Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lm90.c
Go to the documentation of this file.
1 /*
2  * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3  * monitoring
4  * Copyright (C) 2003-2010 Jean Delvare <[email protected]>
5  *
6  * Based on the lm83 driver. The LM90 is a sensor chip made by National
7  * Semiconductor. It reports up to two temperatures (its own plus up to
8  * one external one) with a 0.125 deg resolution (1 deg for local
9  * temperature) and a 3-4 deg accuracy.
10  *
11  * This driver also supports the LM89 and LM99, two other sensor chips
12  * made by National Semiconductor. Both have an increased remote
13  * temperature measurement accuracy (1 degree), and the LM99
14  * additionally shifts remote temperatures (measured and limits) by 16
15  * degrees, which allows for higher temperatures measurement.
16  * Note that there is no way to differentiate between both chips.
17  * When device is auto-detected, the driver will assume an LM99.
18  *
19  * This driver also supports the LM86, another sensor chip made by
20  * National Semiconductor. It is exactly similar to the LM90 except it
21  * has a higher accuracy.
22  *
23  * This driver also supports the ADM1032, a sensor chip made by Analog
24  * Devices. That chip is similar to the LM90, with a few differences
25  * that are not handled by this driver. Among others, it has a higher
26  * accuracy than the LM90, much like the LM86 does.
27  *
28  * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29  * chips made by Maxim. These chips are similar to the LM86.
30  * Note that there is no easy way to differentiate between the three
31  * variants. We use the device address to detect MAX6659, which will result
32  * in a detection as max6657 if it is on address 0x4c. The extra address
33  * and features of the MAX6659 are only supported if the chip is configured
34  * explicitly as max6659, or if its address is not 0x4c.
35  * These chips lack the remote temperature offset feature.
36  *
37  * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38  * MAX6692 chips made by Maxim. These are again similar to the LM86,
39  * but they use unsigned temperature values and can report temperatures
40  * from 0 to 145 degrees.
41  *
42  * This driver also supports the MAX6680 and MAX6681, two other sensor
43  * chips made by Maxim. These are quite similar to the other Maxim
44  * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45  * be treated identically.
46  *
47  * This driver also supports the MAX6695 and MAX6696, two other sensor
48  * chips made by Maxim. These are also quite similar to other Maxim
49  * chips, but support three temperature sensors instead of two. MAX6695
50  * and MAX6696 only differ in the pinout so they can be treated identically.
51  *
52  * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53  * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54  * and extended mode. They are mostly compatible with LM90 except for a data
55  * format difference for the temperature value registers.
56  *
57  * This driver also supports the SA56004 from Philips. This device is
58  * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59  *
60  * This driver also supports the G781 from GMT. This device is compatible
61  * with the ADM1032.
62  *
63  * Since the LM90 was the first chipset supported by this driver, most
64  * comments will refer to this chipset, but are actually general and
65  * concern all supported chipsets, unless mentioned otherwise.
66  *
67  * This program is free software; you can redistribute it and/or modify
68  * it under the terms of the GNU General Public License as published by
69  * the Free Software Foundation; either version 2 of the License, or
70  * (at your option) any later version.
71  *
72  * This program is distributed in the hope that it will be useful,
73  * but WITHOUT ANY WARRANTY; without even the implied warranty of
74  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
75  * GNU General Public License for more details.
76  *
77  * You should have received a copy of the GNU General Public License
78  * along with this program; if not, write to the Free Software
79  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
80  */
81 
82 #include <linux/module.h>
83 #include <linux/init.h>
84 #include <linux/slab.h>
85 #include <linux/jiffies.h>
86 #include <linux/i2c.h>
87 #include <linux/hwmon-sysfs.h>
88 #include <linux/hwmon.h>
89 #include <linux/err.h>
90 #include <linux/mutex.h>
91 #include <linux/sysfs.h>
92 
93 /*
94  * Addresses to scan
95  * Address is fully defined internally and cannot be changed except for
96  * MAX6659, MAX6680 and MAX6681.
97  * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
98  * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
99  * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
100  * have address 0x4d.
101  * MAX6647 has address 0x4e.
102  * MAX6659 can have address 0x4c, 0x4d or 0x4e.
103  * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
104  * 0x4c, 0x4d or 0x4e.
105  * SA56004 can have address 0x48 through 0x4F.
