Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lm85.c
Go to the documentation of this file.
1 /*
2  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3  * monitoring
4  * Copyright (c) 1998, 1999 Frodo Looijaard <[email protected]>
5  * Copyright (c) 2002, 2003 Philip Pokorny <[email protected]>
6  * Copyright (c) 2003 Margit Schubert-While <[email protected]>
7  * Copyright (c) 2004 Justin Thiessen <[email protected]>
8  * Copyright (C) 2007--2009 Jean Delvare <[email protected]>
9  *
10  * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/hwmon-sysfs.h>
35 #include <linux/err.h>
36 #include <linux/mutex.h>
37 
38 /* Addresses to scan */
39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
40 
41 enum chips {
45 };
46 
47 /* The LM85 registers */
48 
49 #define LM85_REG_IN(nr) (0x20 + (nr))
50 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
51 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
52 
53 #define LM85_REG_TEMP(nr) (0x25 + (nr))
54 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
55 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
56 
57 /* Fan speeds are LSB, MSB (2 bytes) */
58 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
59 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
60 
61 #define LM85_REG_PWM(nr) (0x30 + (nr))
62 
63 #define LM85_REG_COMPANY 0x3e
64 #define LM85_REG_VERSTEP 0x3f
65 
66 #define ADT7468_REG_CFG5 0x7c
67 #define ADT7468_OFF64 (1 << 0)
68 #define ADT7468_HFPWM (1 << 1)
69 #define IS_ADT7468_OFF64(data) \
70  ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
71 #define IS_ADT7468_HFPWM(data) \
72  ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
73 
74 /* These are the recognized values for the above regs */
75 #define LM85_COMPANY_NATIONAL 0x01
76 #define LM85_COMPANY_ANALOG_DEV 0x41
77 #define LM85_COMPANY_SMSC 0x5c
78 #define LM85_VERSTEP_VMASK 0xf0
79 #define LM85_VERSTEP_GENERIC 0x60
80 #define LM85_VERSTEP_GENERIC2 0x70
81 #define LM85_VERSTEP_LM85C 0x60
82 #define LM85_VERSTEP_LM85B 0x62
83 #define LM85_VERSTEP_LM96000_1 0x68
84 #define LM85_VERSTEP_LM96000_2 0x69
85 #define LM85_VERSTEP_ADM1027 0x60
86 #define LM85_VERSTEP_ADT7463 0x62
87 #define LM85_VERSTEP_ADT7463C 0x6A
88 #define LM85_VERSTEP_ADT7468_1 0x71
89 #define LM85_VERSTEP_ADT7468_2 0x72
90 #define LM85_VERSTEP_EMC6D100_A0 0x60
91 #define LM85_VERSTEP_EMC6D100_A1 0x61
92 #define LM85_VERSTEP_EMC6D102 0x65
93 #define LM85_VERSTEP_EMC6D103_A0 0x68
94 #define LM85_VERSTEP_EMC6D103_A1 0x69
95 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
96 
97 #define LM85_REG_CONFIG 0x40
98 
99 #define LM85_REG_ALARM1 0x41
100 #define LM85_REG_ALARM2 0x42
101 
102 #define LM85_REG_VID 0x43
103 
104 /* Automated FAN control */
105 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
106 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
107 #define LM85_REG_AFAN_SPIKE1 0x62
108 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
109 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
110 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
111 #define LM85_REG_AFAN_HYST1 0x6d
112 #define LM85_REG_AFAN_HYST2 0x6e
113 
114 #define ADM1027_REG_EXTEND_ADC1 0x76
115 #define ADM1027_REG_EXTEND_ADC2 0x77
116 
117 #define EMC6D100_REG_ALARM3 0x7d
118 /* IN5, IN6 and IN7 */
119 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
120 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
121 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
122 #define EMC6D102_REG_EXTEND_ADC1 0x85
123 #define EMC6D102_REG_EXTEND_ADC2 0x86
124 #define EMC6D102_REG_EXTEND_ADC3 0x87
125 #define EMC6D102_REG_EXTEND_ADC4 0x88
126 
127 
128 /*
129  * Conversions. Rounding and limit checking is only done on the TO_REG
130  * variants. Note that you should be a bit careful with which arguments
131  * these macros are called: arguments may be evaluated more than once.
132  */
133 
134 /* IN are scaled according to built-in resistors */
135 static const int lm85_scaling[] = { /* .001 Volts */
136  2500, 2250, 3300, 5000, 12000,
137  3300, 1500, 1800 /*EMC6D100*/
138 };
139 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
140 
141 #define INS_TO_REG(n, val) \
142  SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
143 
144 #define INSEXT_FROM_REG(n, val, ext) \
145  SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
146 
147 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
148 
149 /* FAN speed is measured using 90kHz clock */
150 static inline u16 FAN_TO_REG(unsigned long val)
151 {
152  if (!val)
153  return 0xffff;
154  return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
155 }
156 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
157  5400000 / (val))
158 
159 /* Temperature is reported in .001 degC increments */
160 #define TEMP_TO_REG(val) \
161  SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
162 #define TEMPEXT_FROM_REG(val, ext) \
163  SCALE(((val) << 4) + (ext), 16, 1000)
164 #define TEMP_FROM_REG(val) ((val) * 1000)
165 
166 #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
167 #define PWM_FROM_REG(val) (val)
168 
169 
170 /*
171  * ZONEs have the following parameters:
172  * Limit (low) temp, 1. degC
173  * Hysteresis (below limit), 1. degC (0-15)
174  * Range of speed control, .1 degC (2-80)
175  * Critical (high) temp, 1. degC
176  *
177  * FAN PWMs have the following parameters:
178  * Reference Zone, 1, 2, 3, etc.
179  * Spinup time, .05 sec
180  * PWM value at limit/low temp, 1 count
181  * PWM Frequency, 1. Hz
182  * PWM is Min or OFF below limit, flag
183  * Invert PWM output, flag
184  *
185  * Some chips filter the temp, others the fan.
