ret = ERR_PTR(result);
178  goto abort;
179  }
180 
181  /* Read input string */
182  if (data->input_length) {
183  result = pem_read_block(client, PEM_READ_INPUT_STRING,
184  data->input_string,
185  data->input_length);
186  if (unlikely(result < 0)) {
187  ret = ERR_PTR(result);
188  goto abort;
189  }
190  }
191 
192  /* Read fan speeds */
193  if (data->fans_supported) {
194  result = pem_read_block(client, PEM_READ_FAN_SPEED,
195  data->fan_speed,
196  sizeof(data->fan_speed));
197  if (unlikely(result < 0)) {
198  ret = ERR_PTR(result);
199  goto abort;
200  }
201  }
202 
204 
205  data->last_updated = jiffies;
206  data->valid = 1;
207  }
208 abort:
209  mutex_unlock(&data->update_lock);
210  return ret;
211 }
212 
213 static long pem_get_data(u8 *data, int len, int index)
214 {
215  long val;
216 
217  switch (index) {
218  case PEM_DATA_VOUT_LSB:
219  val = (data[index] + (data[index+1] << 8)) * 5 / 2;
220  break;
221  case PEM_DATA_CURRENT:
222  val = data[index] * 200;
223  break;
224  case PEM_DATA_TEMP:
225  val = data[index] * 1000;
226  break;
227  case PEM_DATA_TEMP_MAX:
228  val = 97 * 1000; /* 97 degrees C per datasheet */
229  break;
230  case PEM_DATA_TEMP_CRIT:
231  val = 107 * 1000; /* 107 degrees C per datasheet */
232  break;
233  default:
234  WARN_ON_ONCE(1);
235  val = 0;
236  }
237  return val;
238 }
239 
240 static long pem_get_input(u8 *data, int len, int index)
241 {
242  long val;
243 
244  switch (index) {
245  case PEM_INPUT_VOLTAGE:
246  if (len == INPUT_STRING_LEN)
247  val = (data[index] + (data[index+1] << 8) - 75) * 1000;
248  else
249  val = (data[index] - 75) * 1000;
250  break;
251  case PEM_INPUT_POWER_LSB:
252  if (len == INPUT_STRING_LEN)
253  index++;
254  val = (data[index] + (data[index+1] << 8)) * 1000000L;
255  break;
256  default:
257  WARN_ON_ONCE(1);
258  val = 0;
259  }
260  return val;
261 }
262 
263 static long pem_get_fan(u8 *data, int len, int index)
264 {
265  long val;
266 
267  switch (index) {
268  case PEM_FAN_FAN1:
269  case PEM_FAN_FAN2:
270  case PEM_FAN_FAN3:
271  val = data[index] * 100;
272  break;
273  default:
274  WARN_ON_ONCE(1);
275  val = 0;
276  }
277  return val;
278 }
279 
280 /*
281  * Show boolean, either a fault or an alarm.
282  * .nr points to the register, .index is the bit mask to check
283  */
284 static ssize_t pem_show_bool(struct device *dev,
285  struct device_attribute *da, char *buf)
286 {
288  struct pem_data *data = pem_update_device(dev);
289  u8 status;
290 
291  if (IS_ERR(data))
292  return PTR_ERR(data);
293 
294  status = data->data_string[attr->nr] & attr->index;
295  return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
296 }
297 
298 static ssize_t pem_show_data(struct device *dev, struct device_attribute *da,
299  char *buf)
300 {
301  struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
302  struct pem_data *data = pem_update_device(dev);
303  long value;
304 
305  if (IS_ERR(data))
306  return PTR_ERR(data);
307 
308  value = pem_get_data(data->data_string, sizeof(data->data_string),
309  attr->index);
310 
311  return snprintf(buf, PAGE_SIZE, "%ld\n", value);
312 }
313 
314 static ssize_t pem_show_input(struct device *dev, struct device_attribute *da,
315  char *buf)
316 {
317  struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
318  struct pem_data *data = pem_update_device(dev);
319  long value;
320 
321  if (IS_ERR(data))
322  return PTR_ERR(data);
323 
324  value = pem_get_input(data->input_string, sizeof(data->input_string),
325  attr->index);
326 
327  return snprintf(buf, PAGE_SIZE, "%ld\n", value);
328 }
329 
330 static ssize_t pem_show_fan(struct device *dev, struct device_attribute *da,
331  char *buf)
332 {
333  struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
334  struct pem_data *data = pem_update_device(dev);
335  long value;
336 
337  if (IS_ERR(data))
338  return PTR_ERR(data);
339 