106  */
107 
108 static const unsigned short normal_i2c[] = {
109  0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
110  0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
111 
114 
115 /*
116  * The LM90 registers
117  */
118 
119 #define LM90_REG_R_MAN_ID 0xFE
120 #define LM90_REG_R_CHIP_ID 0xFF
121 #define LM90_REG_R_CONFIG1 0x03
122 #define LM90_REG_W_CONFIG1 0x09
123 #define LM90_REG_R_CONFIG2 0xBF
124 #define LM90_REG_W_CONFIG2 0xBF
125 #define LM90_REG_R_CONVRATE 0x04
126 #define LM90_REG_W_CONVRATE 0x0A
127 #define LM90_REG_R_STATUS 0x02
128 #define LM90_REG_R_LOCAL_TEMP 0x00
129 #define LM90_REG_R_LOCAL_HIGH 0x05
130 #define LM90_REG_W_LOCAL_HIGH 0x0B
131 #define LM90_REG_R_LOCAL_LOW 0x06
132 #define LM90_REG_W_LOCAL_LOW 0x0C
133 #define LM90_REG_R_LOCAL_CRIT 0x20
134 #define LM90_REG_W_LOCAL_CRIT 0x20
135 #define LM90_REG_R_REMOTE_TEMPH 0x01
136 #define LM90_REG_R_REMOTE_TEMPL 0x10
137 #define LM90_REG_R_REMOTE_OFFSH 0x11
138 #define LM90_REG_W_REMOTE_OFFSH 0x11
139 #define LM90_REG_R_REMOTE_OFFSL 0x12
140 #define LM90_REG_W_REMOTE_OFFSL 0x12
141 #define LM90_REG_R_REMOTE_HIGHH 0x07
142 #define LM90_REG_W_REMOTE_HIGHH 0x0D
143 #define LM90_REG_R_REMOTE_HIGHL 0x13
144 #define LM90_REG_W_REMOTE_HIGHL 0x13
145 #define LM90_REG_R_REMOTE_LOWH 0x08
146 #define LM90_REG_W_REMOTE_LOWH 0x0E
147 #define LM90_REG_R_REMOTE_LOWL 0x14
148 #define LM90_REG_W_REMOTE_LOWL 0x14
149 #define LM90_REG_R_REMOTE_CRIT 0x19
150 #define LM90_REG_W_REMOTE_CRIT 0x19
151 #define LM90_REG_R_TCRIT_HYST 0x21
152 #define LM90_REG_W_TCRIT_HYST 0x21
153 
154 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
155 
156 #define MAX6657_REG_R_LOCAL_TEMPL 0x11
157 #define MAX6696_REG_R_STATUS2 0x12
158 #define MAX6659_REG_R_REMOTE_EMERG 0x16
159 #define MAX6659_REG_W_REMOTE_EMERG 0x16
160 #define MAX6659_REG_R_LOCAL_EMERG 0x17
161 #define MAX6659_REG_W_LOCAL_EMERG 0x17
162 
163 /* SA56004 registers */
164 
165 #define SA56004_REG_R_LOCAL_TEMPL 0x22
166 
167 #define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */
168 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
169 
170 /*
171  * Device flags
172  */
173 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
174 /* Device features */
175 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
176 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
177 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
178 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
179 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
180 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
181 
182 /*
183  * Driver data (common to all clients)
184  */
185 
186 static const struct i2c_device_id lm90_id[] = {
187  { "adm1032", adm1032 },
188  { "adt7461", adt7461 },
189  { "adt7461a", adt7461 },
190  { "g781", g781 },
191  { "lm90", lm90 },
192  { "lm86", lm86 },
193  { "lm89", lm86 },
194  { "lm99", lm99 },
195  { "max6646", max6646 },
196  { "max6647", max6646 },
197  { "max6649", max6646 },
198  { "max6657", max6657 },
199  { "max6658", max6657 },
200  { "max6659", max6659 },
201  { "max6680", max6680 },
202  { "max6681", max6680 },
203  { "max6695", max6696 },
204  { "max6696", max6696 },
205  { "nct1008", adt7461 },
206  { "w83l771", w83l771 },
207  { "sa56004", sa56004 },
208  { }
209 };
210 MODULE_DEVICE_TABLE(i2c, lm90_id);
211 
212 /*
213  * chip type specific parameters
214  */
215 struct lm90_params {
216  u32 flags; /* Capabilities */
217  u16 alert_alarms; /* Which alarm bits trigger ALERT# */
218  /* Upper 8 bits for max6695/96 */
219  u8 max_convrate; /* Maximum conversion rate register value */