186  * Filter constant (or disabled) .1 seconds
187  */
188 
189 /* These are the zone temperature range encodings in .001 degree C */
190 static const int lm85_range_map[] = {
191  2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
192  13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
193 };
194 
195 static int RANGE_TO_REG(int range)
196 {
197  int i;
198 
199  /* Find the closest match */
200  for (i = 0; i < 15; ++i) {
201  if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
202  break;
203  }
204 
205  return i;
206 }
207 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
208 
209 /* These are the PWM frequency encodings */
210 static const int lm85_freq_map[8] = { /* 1 Hz */
211  10, 15, 23, 30, 38, 47, 61, 94
212 };
213 static const int adm1027_freq_map[8] = { /* 1 Hz */
214  11, 15, 22, 29, 35, 44, 59, 88
215 };
216 
217 static int FREQ_TO_REG(const int *map, int freq)
218 {
219  int i;
220 
221  /* Find the closest match */
222  for (i = 0; i < 7; ++i)
223  if (freq <= (map[i] + map[i + 1]) / 2)
224  break;
225  return i;
226 }
227 
228 static int FREQ_FROM_REG(const int *map, u8 reg)
229 {
230  return map[reg & 0x07];
231 }
232 
233 /*
234  * Since we can't use strings, I'm abusing these numbers
235  * to stand in for the following meanings:
236  * 1 -- PWM responds to Zone 1
237  * 2 -- PWM responds to Zone 2
238  * 3 -- PWM responds to Zone 3
239  * 23 -- PWM responds to the higher temp of Zone 2 or 3
240  * 123 -- PWM responds to highest of Zone 1, 2, or 3
241  * 0 -- PWM is always at 0% (ie, off)
242  * -1 -- PWM is always at 100%
243  * -2 -- PWM responds to manual control
244  */
245 
246 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
247 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
248 
249 static int ZONE_TO_REG(int zone)
250 {
251  int i;
252 
253  for (i = 0; i <= 7; ++i)
254  if (zone == lm85_zone_map[i])
255  break;
256  if (i > 7) /* Not found. */
257  i = 3; /* Always 100% */
258  return i << 5;
259 }
260 
261 #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
262 #define HYST_FROM_REG(val) ((val) * 1000)
263 
264 /*
265  * Chip sampling rates
266  *
267  * Some sensors are not updated more frequently than once per second
268  * so it doesn't make sense to read them more often than that.
269  * We cache the results and return the saved data if the driver
270  * is called again before a second has elapsed.
271  *
272  * Also, there is significant configuration data for this chip
273  * given the automatic PWM fan control that is possible. There
274  * are about 47 bytes of config data to only 22 bytes of actual
275  * readings. So, we keep the config data up to date in the cache
276  * when it is written and only sample it once every 1 *minute*
277  */
278 #define LM85_DATA_INTERVAL (HZ + HZ / 2)
279 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
280 
281 /*
282  * LM85 can automatically adjust fan speeds based on temperature
283  * This structure encapsulates an entire Zone config. There are
284  * three zones (one for each temperature input) on the lm85
285  */
286 struct lm85_zone {
287  s8 limit; /* Low temp limit */
288  u8 hyst; /* Low limit hysteresis. (0-15) */
289  u8 range; /* Temp range, encoded */
290  s8 critical; /* "All fans ON" temp limit */
292  * Actual "max" temperature specified. Preserved
293  * to prevent "drift" as other autofan control
294  * values change.
295  */
296 };
297 
298 struct lm85_autofan {
299  u8 config; /* Register value */
300  u8 min_pwm; /* Minimum PWM value, encoded */
301  u8 min_off; /* Min PWM or OFF below "limit", flag */
302 };
303 
304 /*
305  * For each registered chip, we need to keep some data in memory.
306  * The structure is dynamically allocated.
307  */
308 struct lm85_data {
309  struct device *hwmon_dev;
310  const int *freq_map;
311  enum chips type;
312 
313  bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
314 
316  int valid; /* !=0 if following fields are valid */
317  unsigned long last_reading; /* In jiffies */
318  unsigned long last_config; /* In jiffies */
319 
320  u8 in[8]; /* Register value */
321  u8 in_max[8]; /* Register value */
322  u8 in_min[8]; /* Register value */
323  s8 temp[3]; /* Register value */
324  s8 temp_min[3]; /* Register value */
325  s8 temp_max[3]; /* Register value */
326  u16 fan[4]; /* Register value */
327  u16 fan_min[4]; /* Register value */
328  u8 pwm[3]; /* Register value */
329  u8 pwm_freq[3]; /* Register encoding */
330  u8 temp_ext[3]; /* Decoded values */
331  u8 in_ext[8]; /* Decoded values */
332  u8 vid; /* Register value */
333  u8 vrm; /* VRM version */
334  u32 alarms; /* Register encoding, combined */
335  u8 cfg5; /* Config Register 5 on ADT7468 */
337  struct lm85_zone zone[3];
338 };
339 
340 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info);
341 static int lm85_probe(struct i2c_client *client,
342  const struct i2c_device_id *id);
343 static int lm85_remove(struct i2c_client *client);
344 
345 static int lm85_read_value(struct i2c_client *client, u8 reg);
346 static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
347 static struct lm85_data *lm85_update_device(struct device *dev);
348 
349 
350 static const struct i2c_device_id lm85_id[] = {
351  { "adm1027", adm1027 },
352  { "adt7463", adt7463 },
353  { "adt7468", adt7468 },
354  { "lm85", any_chip },
355  { "lm85b", lm85b },
356  { "lm85c", lm85c },
357  { "emc6d100", emc6d100 },
358  { "emc6d101", emc6d100 },
359  { "emc6d102", emc6d102 },
360  { "emc6d103", emc6d103 },
361  { "emc6d103s", emc6d103s },
362  { }
363 };
364 MODULE_DEVICE_TABLE(i2c, lm85_id);
365 
366 static struct i2c_driver lm85_driver = {
367  .class = I2C_CLASS_HWMON,
368  .driver = {
369  .name = "lm85",
370  },
371  .probe = lm85_probe,
372  .remove = lm85_remove,
373  .id_table = lm85_id,
374  .detect = lm85_detect,
375  .address_list = normal_i2c,
376 };
377 
378 
379 /* 4 Fans */
380 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
381  char *buf)
382 {
383  int nr = to_sensor_dev_attr(attr)->index;
384  struct lm85_data *data = lm85_update_device(dev);
385  return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
386 }
387 
388 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
389  char *buf)
390 {
391  int nr = to_sensor_dev_attr(attr)->index;
392  struct lm85_data *data = lm85_update_device(dev);
393  return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
394 }
395 
396 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
397  const char *buf, size_t count)
398 {
399  int nr = to_sensor_dev_attr(attr)->index;
400  struct i2c_client *client = to_i2c_client(dev);
401  struct lm85_data *data = i2c_get_clientdata(client);
402  unsigned long val;
403  int err;
404 
405  err = kstrtoul(buf, 10, &val);