340  value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
341  attr->index);
342 
343  return snprintf(buf, PAGE_SIZE, "%ld\n", value);
344 }
345 
346 /* Voltages */
347 static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, pem_show_data, NULL,
349 static SENSOR_DEVICE_ATTR_2(in1_alarm, S_IRUGO, pem_show_bool, NULL,
351 static SENSOR_DEVICE_ATTR_2(in1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
353 static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, pem_show_input, NULL,
355 static SENSOR_DEVICE_ATTR_2(in2_alarm, S_IRUGO, pem_show_bool, NULL,
358 
359 /* Currents */
360 static SENSOR_DEVICE_ATTR(curr1_input, S_IRUGO, pem_show_data, NULL,
362 static SENSOR_DEVICE_ATTR_2(curr1_alarm, S_IRUGO, pem_show_bool, NULL,
364 
365 /* Power */
366 static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, pem_show_input, NULL,
368 static SENSOR_DEVICE_ATTR_2(power1_alarm, S_IRUGO, pem_show_bool, NULL,
370 
371 /* Fans */
372 static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, pem_show_fan, NULL,
373  PEM_FAN_FAN1);
374 static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, pem_show_fan, NULL,
375  PEM_FAN_FAN2);
376 static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, pem_show_fan, NULL,
377  PEM_FAN_FAN3);
378 static SENSOR_DEVICE_ATTR_2(fan1_alarm, S_IRUGO, pem_show_bool, NULL,
380 
381 /* Temperatures */
382 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, pem_show_data, NULL,
383  PEM_DATA_TEMP);
384 static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, pem_show_data, NULL,
386 static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, pem_show_data, NULL,
388 static SENSOR_DEVICE_ATTR_2(temp1_alarm, S_IRUGO, pem_show_bool, NULL,
390 static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
392 static SENSOR_DEVICE_ATTR_2(temp1_fault, S_IRUGO, pem_show_bool, NULL,
394 
395 static struct attribute *pem_attributes[] = {
396  &sensor_dev_attr_in1_input.dev_attr.attr,
397  &sensor_dev_attr_in1_alarm.dev_attr.attr,
398  &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
399  &sensor_dev_attr_in2_alarm.dev_attr.attr,
400 
401  &sensor_dev_attr_curr1_alarm.dev_attr.attr,
402 
403  &sensor_dev_attr_power1_alarm.dev_attr.attr,
404 
405  &sensor_dev_attr_fan1_alarm.dev_attr.attr,
406 
407  &sensor_dev_attr_temp1_input.dev_attr.attr,
408  &sensor_dev_attr_temp1_max.dev_attr.attr,
409  &sensor_dev_attr_temp1_crit.dev_attr.attr,
410  &sensor_dev_attr_temp1_alarm.dev_attr.attr,
411  &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
412  &sensor_dev_attr_temp1_fault.dev_attr.attr,
413 
414  NULL,
415 };
416 
417 static const struct attribute_group pem_group = {
418  .attrs = pem_attributes,
419 };
420 
421 static struct attribute *pem_input_attributes[] = {
422  &sensor_dev_attr_in2_input.dev_attr.attr,
423  &sensor_dev_attr_curr1_input.dev_attr.attr,
424  &sensor_dev_attr_power1_input.dev_attr.attr,
425 };
426 
427 static const struct attribute_group pem_input_group = {
428  .attrs = pem_input_attributes,
429 };
430 
431 static struct attribute *pem_fan_attributes[] = {
432  &sensor_dev_attr_fan1_input.dev_attr.attr,
433  &sensor_dev_attr_fan2_input.dev_attr.attr,
434  &sensor_dev_attr_fan3_input.dev_attr.attr,
435 };
436 
437 static const struct attribute_group pem_fan_group = {
438  .attrs = pem_fan_attributes,
439 };
440 
441 static int pem_probe(struct i2c_client *client,
442  const struct i2c_device_id *id)
443 {
444  struct i2c_adapter *adapter = client->adapter;
445  struct pem_data *data;
446  int ret;
447 
448  if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
450  return -ENODEV;
451 
452  data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
453  if (!data)
454  return -ENOMEM;
455 
456  i2c_set_clientdata(client, data);
457  mutex_init(&data->update_lock);
458 
459  /*
460  * We use the next two commands to determine if the device is really
461  * there.