220  u8 reg_local_ext; /* Extended local temp register (optional) */
221 };
222 
223 static const struct lm90_params lm90_params[] = {
224  [adm1032] = {
227  .alert_alarms = 0x7c,
228  .max_convrate = 10,
229  },
230  [adt7461] = {
233  .alert_alarms = 0x7c,
234  .max_convrate = 10,
235  },
236  [g781] = {
239  .alert_alarms = 0x7c,
240  .max_convrate = 8,
241  },
242  [lm86] = {
244  .alert_alarms = 0x7b,
245  .max_convrate = 9,
246  },
247  [lm90] = {
249  .alert_alarms = 0x7b,
250  .max_convrate = 9,
251  },
252  [lm99] = {
254  .alert_alarms = 0x7b,
255  .max_convrate = 9,
256  },
257  [max6646] = {
258  .alert_alarms = 0x7c,
259  .max_convrate = 6,
260  .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
261  },
262  [max6657] = {
263  .alert_alarms = 0x7c,
264  .max_convrate = 8,
265  .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
266  },
267  [max6659] = {
268  .flags = LM90_HAVE_EMERGENCY,
269  .alert_alarms = 0x7c,
270  .max_convrate = 8,
271  .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
272  },
273  [max6680] = {
274  .flags = LM90_HAVE_OFFSET,
275  .alert_alarms = 0x7c,
276  .max_convrate = 7,
277  },
278  [max6696] = {
279  .flags = LM90_HAVE_EMERGENCY
281  .alert_alarms = 0x187c,
282  .max_convrate = 6,
283  .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
284  },
285  [w83l771] = {
287  .alert_alarms = 0x7c,
288  .max_convrate = 8,
289  },
290  [sa56004] = {
292  .alert_alarms = 0x7b,
293  .max_convrate = 9,
294  .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
295  },
296 };
297 
298 /*
299  * Client data (each client gets its own)
300  */
301 
302 struct lm90_data {
303  struct device *hwmon_dev;
305  char valid; /* zero until following fields are valid */
306  unsigned long last_updated; /* in jiffies */
307  int kind;
309 
310  int update_interval; /* in milliseconds */
311 
312  u8 config_orig; /* Original configuration register value */
313  u8 convrate_orig; /* Original conversion rate register value */
314  u16 alert_alarms; /* Which alarm bits trigger ALERT# */
315  /* Upper 8 bits for max6695/96 */
316  u8 max_convrate; /* Maximum conversion rate */
317  u8 reg_local_ext; /* local extension register offset */
318 
319  /* registers values */
320  s8 temp8[8]; /* 0: local low limit
321  * 1: local high limit
322  * 2: local critical limit
323  * 3: remote critical limit
324  * 4: local emergency limit (max6659 and max6695/96)
325  * 5: remote emergency limit (max6659 and max6695/96)
326  * 6: remote 2 critical limit (max6695/96 only)
327  * 7: remote 2 emergency limit (max6695/96 only)
328  */
329  s16 temp11[8]; /* 0: remote input
330  * 1: remote low limit
331  * 2: remote high limit
332  * 3: remote offset (except max6646, max6657/58/59,
333  * and max6695/96)
334  * 4: local input
335  * 5: remote 2 input (max6695/96 only)
336  * 6: remote 2 low limit (max6695/96 only)
337  * 7: remote 2 high limit (max6695/96 only)
338  */
340  u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
341 };
342 
343 /*
344  * Support functions
345  */
346 
347 /*
348  * The ADM1032 supports PEC but not on write byte transactions, so we need
349  * to explicitly ask for a transaction without PEC.
350  */
351 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
352 {
353  return i2c_smbus_xfer(client->adapter, client->addr,
354  client->flags & ~I2C_CLIENT_PEC,
356 }
357 
358 /*
359  * It is assumed that client->update_lock is held (unless we are in
360  * detection or initialization steps). This matters when PEC is enabled,
361  * because we don't want the address pointer to change between the write
362  * byte and the read byte transactions.