406  if (err)
407  return err;
408 
409  mutex_lock(&data->update_lock);
410  data->fan_min[nr] = FAN_TO_REG(val);
411  lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
412  mutex_unlock(&data->update_lock);
413  return count;
414 }
415 
416 #define show_fan_offset(offset) \
417 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
418  show_fan, NULL, offset - 1); \
419 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
420  show_fan_min, set_fan_min, offset - 1)
421 
422 show_fan_offset(1);
423 show_fan_offset(2);
424 show_fan_offset(3);
425 show_fan_offset(4);
426 
427 /* vid, vrm, alarms */
428 
429 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
430  char *buf)
431 {
432  struct lm85_data *data = lm85_update_device(dev);
433  int vid;
434 
435  if (data->has_vid5) {
436  /* 6-pin VID (VRM 10) */
437  vid = vid_from_reg(data->vid & 0x3f, data->vrm);
438  } else {
439  /* 5-pin VID (VRM 9) */
440  vid = vid_from_reg(data->vid & 0x1f, data->vrm);
441  }
442 
443  return sprintf(buf, "%d\n", vid);
444 }
445 
446 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
447 
448 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
449  char *buf)
450 {
451  struct lm85_data *data = dev_get_drvdata(dev);
452  return sprintf(buf, "%ld\n", (long) data->vrm);
453 }
454 
455 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
456  const char *buf, size_t count)
457 {
458  struct lm85_data *data = dev_get_drvdata(dev);
459  unsigned long val;
460  int err;
461 
462  err = kstrtoul(buf, 10, &val);
463  if (err)
464  return err;
465 
466  data->vrm = val;
467  return count;
468 }
469 
470 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
471 
472 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
473  *attr, char *buf)
474 {
475  struct lm85_data *data = lm85_update_device(dev);
476  return sprintf(buf, "%u\n", data->alarms);
477 }
478 
479 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
480 
481 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
482  char *buf)
483 {
484  int nr = to_sensor_dev_attr(attr)->index;
485  struct lm85_data *data = lm85_update_device(dev);
486  return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
487 }
488 
489 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
490 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
491 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
492 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
493 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
494 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
495 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
496 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
497 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
498 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
499 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
500 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
501 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
502 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
503 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
504 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
505 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
506 
507 /* pwm */
508 
509 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
510  char *buf)
511 {
512  int nr = to_sensor_dev_attr(attr)->index;
513  struct lm85_data *data = lm85_update_device(dev);
514  return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
515 }
516 
517 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
518  const char *buf, size_t count)
519 {
520  int nr = to_sensor_dev_attr(attr)->index;
521  struct i2c_client *client = to_i2c_client(dev);
522  struct lm85_data *data = i2c_get_clientdata(client);
523  unsigned long val;
524  int err;
525 
526  err = kstrtoul(buf, 10, &val);
527  if (err)
528  return err;
529 
530  mutex_lock(&data->update_lock);
531  data->pwm[nr] = PWM_TO_REG(val);
532  lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
533  mutex_unlock(&data->update_lock);
534  return count;
535 }
536 
537 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
538  *attr, char *buf)
539 {
540  int nr = to_sensor_dev_attr(attr)->index;
541  struct lm85_data *data = lm85_update_device(dev);
542  int pwm_zone, enable;
543 
544  pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
545  switch (pwm_zone) {
546  case -1: /* PWM is always at 100% */
547  enable = 0;
548  break;
549  case 0: /* PWM is always at 0% */
550  case -2: /* PWM responds to manual control */
551  enable = 1;
552  break;
553  default: /* PWM in automatic mode */
554  enable = 2;
555  }
556  return sprintf(buf, "%d\n", enable);
557 }
558 
559 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
560  *attr, const char *buf, size_t count)
561 {
562  int nr = to_sensor_dev_attr(attr)->index;
563  struct i2c_client *client = to_i2c_client(dev);
564  struct lm85_data *data = i2c_get_clientdata(client);
565  u8 config;
566  unsigned long val;
567  int err;
568 
569  err = kstrtoul(buf, 10, &val);
570  if (err)
571  return err;
572 
573  switch (val) {
574  case 0:
575  config = 3;
576  break;
577  case 1:
578  config = 7;
579  break;
580  case 2:
581  /*
582  * Here we have to choose arbitrarily one of the 5 possible
583  * configurations; I go for the safest
584  */
585  config = 6;
586  break;
587  default:
588  return -EINVAL;
589  }
590 
591  mutex_lock(&data->update_lock);
592  data->autofan[nr].config = lm85_read_value(client,
594  data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
595  | (config << 5);
596  lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
597  data->autofan[nr].config);
598  mutex_unlock(&data->update_lock);
599  return count;
600 }
601 
602 static ssize_t show_pwm_freq(struct device *dev,
603  struct device_attribute *attr, char *buf)
604 {
605  int nr = to_sensor_dev_attr(attr)->index;
606  struct lm85_data *data = lm85_update_device(dev);
607  int freq;
608 
609  if (IS_ADT7468_HFPWM(data))
610  freq = 22500;
611  else
612  freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
613 
614  return sprintf(buf, "%d\n", freq);
615 }
616 
617 static ssize_t set_pwm_freq(struct device *dev,
618  struct device_attribute *attr, const char *buf, size_t count)
619 {
620  int nr = to_sensor_dev_attr(attr)->index;
621  struct i2c_client *client = to_i2c_client(dev);
622  struct lm85_data *data = i2c_get_clientdata(client);
623  unsigned long val;
624  int err;
625 
626  err = kstrtoul(buf, 10, &val);
627  if (err)
628  return err;
629 
630  mutex_lock(&data->update_lock);
631  /*
632  * The ADT7468 has a special high-frequency PWM output mode,
633  * where all PWM outputs are driven by a 22.5 kHz clock.
634  * This might confuse the user, but there's not much we can do.