462  */
463  ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
464  data->firmware_rev, sizeof(data->firmware_rev));
465  if (ret < 0)
466  return ret;
467 
469  if (ret < 0)
470  return ret;
471 
472  dev_info(&client->dev, "Firmware revision %d.%d.%d\n",
473  data->firmware_rev[0], data->firmware_rev[1],
474  data->firmware_rev[2]);
475 
476  /* Register sysfs hooks */
477  ret = sysfs_create_group(&client->dev.kobj, &pem_group);
478  if (ret)
479  return ret;
480 
481  /*
482  * Check if input readings are supported.
483  * This is the case if we can read input data,
484  * and if the returned data is not all zeros.
485  * Note that input alarms are always supported.
486  */
487  ret = pem_read_block(client, PEM_READ_INPUT_STRING,
488  data->input_string,
489  sizeof(data->input_string) - 1);
490  if (!ret && (data->input_string[0] || data->input_string[1] ||
491  data->input_string[2]))
492  data->input_length = sizeof(data->input_string) - 1;
493  else if (ret < 0) {
494  /* Input string is one byte longer for some devices */
495  ret = pem_read_block(client, PEM_READ_INPUT_STRING,
496  data->input_string,
497  sizeof(data->input_string));
498  if (!ret && (data->input_string[0] || data->input_string[1] ||
499  data->input_string[2] || data->input_string[3]))
500  data->input_length = sizeof(data->input_string);
501  }
502  ret = 0;
503  if (data->input_length) {
504  ret = sysfs_create_group(&client->dev.kobj, &pem_input_group);
505  if (ret)
506  goto out_remove_groups;
507  }
508 
509  /*
510  * Check if fan speed readings are supported.
511  * This is the case if we can read fan speed data,
512  * and if the returned data is not all zeros.
513  * Note that the fan alarm is always supported.
514  */
515  ret = pem_read_block(client, PEM_READ_FAN_SPEED,
516  data->fan_speed,
517  sizeof(data->fan_speed));
518  if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
519  data->fan_speed[2] || data->fan_speed[3])) {
520  data->fans_supported = true;
521  ret = sysfs_create_group(&client->dev.kobj, &pem_fan_group);
522  if (ret)
523  goto out_remove_groups;
524  }
525 
526  data->hwmon_dev = hwmon_device_register(&client->dev);
527  if (IS_ERR(data->hwmon_dev)) {
528  ret = PTR_ERR(data->hwmon_dev);
529  goto out_remove_groups;
530  }
531 
532  return 0;
533 
534 out_remove_groups:
535  sysfs_remove_group(&client->dev.kobj, &pem_input_group);
536  sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
537  sysfs_remove_group(&client->dev.kobj, &pem_group);
538  return ret;
539 }
540 
541 static int pem_remove(struct i2c_client *client)
542 {
543  struct pem_data *data = i2c_get_clientdata(client);
544 
546 
547  sysfs_remove_group(&client->dev.kobj, &pem_input_group);
548  sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
549  sysfs_remove_group(&client->dev.kobj, &pem_group);
550 
551  return 0;
552 }
553 
554 static const struct i2c_device_id pem_id[] = {
555  {"lineage_pem", 0},
556  {}
557 };
558 MODULE_DEVICE_TABLE(i2c, pem_id);
559 
560 static struct i2c_driver pem_driver = {
561  .driver = {
562  .name = "lineage_pem",
563  },
564  .probe = pem_probe,
565  .remove = pem_remove,
566  .id_table = pem_id,
567 };
568 
569 module_i2c_driver(pem_driver);
570 
571 MODULE_AUTHOR("Guenter Roeck <[email protected]>");
572 MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
573 MODULE_LICENSE("GPL");