363  */
364 static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
365 {
366  int err;
367 
368  if (client->flags & I2C_CLIENT_PEC) {
369  err = adm1032_write_byte(client, reg);
370  if (err >= 0)
371  err = i2c_smbus_read_byte(client);
372  } else
373  err = i2c_smbus_read_byte_data(client, reg);
374 
375  if (err < 0) {
376  dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
377  reg, err);
378  return err;
379  }
380  *value = err;
381 
382  return 0;
383 }
384 
385 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
386 {
387  int err;
388  u8 oldh, newh, l;
389 
390  /*
391  * There is a trick here. We have to read two registers to have the
392  * sensor temperature, but we have to beware a conversion could occur
393  * between the readings. The datasheet says we should either use
394  * the one-shot conversion register, which we don't want to do
395  * (disables hardware monitoring) or monitor the busy bit, which is
396  * impossible (we can't read the values and monitor that bit at the
397  * exact same time). So the solution used here is to read the high
398  * byte once, then the low byte, then the high byte again. If the new
399  * high byte matches the old one, then we have a valid reading. Else
400  * we have to read the low byte again, and now we believe we have a
401  * correct reading.
402  */
403  if ((err = lm90_read_reg(client, regh, &oldh))
404  || (err = lm90_read_reg(client, regl, &l))
405  || (err = lm90_read_reg(client, regh, &newh)))
406  return err;
407  if (oldh != newh) {
408  err = lm90_read_reg(client, regl, &l);
409  if (err)
410  return err;
411  }
412  *value = (newh << 8) | l;
413 
414  return 0;
415 }
416 
417 /*
418  * client->update_lock must be held when calling this function (unless we are
419  * in detection or initialization steps), and while a remote channel other
420  * than channel 0 is selected. Also, calling code must make sure to re-select
421  * external channel 0 before releasing the lock. This is necessary because
422  * various registers have different meanings as a result of selecting a
423  * non-default remote channel.
424  */
425 static inline void lm90_select_remote_channel(struct i2c_client *client,
426  struct lm90_data *data,
427  int channel)
428 {
429  u8 config;
430 
431  if (data->kind == max6696) {
432  lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
433  config &= ~0x08;
434  if (channel)
435  config |= 0x08;
437  config);
438  }
439 }
440 
441 /*
442  * Set conversion rate.
443  * client->update_lock must be held when calling this function (unless we are
444  * in detection or initialization steps).
445  */
446 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
447  unsigned int interval)
448 {
449  int i;
450  unsigned int update_interval;
451 
452  /* Shift calculations to avoid rounding errors */
453  interval <<= 6;
454 
455  /* find the nearest update rate */
456  for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
457  i < data->max_convrate; i++, update_interval >>= 1)
458  if (interval >= update_interval * 3 / 4)
459  break;
460 
462  data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
463 }
464 
465 static struct lm90_data *lm90_update_device(struct device *dev)
466 {
467  struct i2c_client *client = to_i2c_client(dev);
468  struct lm90_data *data = i2c_get_clientdata(client);
469  unsigned long next_update;
470 
471  mutex_lock(&data->update_lock);
472 
473  next_update = data->last_updated
474  + msecs_to_jiffies(data->update_interval) + 1;
475  if (time_after(jiffies, next_update) || !data->valid) {
476  u8 h, l;
477  u8 alarms;
478 
479  dev_dbg(&client->dev, "Updating lm90 data.\n");
480  lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[0]);
481  lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[1]);
482  lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[2]);
483  lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[3]);
484  lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
485 
486  if (data->reg_local_ext) {
487  lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
488  data->reg_local_ext,
489  &data->temp11[4]);
490  } else {
491  if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