635  */
636  if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
637  data->cfg5 &= ~ADT7468_HFPWM;
638  lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
639  } else { /* Low freq. mode */
640  data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
641  lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
642  (data->zone[nr].range << 4)
643  | data->pwm_freq[nr]);
644  if (data->type == adt7468) {
645  data->cfg5 |= ADT7468_HFPWM;
646  lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
647  }
648  }
649  mutex_unlock(&data->update_lock);
650  return count;
651 }
652 
653 #define show_pwm_reg(offset) \
654 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
655  show_pwm, set_pwm, offset - 1); \
656 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
657  show_pwm_enable, set_pwm_enable, offset - 1); \
658 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
659  show_pwm_freq, set_pwm_freq, offset - 1)
660 
661 show_pwm_reg(1);
662 show_pwm_reg(2);
663 show_pwm_reg(3);
664 
665 /* Voltages */
666 
667 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
668  char *buf)
669 {
670  int nr = to_sensor_dev_attr(attr)->index;
671  struct lm85_data *data = lm85_update_device(dev);
672  return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
673  data->in_ext[nr]));
674 }
675 
676 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
677  char *buf)
678 {
679  int nr = to_sensor_dev_attr(attr)->index;
680  struct lm85_data *data = lm85_update_device(dev);
681  return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
682 }
683 
684 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
685  const char *buf, size_t count)
686 {
687  int nr = to_sensor_dev_attr(attr)->index;
688  struct i2c_client *client = to_i2c_client(dev);
689  struct lm85_data *data = i2c_get_clientdata(client);
690  long val;
691  int err;
692 
693  err = kstrtol(buf, 10, &val);
694  if (err)
695  return err;
696 
697  mutex_lock(&data->update_lock);
698  data->in_min[nr] = INS_TO_REG(nr, val);
699  lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
700  mutex_unlock(&data->update_lock);
701  return count;
702 }
703 
704 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
705  char *buf)
706 {
707  int nr = to_sensor_dev_attr(attr)->index;
708  struct lm85_data *data = lm85_update_device(dev);
709  return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
710 }
711 
712 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
713  const char *buf, size_t count)
714 {
715  int nr = to_sensor_dev_attr(attr)->index;
716  struct i2c_client *client = to_i2c_client(dev);
717  struct lm85_data *data = i2c_get_clientdata(client);
718  long val;
719  int err;
720 
721  err = kstrtol(buf, 10, &val);
722  if (err)
723  return err;
724 
725  mutex_lock(&data->update_lock);
726  data->in_max[nr] = INS_TO_REG(nr, val);
727  lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
728  mutex_unlock(&data->update_lock);
729  return count;
730 }
731 
732 #define show_in_reg(offset) \
733 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
734  show_in, NULL, offset); \
735 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
736  show_in_min, set_in_min, offset); \
737 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
738  show_in_max, set_in_max, offset)
739 
740 show_in_reg(0);
741 show_in_reg(1);
742 show_in_reg(2);
743 show_in_reg(3);
744 show_in_reg(4);
745 show_in_reg(5);
746 show_in_reg(6);
747 show_in_reg(7);
748 
749 /* Temps */
750 
751 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
752  char *buf)
753 {
754  int nr = to_sensor_dev_attr(attr)->index;
755  struct lm85_data *data = lm85_update_device(dev);
756  return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
757  data->temp_ext[nr]));
758 }
759 
760 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
761  char *buf)
762 {
763  int nr = to_sensor_dev_attr(attr)->index;
764  struct lm85_data *data = lm85_update_device(dev);
765  return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
766 }
767 
768 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
769  const char *buf, size_t count)
770 {
771  int nr = to_sensor_dev_attr(attr)->index;
772  struct i2c_client *client = to_i2c_client(dev);
773  struct lm85_data *data = i2c_get_clientdata(client);
774  long val;
775  int err;
776 
777  err = kstrtol(buf, 10, &val);
778  if (err)
779  return err;
780 
781  if (IS_ADT7468_OFF64(data))
782  val += 64;
783 
784  mutex_lock(&data->update_lock);
785  data->temp_min[nr] = TEMP_TO_REG(val);
786  lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
787  mutex_unlock(&data->update_lock);
788  return count;
789 }
790 
791 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
792  char *buf)
793 {
794  int nr = to_sensor_dev_attr(attr)->index;
795  struct lm85_data *data = lm85_update_device(dev);
796  return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
797 }
798 
799 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
800  const char *buf, size_t count)
801 {
802  int nr = to_sensor_dev_attr(attr)->index;
803  struct i2c_client *client = to_i2c_client(dev);
804  struct lm85_data *data = i2c_get_clientdata(client);
805  long val;
806  int err;
807 
808  err = kstrtol(buf, 10, &val);
809  if (err)
810  return err;
811 
812  if (IS_ADT7468_OFF64(data))
813  val += 64;
814 
815  mutex_lock(&data->update_lock);
816  data->temp_max[nr] = TEMP_TO_REG(val);
817  lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
818  mutex_unlock(&data->update_lock);
819  return count;
820 }
821 
822 #define show_temp_reg(offset) \
823 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
824  show_temp, NULL, offset - 1); \
825 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
826  show_temp_min, set_temp_min, offset - 1); \
827 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
828  show_temp_max, set_temp_max, offset - 1);
829 
830 show_temp_reg(1);
831 show_temp_reg(2);
832 show_temp_reg(3);
833 
834 
835 /* Automatic PWM control */
836 
837 static ssize_t show_pwm_auto_channels(struct device *dev,
838  struct device_attribute *attr, char *buf)
839 {
840  int nr = to_sensor_dev_attr(attr)->index;
841  struct lm85_data *data = lm85_update_device(dev);
842  return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
843 }
844 
845 static ssize_t set_pwm_auto_channels(struct device *dev,
846  struct device_attribute *attr, const char *buf, size_t count)
847 {
848  int nr = to_sensor_dev_attr(attr)->index;
849  struct i2c_client *client = to_i2c_client(dev);
850  struct lm85_data *data = i2c_get_clientdata(client);
851  long val;
852  int err;
853 
854  err = kstrtol(buf, 10, &val);
855  if (err)
856  return err;
857 
858  mutex_lock(&data->update_lock);
859  data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
860  | ZONE_TO_REG(val);
861  lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
862  data->autofan[nr].config);
863  mutex_unlock(&data->update_lock);
864  return count;
865 }
866 
867 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
868  struct device_attribute *attr, char *buf)
869 {
870  int nr = to_sensor_dev_attr(attr)->index;
871  struct lm85_data *data = lm85_update_device(dev);
872  return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
873 }
874 
875 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
876  struct device_attribute *attr, const char *buf, size_t count)
877 {
878  int nr = to_sensor_dev_attr(attr)->index;
879  struct i2c_client *client = to_i2c_client(dev);
880  struct lm85_data *data = i2c_get_clientdata(client);
881  unsigned long val;
882  int err;
883 
884  err = kstrtoul(buf, 10, &val);
885  if (err)
886  return err;
887 
888  mutex_lock(&data->update_lock);
889  data->autofan[nr].min_pwm = PWM_TO_REG(val);
890  lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
891  data->autofan[nr].min_pwm);
892  mutex_unlock(&data->update_lock);
893  return count;
894 }
895 
896 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
897  struct device_attribute *attr, char *buf)
898 {
899  int nr = to_sensor_dev_attr(attr)->index;
900  struct lm85_data *data = lm85_update_device(dev);
901  return sprintf(buf, "%d\n", data->autofan[nr].min_off);
902 }
903 
904 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
905  struct device_attribute *attr, const char *buf, size_t count)
906 {
907  int nr = to_sensor_dev_attr(attr)->index;
908  struct i2c_client *client = to_i2c_client(dev);
909  struct lm85_data *data = i2c_get_clientdata(client);
910  u8 tmp;
911  long val;
912  int err;
913 
914  err = kstrtol(buf, 10, &val);
915  if (err)
916  return err;
917 
918  mutex_lock(&data->update_lock);
919  data->autofan[nr].min_off = val;
920  tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
921  tmp &= ~(0x20 << nr);
922  if (data->autofan[nr].min_off)
923  tmp |= 0x20 << nr;
924  lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
925  mutex_unlock(&data->update_lock);
926  return count;
927 }
928 
929 #define pwm_auto(offset) \
930 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
931  S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
932  set_pwm_auto_channels, offset - 1); \
933 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
934  S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
935  set_pwm_auto_pwm_min, offset - 1); \
936 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
937  S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
938  set_pwm_auto_pwm_minctl, offset - 1)
939 
940 pwm_auto(1);
941 pwm_auto(2);
942 pwm_auto(3);
943 
944 /* Temperature settings for automatic PWM control */
945 
946 static ssize_t show_temp_auto_temp_off(struct device *dev,
947  struct device_attribute *attr, char *buf)
948 {
949  int nr = to_sensor_dev_attr(attr)->index;
950  struct lm85_data *data = lm85_update_device(dev);
951  return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
952  HYST_FROM_REG(data->zone[nr].hyst));
953 }
954 
955 static ssize_t set_temp_auto_temp_off(struct device *dev,
956  struct device_attribute *attr, const char *buf, size_t count)
957 {
958  int nr = to_sensor_dev_attr(attr)->index;
959  struct i2c_client *client = to_i2c_client(dev);
960  struct lm85_data *data = i2c_get_clientdata(client);
961  int min;
962  long val;
963  int err;
964 
965  err = kstrtol(buf, 10, &val);
966  if (err)
967  return err;
968 
969  mutex_lock(&data->update_lock);
970  min = TEMP_FROM_REG(data->zone[nr].limit);
971  data->zone[nr].hyst = HYST_TO_REG(min - val);
972  if (nr == 0 || nr == 1) {
973  lm85_write_value(client, LM85_REG_AFAN_HYST1,
974  (data->zone[0].hyst << 4)
975  | data->zone[1].hyst);
976  } else {
977  lm85_write_value(client, LM85_REG_AFAN_HYST2,
978  (data->zone[2].hyst << 4));
979  }
980  mutex_unlock(&data->update_lock);
981  return count;
982 }
983 
984 static ssize_t show_temp_auto_temp_min(struct device *dev,
985  struct device_attribute *attr, char *buf)
986 {
987  int nr = to_sensor_dev_attr(attr)->index;
988  struct lm85_data *data = lm85_update_device(dev);
989  return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
990 }
991 
992 static ssize_t set_temp_auto_temp_min(struct device *dev,
993  struct device_attribute *attr, const char *buf, size_t count)
994 {
995  int nr = to_sensor_dev_attr(attr)->index;
996  struct i2c_client *client = to_i2c_client(dev);
997  struct lm85_data *data = i2c_get_clientdata(client);
998  long val;
999  int err;
1000 
1001  err = kstrtol(buf, 10, &val);
1002  if (err)
1003  return err;
1004 
1005  mutex_lock(&data->update_lock);
1006  data->zone[nr].limit = TEMP_TO_REG(val);
1007  lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1008  data->zone[nr].limit);
1009 
1010 /* Update temp_auto_max and temp_auto_range */
1011  data->zone[nr].range = RANGE_TO_REG(
1012  TEMP_FROM_REG(data->zone[nr].max_desired) -
1013  TEMP_FROM_REG(data->zone[nr].limit));
1014  lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1015  ((data->zone[nr].range & 0x0f) << 4)
1016  | (data->pwm_freq[nr] & 0x07));
1017 
1018  mutex_unlock(&data->update_lock);
1019  return count;
1020 }
1021 
1022 static ssize_t show_temp_auto_temp_max(struct device *dev,
1023  struct device_attribute *attr, char *buf)
1024 {
1025  int nr = to_sensor_dev_attr(attr)->index;
1026  struct lm85_data *data = lm85_update_device(dev);
1027  return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1028  RANGE_FROM_REG(data->zone[nr].range));
1029 }
1030 
1031 static ssize_t set_temp_auto_temp_max(struct device *dev,
1032  struct device_attribute *attr, const char *buf, size_t count)
1033 {
1034  int nr = to_sensor_dev_attr(attr)->index;
1035  struct i2c_client *client = to_i2c_client(dev);
1036  struct lm85_data *data = i2c_get_clientdata(client);
1037  int min;
1038  long val;
1039  int err;
1040 
1041  err = kstrtol(buf, 10, &val);
1042  if (err)
1043  return err;
1044 
1045  mutex_lock(&data->update_lock);
1046  min = TEMP_FROM_REG(data->zone[nr].limit);
1047  data->zone[nr].max_desired = TEMP_TO_REG(val);
1048  data->zone[nr].range = RANGE_TO_REG(
1049  val - min);
1050  lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1051  ((data->zone[nr].range & 0x0f) << 4)
1052  | (data->pwm_freq[nr] & 0x07));
1053  mutex_unlock(&data->update_lock);
1054  return count;
1055 }
1056 
1057 static ssize_t show_temp_auto_temp_crit(struct device *dev,
1058  struct device_attribute *attr, char *buf)
1059 {
1060  int nr = to_sensor_dev_attr(attr)->index;
1061  struct lm85_data *data = lm85_update_device(dev);
1062  return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1063 }
1064 
1065 static ssize_t set_temp_auto_temp_crit(struct device *dev,
1066  struct device_attribute *attr, const char *buf, size_t count)
1067 {
1068  int nr = to_sensor_dev_attr(attr)->index;
1069  struct i2c_client *client = to_i2c_client(dev);
1070  struct lm85_data *data = i2c_get_clientdata(client);
1071  long val;
1072  int err;
1073 
1074  err = kstrtol(buf, 10, &val);
1075  if (err)
1076  return err;
1077 
1078  mutex_lock(&data->update_lock);
1079  data->zone[nr].critical = TEMP_TO_REG(val);
1080  lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1081  data->zone[nr].critical);
1082  mutex_unlock(&data->update_lock);
1083  return count;
1084 }
1085 
1086 #define temp_auto(offset) \
1087 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