492  &h) == 0)
493  data->temp11[4] = h << 8;
494  }
495  lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
496  LM90_REG_R_REMOTE_TEMPL, &data->temp11[0]);
497 
498  if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
499  data->temp11[1] = h << 8;
500  if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
501  && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
502  &l) == 0)
503  data->temp11[1] |= l;
504  }
505  if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
506  data->temp11[2] = h << 8;
507  if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
508  && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
509  &l) == 0)
510  data->temp11[2] |= l;
511  }
512 
513  if (data->flags & LM90_HAVE_OFFSET) {
514  if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
515  &h) == 0
516  && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
517  &l) == 0)
518  data->temp11[3] = (h << 8) | l;
519  }
520  if (data->flags & LM90_HAVE_EMERGENCY) {
521  lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
522  &data->temp8[4]);
523  lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
524  &data->temp8[5]);
525  }
526  lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
527  data->alarms = alarms; /* save as 16 bit value */
528 
529  if (data->kind == max6696) {
530  lm90_select_remote_channel(client, data, 1);
531  lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
532  &data->temp8[6]);
533  lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
534  &data->temp8[7]);
535  lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
536  LM90_REG_R_REMOTE_TEMPL, &data->temp11[5]);
537  if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
538  data->temp11[6] = h << 8;
539  if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
540  data->temp11[7] = h << 8;
541  lm90_select_remote_channel(client, data, 0);
542 
543  if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
544  &alarms))
545  data->alarms |= alarms << 8;
546  }
547 
548  /*
549  * Re-enable ALERT# output if it was originally enabled and
550  * relevant alarms are all clear
551  */
552  if ((data->config_orig & 0x80) == 0
553  && (data->alarms & data->alert_alarms) == 0) {
554  u8 config;
555 
556  lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
557  if (config & 0x80) {
558  dev_dbg(&client->dev, "Re-enabling ALERT#\n");
561  config & ~0x80);
562  }
563  }
564 
565  data->last_updated = jiffies;
566  data->valid = 1;
567  }
568 
569  mutex_unlock(&data->update_lock);
570 
571  return data;
572 }
573 
574 /*
575  * Conversions
576  * For local temperatures and limits, critical limits and the hysteresis
577  * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
578  * For remote temperatures and limits, it uses signed 11-bit values with
579  * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
580  * Maxim chips use unsigned values.
581  */
582 
583 static inline int temp_from_s8(s8 val)
584 {
585  return val * 1000;
586 }
587 
588 static inline int temp_from_u8(u8 val)
589 {
590  return val * 1000;
591 }
592 
593 static inline int temp_from_s16(s16 val)
594 {
595  return val / 32 * 125;
596 }
597 
598 static inline int temp_from_u16(u16 val)
599 {
600  return val / 32 * 125;
601 }
602 
603 static s8 temp_to_s8(long val)
604 {
605  if (val <= -128000)
606  return -128;
607  if (val >= 127000)
608  return 127;
609  if (val < 0)
610  return (val - 500) / 1000;
611  return (val + 500) / 1000;
612 }
613 
614 static u8 temp_to_u8(long val)
615 {
616  if (val <= 0)
617  return 0;
618  if (val >= 255000)
619  return 255;
620  return (val + 500) / 1000;
621 }
622 
623 static s16 temp_to_s16(long val)
624 {
625  if (val <= -128000)
626  return 0x8000;
627  if (val >= 127875)
628  return 0x7FE0;
629  if (val < 0)
630  return (val - 62) / 125 * 32;
631  return (val + 62) / 125 * 32;
632 }
633 
634 static u8 hyst_to_reg(long val)
635 {
636  if (val <= 0)
637  return 0;
638  if (val >= 30500)
639  return 31;
640  return (val + 500) / 1000;
641 }
642 
643 /*
644  * ADT7461 in compatibility mode is almost identical to LM90 except that
645  * attempts to write values that are outside the range 0 < temp < 127 are
646  * treated as the boundary value.
647  *
648  * ADT7461 in "extended mode" operation uses unsigned integers offset by
649  * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
650  */
651 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
652 {
653  if (data->flags & LM90_FLAG_ADT7461_EXT)
654  return (val - 64) * 1000;
655  else
656  return temp_from_s8(val);
657 }
658 
659 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
660 {
661  if (data->flags & LM90_FLAG_ADT7461_EXT)
662  return (val - 0x4000) / 64 * 250;
663  else
664  return temp_from_s16(val);
665 }
666 
667 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
668 {
669  if (data->flags & LM90_FLAG_ADT7461_EXT) {
670  if (val <= -64000)
671  return 0;
672  if (val >= 191000)
673  return 0xFF;
674  return (val + 500 + 64000) / 1000;
675  } else {
676  if (val <= 0)
677  return 0;
678  if (val >= 127000)
679  return 127;
680  return (val + 500) / 1000;
681  }
682 }
683 
684 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
685 {
686  if (data->flags & LM90_FLAG_ADT7461_EXT) {
687  if (val <= -64000)
688  return 0;
689  if (val >= 191750)
690  return 0xFFC0;
691  return (val + 64000 + 125) / 250 * 64;
692  } else {
693  if (val <= 0)
694  return 0;
695  if (val >= 127750)
696  return 0x7FC0;
697  return (val + 125) / 250 * 64;
698  }
699 }
700 
701 /*
702  * Sysfs stuff
703  */
704 
705 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
706  char *buf)
707 {
709  struct lm90_data *data = lm90_update_device(dev);
710  int temp;
711 
712  if (data->kind == adt7461)
713  temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
714  else if (data->kind == max6646)
715  temp = temp_from_u8(data->temp8[attr->index]);
716  else
717  temp = temp_from_s8(data->temp8[attr->index]);
718 
719  /* +16 degrees offset for temp2 for the LM99 */
720  if (data->kind == lm99 && attr->index == 3)
721  temp += 16000;
722 
723  return sprintf(buf, "%d\n", temp);
724 }
725 
726 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
727  const char *buf, size_t count)
728 {
729  static const u8 reg[8] = {
738  };
739 
740  struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
741  struct i2c_client *client = to_i2c_client(dev);
742  struct lm90_data *data = i2c_get_clientdata(client);
743  int nr = attr->index;
744  long val;
745  int err;
746 
747  err = kstrtol(buf, 10, &val);
748  if (err < 0)
749  return err;
750 
751  /* +16 degrees offset for temp2 for the LM99 */
752  if (data->kind == lm99 && attr->index == 3)
753  val -= 16000;
754 
755  mutex_lock(&data->update_lock);
756  if (data->kind == adt7461)
757  data->temp8[nr] = temp_to_u8_adt7461(data, val);
758  else if (data->kind == max6646)
759  data->temp8[nr] = temp_to_u8(val);
760  else
761  data->temp8[nr] = temp_to_s8(val);
762 
763  lm90_select_remote_channel(client, data, nr >= 6);
764  i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
765  lm90_select_remote_channel(client, data, 0);
766 
767  mutex_unlock(&data->update_lock);
768  return count;
769 }
770 
771 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
772  char *buf)
773 {
774  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
775  struct lm90_data *data = lm90_update_device(dev);
776  int temp;
777 
778  if (data->kind == adt7461)
779  temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
780  else if (data->kind == max6646)
781  temp = temp_from_u16(data->temp11[attr->index]);
782  else
783  temp = temp_from_s16(data->temp11[attr->index]);
784 
785  /* +16 degrees offset for temp2 for the LM99 */
786  if (data->kind == lm99 && attr->index <= 2)
787  temp += 16000;
788 
789  return sprintf(buf, "%d\n", temp);
790 }
791 
792 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
793  const char *buf, size_t count)
794 {
795  struct {
796  u8 high;
797  u8 low;
798  int channel;
799  } reg[5] = {
805  };
806 
807  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
808  struct i2c_client *client = to_i2c_client(dev);
809  struct lm90_data *data = i2c_get_clientdata(client);
810  int nr = attr->nr;
811  int index = attr->index;
812  long val;
813  int err;
814 
815  err = kstrtol(buf, 10, &val);
816  if (err < 0)
817  return err;
818 
819  /* +16 degrees offset for temp2 for the LM99 */
820  if (data->kind == lm99 && index <= 2)
821  val -= 16000;
822 
823  mutex_lock(&data->update_lock);
824  if (data->kind == adt7461)
825  data->temp11[index] = temp_to_u16_adt7461(data, val);
826  else if (data->kind == max6646)
827  data->temp11[index] = temp_to_u8(val) << 8;
828  else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
829  data->temp11[index] = temp_to_s16(val);
830  else
831  data->temp11[index] = temp_to_s8(val) << 8;
832 
833  lm90_select_remote_channel(client, data, reg[nr].channel);
834  i2c_smbus_write_byte_data(client, reg[nr].high,
835  data->temp11[index] >> 8);
836  if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
837  i2c_smbus_write_byte_data(client, reg[nr].low,
838  data->temp11[index] & 0xff);
839  lm90_select_remote_channel(client, data, 0);
840 
841  mutex_unlock(&data->update_lock);
842  return count;
843 }
844 
845 static ssize_t show_temphyst(struct device *dev,
846  struct device_attribute *devattr,
847  char *buf)
848 {
849  struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
850  struct lm90_data *data = lm90_update_device(dev);
851  int temp;
852 