1088  S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
1089  set_temp_auto_temp_off, offset - 1); \
1090 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
1091  S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
1092  set_temp_auto_temp_min, offset - 1); \
1093 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1094  S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1095  set_temp_auto_temp_max, offset - 1); \
1096 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1097  S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1098  set_temp_auto_temp_crit, offset - 1);
1099 
1100 temp_auto(1);
1101 temp_auto(2);
1102 temp_auto(3);
1103 
1104 static struct attribute *lm85_attributes[] = {
1105  &sensor_dev_attr_fan1_input.dev_attr.attr,
1106  &sensor_dev_attr_fan2_input.dev_attr.attr,
1107  &sensor_dev_attr_fan3_input.dev_attr.attr,
1108  &sensor_dev_attr_fan4_input.dev_attr.attr,
1109  &sensor_dev_attr_fan1_min.dev_attr.attr,
1110  &sensor_dev_attr_fan2_min.dev_attr.attr,
1111  &sensor_dev_attr_fan3_min.dev_attr.attr,
1112  &sensor_dev_attr_fan4_min.dev_attr.attr,
1113  &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1114  &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1115  &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1116  &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1117 
1118  &sensor_dev_attr_pwm1.dev_attr.attr,
1119  &sensor_dev_attr_pwm2.dev_attr.attr,
1120  &sensor_dev_attr_pwm3.dev_attr.attr,
1121  &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1122  &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1123  &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1124  &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1125  &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1126  &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1127 
1128  &sensor_dev_attr_in0_input.dev_attr.attr,
1129  &sensor_dev_attr_in1_input.dev_attr.attr,
1130  &sensor_dev_attr_in2_input.dev_attr.attr,
1131  &sensor_dev_attr_in3_input.dev_attr.attr,
1132  &sensor_dev_attr_in0_min.dev_attr.attr,
1133  &sensor_dev_attr_in1_min.dev_attr.attr,
1134  &sensor_dev_attr_in2_min.dev_attr.attr,
1135  &sensor_dev_attr_in3_min.dev_attr.attr,
1136  &sensor_dev_attr_in0_max.dev_attr.attr,
1137  &sensor_dev_attr_in1_max.dev_attr.attr,
1138  &sensor_dev_attr_in2_max.dev_attr.attr,
1139  &sensor_dev_attr_in3_max.dev_attr.attr,
1140  &sensor_dev_attr_in0_alarm.dev_attr.attr,
1141  &sensor_dev_attr_in1_alarm.dev_attr.attr,
1142  &sensor_dev_attr_in2_alarm.dev_attr.attr,
1143  &sensor_dev_attr_in3_alarm.dev_attr.attr,
1144 
1145  &sensor_dev_attr_temp1_input.dev_attr.attr,
1146  &sensor_dev_attr_temp2_input.dev_attr.attr,
1147  &sensor_dev_attr_temp3_input.dev_attr.attr,
1148  &sensor_dev_attr_temp1_min.dev_attr.attr,
1149  &sensor_dev_attr_temp2_min.dev_attr.attr,
1150  &sensor_dev_attr_temp3_min.dev_attr.attr,
1151  &sensor_dev_attr_temp1_max.dev_attr.attr,
1152  &sensor_dev_attr_temp2_max.dev_attr.attr,
1153  &sensor_dev_attr_temp3_max.dev_attr.attr,
1154  &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1155  &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1156  &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1157  &sensor_dev_attr_temp1_fault.dev_attr.attr,
1158  &sensor_dev_attr_temp3_fault.dev_attr.attr,
1159 
1160  &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1161  &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1162  &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1163  &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1164  &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1165  &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1166 
1167  &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1168  &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1169  &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1170  &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1171  &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1172  &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1173  &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1174  &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1175  &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1176 
1177  &dev_attr_vrm.attr,
1178  &dev_attr_cpu0_vid.attr,
1179  &dev_attr_alarms.attr,
1180  NULL
1181 };
1182 
1183 static const struct attribute_group lm85_group = {
1184  .attrs = lm85_attributes,
1185 };
1186 
1187 static struct attribute *lm85_attributes_minctl[] = {
1188  &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1189  &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1190  &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1191  NULL
1192 };
1193 
1194 static const struct attribute_group lm85_group_minctl = {
1195  .attrs = lm85_attributes_minctl,
1196 };
1197 
1198 static struct attribute *lm85_attributes_temp_off[] = {
1199  &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1200  &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1201  &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1202  NULL
1203 };
1204 
1205 static const struct attribute_group lm85_group_temp_off = {
1206  .attrs = lm85_attributes_temp_off,
1207 };
1208 
1209 static struct attribute *lm85_attributes_in4[] = {
1210  &sensor_dev_attr_in4_input.dev_attr.attr,
1211  &sensor_dev_attr_in4_min.dev_attr.attr,
1212  &sensor_dev_attr_in4_max.dev_attr.attr,
1213  &sensor_dev_attr_in4_alarm.dev_attr.attr,
1214  NULL
1215 };
1216 
1217 static const struct attribute_group lm85_group_in4 = {
1218  .attrs = lm85_attributes_in4,
1219 };
1220 
1221 static struct attribute *lm85_attributes_in567[] = {
1222  &sensor_dev_attr_in5_input.dev_attr.attr,
1223  &sensor_dev_attr_in6_input.dev_attr.attr,
1224  &sensor_dev_attr_in7_input.dev_attr.attr,
1225  &sensor_dev_attr_in5_min.dev_attr.attr,
1226  &sensor_dev_attr_in6_min.dev_attr.attr,
1227  &sensor_dev_attr_in7_min.dev_attr.attr,
1228  &sensor_dev_attr_in5_max.dev_attr.attr,
1229  &sensor_dev_attr_in6_max.dev_attr.attr,
1230  &sensor_dev_attr_in7_max.dev_attr.attr,
1231  &sensor_dev_attr_in5_alarm.dev_attr.attr,
1232  &sensor_dev_attr_in6_alarm.dev_attr.attr,
1233  &sensor_dev_attr_in7_alarm.dev_attr.attr,
1234  NULL
1235 };
1236 
1237 static const struct attribute_group lm85_group_in567 = {
1238  .attrs = lm85_attributes_in567,
1239 };
1240 
1241 static void lm85_init_client(struct i2c_client *client)
1242 {
1243  int value;
1244 
1245  /* Start monitoring if needed */
1246  value = lm85_read_value(client, LM85_REG_CONFIG);
1247  if (!(value & 0x01)) {
1248  dev_info(&client->dev, "Starting monitoring\n");
1249  lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1250  }
1251 
1252  /* Warn about unusual configuration bits */
1253  if (value & 0x02)
1254  dev_warn(&client->dev, "Device configuration is locked\n");
1255  if (!(value & 0x04))
1256  dev_warn(&client->dev, "Device is not ready\n");
1257 }
1258 
1259 static int lm85_is_fake(struct i2c_client *client)
1260 {
1261  /*
1262  * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1263  * emulate the former except that it has no hardware monitoring function
1264  * so the readings are always 0.
1265  */
1266  int i;
1267  u8 in_temp, fan;
1268 
1269  for (i = 0; i < 8; i++) {
1270  in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1271  fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1272  if (in_temp != 0x00 || fan != 0xff)
1273  return 0;
1274  }
1275 
1276  return 1;
1277 }
1278 
1279 /* Return 0 if detection is successful, -ENODEV otherwise */
1280 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1281 {
1282  struct i2c_adapter *adapter = client->adapter;
1283  int address = client->addr;
1284  const char *type_name;
1285  int company, verstep;
1286 
1287  if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1288  /* We need to be able to do byte I/O */
1289  return -ENODEV;
1290  }
1291 
1292  /* Determine the chip type */
1293  company = lm85_read_value(client, LM85_REG_COMPANY);
1294  verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1295 
1296  dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
1297  "COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1298  address, company, verstep);
1299 
1300  /* All supported chips have the version in common */
1301  if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
1302  (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
1303  dev_dbg(&adapter->dev,
1304  "Autodetection failed: unsupported version\n");
1305  return -ENODEV;
1306  }
1307  type_name = "lm85";
1308 
1309  /* Now, refine the detection */
1310  if (company == LM85_COMPANY_NATIONAL) {
1311  switch (verstep) {
1312  case LM85_VERSTEP_LM85C:
1313  type_name = "lm85c";
1314  break;
1315  case LM85_VERSTEP_LM85B:
1316  type_name = "lm85b";
1317  break;
1320  /* Check for Winbond WPCD377I */
1321  if (lm85_is_fake(client)) {
1322  dev_dbg(&adapter->dev,
1323  "Found Winbond WPCD377I, ignoring\n");
1324  return -ENODEV;
1325  }
1326  break;
1327  }
1328  } else if (company == LM85_COMPANY_ANALOG_DEV) {
1329  switch (verstep) {
1330  case LM85_VERSTEP_ADM1027:
1331  type_name = "adm1027";
1332  break;
1333  case LM85_VERSTEP_ADT7463:
1334  case LM85_VERSTEP_ADT7463C:
1335  type_name = "adt7463";
1336  break;
1339  type_name = "adt7468";
1340  break;
1341  }
1342  } else if (company == LM85_COMPANY_SMSC) {
1343  switch (verstep) {
1346  /* Note: we can't tell a '100 from a '101 */
1347  type_name = "emc6d100";
1348  break;
1349  case LM85_VERSTEP_EMC6D102:
1350  type_name = "emc6d102";
1351  break;
1354  type_name = "emc6d103";
1355  break;
1357  type_name = "emc6d103s";
1358  break;
1359  }
1360  } else {
1361  dev_dbg(&adapter->dev,
1362  "Autodetection failed: unknown vendor\n");
1363  return -ENODEV;
1364  }
1365 
1366  strlcpy(info->type, type_name, I2C_NAME_SIZE);
1367 
1368  return 0;
1369 }
1370 
1371 static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data)
1372 {
1373  sysfs_remove_group(&client->dev.kobj, &lm85_group);
1374  if (data->type != emc6d103s) {
1375  sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl);
1376  sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off);
1377  }
1378  if (!data->has_vid5)
1379  sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1380  if (data->type == emc6d100)
1381  sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1382 }
1383 
1384 static int lm85_probe(struct i2c_client *client,
1385  const struct i2c_device_id *id)
1386 {
1387  struct lm85_data *data;
1388  int err;
1389 
1390  data = devm_kzalloc(&client->dev, sizeof(struct lm85_data), GFP_KERNEL);
1391  if (!data)
1392  return -ENOMEM;
1393 
1394  i2c_set_clientdata(client, data);
1395  data->type = id->driver_data;
1396  mutex_init(&data->update_lock);
1397 
1398  /* Fill in the chip specific driver values */
1399  switch (data->type) {
1400  case adm1027:
1401  case adt7463:
1402  case adt7468:
1403  case emc6d100:
1404  case emc6d102:
1405  case emc6d103:
1406  case emc6d103s:
1407  data->freq_map = adm1027_freq_map;
1408  break;
1409  default:
1410  data->freq_map = lm85_freq_map;
1411  }
1412 
1413  /* Set the VRM version */
1414  data->vrm = vid_which_vrm();
1415 
1416  /* Initialize the LM85 chip */
1417  lm85_init_client(client);
1418 
1419  /* Register sysfs hooks */
1420  err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1421  if (err)
1422  return err;
1423 
1424  /* minctl and temp_off exist on all chips except emc6d103s */
1425  if (data->type != emc6d103s) {
1426  err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl);
1427  if (err)
1428  goto err_remove_files;
1429  err = sysfs_create_group(&client->dev.kobj,
1430  &lm85_group_temp_off);
1431  if (err)
1432  goto err_remove_files;
1433  }
1434 
1435  /*
1436  * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1437  * as a sixth digital VID input rather than an analog input.
1438  */
1439  if (data->type == adt7463 || data->type == adt7468) {
1440  u8 vid = lm85_read_value(client, LM85_REG_VID);
1441  if (vid & 0x80)
1442  data->has_vid5 = true;
1443  }
1444 
1445  if (!data->has_vid5) {
1446  err = sysfs_create_group(&client->dev.kobj, &lm85_group_in4);
1447  if (err)
1448  goto err_remove_files;
1449  }
1450 
1451  /* The EMC6D100 has 3 additional voltage inputs */
1452  if (data->type == emc6d100) {
1453  err = sysfs_create_group(&client->dev.kobj, &lm85_group_in567);
1454  if (err)
1455  goto err_remove_files;
1456  }
1457 
1458  data->hwmon_dev = hwmon_device_register(&client->dev);
1459  if (IS_ERR(data->hwmon_dev)) {
1460  err = PTR_ERR(data->hwmon_dev);
1461  goto err_remove_files;
1462  }
1463 
1464  return 0;
1465 
1466  /* Error out and cleanup code */
1467  err_remove_files:
1468  lm85_remove_files(client, data);
1469  return err;
1470 }
1471 
1472 static int lm85_remove(struct i2c_client *client)
1473 {
1474  struct lm85_data *data = i2c_get_clientdata(client);
1476  lm85_remove_files(client, data);
1477  return 0;
1478 }
1479 
1480 
1481 static int lm85_read_value(struct i2c_client *client, u8 reg)
1482 {
1483  int res;
1484 
1485  /* What size location is it? */
1486  switch (reg) {
1487  case LM85_REG_FAN(0): /* Read WORD data */
1488  case LM85_REG_FAN(1):
1489  case LM85_REG_FAN(2):
1490  case LM85_REG_FAN(3):
1491  case LM85_REG_FAN_MIN(0):
1492  case LM85_REG_FAN_MIN(1):
1493  case LM85_REG_FAN_MIN(2):
1494  case LM85_REG_FAN_MIN(3):
1495  case LM85_REG_ALARM1: /* Read both bytes at once */
1496  res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1497  res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1498  break;
1499  default: /* Read BYTE data */
1500  res = i2c_smbus_read_byte_data(client, reg);
1501  break;
1502  }
1503 
1504  return res;
1505 }
1506 
1507 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1508 {
1509  switch (reg) {
1510  case LM85_REG_FAN(0): /* Write WORD data */
1511  case LM85_REG_FAN(1):
1512  case LM85_REG_FAN(2):
1513  case LM85_REG_FAN(3):
1514  case LM85_REG_FAN_MIN(0):
1515  case LM85_REG_FAN_MIN(1):
1516  case LM85_REG_FAN_MIN(2):
1517  case LM85_REG_FAN_MIN(3):
1518  /* NOTE: ALARM is read only, so not included here */
1519  i2c_smbus_write_byte_data(client, reg, value & 0xff);
1520  i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1521  break;
1522  default: /* Write BYTE data */
1523  i2c_smbus_write_byte_data(client, reg, value);
1524  break;
1525  }
1526 }
1527 
1528 static struct lm85_data *lm85_update_device(struct device *dev)
1529 {
1530  struct i2c_client *client = to_i2c_client(dev);
1531  struct lm85_data *data = i2c_get_clientdata(client);
1532  int i;
1533 
1534  mutex_lock(&data->update_lock);
1535 
1536  if (!data->valid ||
1537  time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1538  /* Things that change quickly */
1539  dev_dbg(&client->dev, "Reading sensor values\n");
1540 
1541  /*
1542  * Have to read extended bits first to "freeze" the
1543  * more significant bits that are read later.
1544  * There are 2 additional resolution bits per channel and we
1545  * have room for 4, so we shift them to the left.
1546  */
1547  if (data->type == adm1027 || data->type == adt7463 ||
1548  data->type == adt7468) {
1549  int ext1 = lm85_read_value(client,
1551  int ext2 = lm85_read_value(client,
1553  int val = (ext1 << 8) + ext2;
1554 
1555  for (i = 0; i <= 4; i++)
1556  data->in_ext[i] =
1557  ((val >> (i * 2)) & 0x03) << 2;
1558 
1559  for (i = 0; i <= 2; i++)
1560  data->temp_ext[i] =
1561  (val >> ((i + 4) * 2)) & 0x0c;
1562  }
1563 
1564  data->vid = lm85_read_value(client, LM85_REG_VID);
1565 
1566  for (i = 0; i <= 3; ++i) {
1567  data->in[i] =
1568  lm85_read_value(client, LM85_REG_IN(i));
1569  data->fan[i] =
1570  lm85_read_value(client, LM85_REG_FAN(i));
1571  }
1572 
1573  if (!data->has_vid5)
1574  data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
1575 
1576  if (data->type == adt7468)
1577  data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
1578 
1579  for (i = 0; i <= 2; ++i) {
1580  data->temp[i] =
1581  lm85_read_value(client, LM85_REG_TEMP(i));
1582  data->pwm[i] =
1583  lm85_read_value(client, LM85_REG_PWM(i));
1584 
1585  if (IS_ADT7468_OFF64(data))
1586  data->temp[i] -= 64;
1587  }
1588 
1589  data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1590 
1591  if (data->type == emc6d100) {
1592  /* Three more voltage sensors */
1593  for (i = 5; i <= 7; ++i) {
1594  data->in[i] = lm85_read_value(client,
1595  EMC6D100_REG_IN(i));
1596  }
1597  /* More alarm bits */
1598  data->alarms |= lm85_read_value(client,
1599  EMC6D100_REG_ALARM3) << 16;
1600  } else if (data->type == emc6d102 || data->type == emc6d103 ||
1601  data->type == emc6d103s) {
1602  /*
1603  * Have to read LSB bits after the MSB ones because
1604  * the reading of the MSB bits has frozen the
1605  * LSBs (backward from the ADM1027).
1606  */
1607  int ext1 = lm85_read_value(client,
1609  int ext2 = lm85_read_value(client,
1611  int ext3 = lm85_read_value(client,
1613  int ext4 = lm85_read_value(client,
1615  data->in_ext[0] = ext3 & 0x0f;
1616  data->in_ext[1] = ext4 & 0x0f;
1617  data->in_ext[2] = ext4 >> 4;
1618  data->in_ext[3] = ext3 >> 4;
1619  data->in_ext[4] = ext2 >> 4;
1620 
1621  data->temp_ext[0] = ext1 & 0x0f;
1622  data->temp_ext[1] = ext2 & 0x0f;
1623  data->temp_ext[2] = ext1 >> 4;
1624  }
1625 
1626  data->last_reading = jiffies;
1627  } /* last_reading */
1628 
1629  if (!data->valid ||
1630  time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1631  /* Things that don't change often */
1632  dev_dbg(&client->dev, "Reading config values\n");
1633 
1634  for (i = 0; i <= 3; ++i) {
1635  data->in_min[i] =
1636  lm85_read_value(client, LM85_REG_IN_MIN(i));
1637  data->in_max[i] =
1638  lm85_read_value(client, LM85_REG_IN_MAX(i));
1639  data->fan_min[i] =
1640  lm85_read_value(client, LM85_REG_FAN_MIN(i));
1641  }
1642 
1643  if (!data->has_vid5) {
1644  data->in_min[4] = lm85_read_value(client,
1645  LM85_REG_IN_MIN(4));
1646  data->in_max[4] = lm85_read_value(client,
1647  LM85_REG_IN_MAX(4));
1648  }
1649 
1650  if (data->type == emc6d100) {
1651  for (i = 5; i <= 7; ++i) {
1652  data->in_min[i] = lm85_read_value(client,
1653  EMC6D100_REG_IN_MIN(i));
1654  data->in_max[i] = lm85_read_value(client,
1655  EMC6D100_REG_IN_MAX(i));
1656  }
1657  }
1658 
1659  for (i = 0; i <= 2; ++i) {
1660  int val;
1661 
1662  data->temp_min[i] =
1663  lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1664  data->temp_max[i] =
1665  lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1666 
1667  data->autofan[i].config =
1668  lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1669  val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1670  data->pwm_freq[i] = val & 0x07;
1671  data->zone[i].range = val >> 4;
1672  data->autofan[i].min_pwm =
1673  lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1674  data->zone[i].limit =
1675  lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1676  data->zone[i].critical =
1677  lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1678 
1679  if (IS_ADT7468_OFF64(data)) {
1680  data->temp_min[i] -= 64;
1681  data->temp_max[i] -= 64;
1682  data->zone[i].limit -= 64;
1683  data->zone[i].critical -= 64;
1684  }
1685  }
1686 
1687  if (data->type != emc6d103s) {
1688  i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1689  data->autofan[0].min_off = (i & 0x20) != 0;
1690  data->autofan[1].min_off = (i & 0x40) != 0;
1691  data->autofan[2].min_off = (i & 0x80) != 0;
1692 
1693  i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1694  data->zone[0].hyst = i >> 4;
1695  data->zone[1].hyst = i & 0x0f;
1696 
1697  i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1698  data->zone[2].hyst = i >> 4;
1699  }
1700 
1701  data->last_config = jiffies;
1702  } /* last_config */
1703 
1704  data->valid = 1;
1705 
1706  mutex_unlock(&data->update_lock);
1707 
1708  return data;
1709 }
1710 
1711 module_i2c_driver(lm85_driver);
1712 
1713 MODULE_LICENSE("GPL");
1714 MODULE_AUTHOR("Philip Pokorny <[email protected]>, "
1715  "Margit Schubert-While <[email protected]>, "
1716  "Justin Thiessen <[email protected]>");
1717 MODULE_DESCRIPTION("LM85-B, LM85-C driver");