853  if (data->kind == adt7461)
854  temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
855  else if (data->kind == max6646)
856  temp = temp_from_u8(data->temp8[attr->index]);
857  else
858  temp = temp_from_s8(data->temp8[attr->index]);
859 
860  /* +16 degrees offset for temp2 for the LM99 */
861  if (data->kind == lm99 && attr->index == 3)
862  temp += 16000;
863 
864  return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
865 }
866 
867 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
868  const char *buf, size_t count)
869 {
870  struct i2c_client *client = to_i2c_client(dev);
871  struct lm90_data *data = i2c_get_clientdata(client);
872  long val;
873  int err;
874  int temp;
875 
876  err = kstrtol(buf, 10, &val);
877  if (err < 0)
878  return err;
879 
880  mutex_lock(&data->update_lock);
881  if (data->kind == adt7461)
882  temp = temp_from_u8_adt7461(data, data->temp8[2]);
883  else if (data->kind == max6646)
884  temp = temp_from_u8(data->temp8[2]);
885  else
886  temp = temp_from_s8(data->temp8[2]);
887 
888  data->temp_hyst = hyst_to_reg(temp - val);
890  data->temp_hyst);
891  mutex_unlock(&data->update_lock);
892  return count;
893 }
894 
895 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
896  char *buf)
897 {
898  struct lm90_data *data = lm90_update_device(dev);
899  return sprintf(buf, "%d\n", data->alarms);
900 }
901 
902 static ssize_t show_alarm(struct device *dev, struct device_attribute
903  *devattr, char *buf)
904 {
905  struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
906  struct lm90_data *data = lm90_update_device(dev);
907  int bitnr = attr->index;
908 
909  return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
910 }
911 
912 static ssize_t show_update_interval(struct device *dev,
913  struct device_attribute *attr, char *buf)
914 {
915  struct lm90_data *data = dev_get_drvdata(dev);
916 
917  return sprintf(buf, "%u\n", data->update_interval);
918 }
919 
920 static ssize_t set_update_interval(struct device *dev,
921  struct device_attribute *attr,
922  const char *buf, size_t count)
923 {
924  struct i2c_client *client = to_i2c_client(dev);
925  struct lm90_data *data = i2c_get_clientdata(client);
926  unsigned long val;
927  int err;
928 
929  err = kstrtoul(buf, 10, &val);
930  if (err)
931  return err;
932 
933  mutex_lock(&data->update_lock);
934  lm90_set_convrate(client, data, SENSORS_LIMIT(val, 0, 100000));
935  mutex_unlock(&data->update_lock);
936 
937  return count;
938 }
939 
940 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL, 0, 4);
941 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL, 0, 0);
942 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
943  set_temp8, 0);
944 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
945  set_temp11, 0, 1);
946 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
947  set_temp8, 1);
948 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
949  set_temp11, 1, 2);
950 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
951  set_temp8, 2);
952 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
953  set_temp8, 3);
954 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
955  set_temphyst, 2);
956 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 3);
957 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
958  set_temp11, 2, 3);
959 
960 /* Individual alarm files */
961 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
962 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
963 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
964 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
965 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
966 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
967 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
968 /* Raw alarm file for compatibility */
969 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
970 
971 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
972  set_update_interval);
973 
974 static struct attribute *lm90_attributes[] = {
975  &sensor_dev_attr_temp1_input.dev_attr.attr,
976  &sensor_dev_attr_temp2_input.dev_attr.attr,
977  &sensor_dev_attr_temp1_min.dev_attr.attr,
978  &sensor_dev_attr_temp2_min.dev_attr.attr,
979  &sensor_dev_attr_temp1_max.dev_attr.attr,
980  &sensor_dev_attr_temp2_max.dev_attr.attr,
981  &sensor_dev_attr_temp1_crit.dev_attr.attr,
982  &sensor_dev_attr_temp2_crit.dev_attr.attr,
983  &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
984  &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
985 
986  &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
987  &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
988  &sensor_dev_attr_temp2_fault.dev_attr.attr,
989  &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
990  &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
991  &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
992  &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
993  &dev_attr_alarms.attr,
994  &dev_attr_update_interval.attr,
995  NULL
996 };
997 
998 static const struct attribute_group lm90_group = {
999  .attrs = lm90_attributes,
1000 };
1001 
1002 /*
1003  * Additional attributes for devices with emergency sensors
1004  */
1005 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1006  set_temp8, 4);
1007 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1008  set_temp8, 5);
1009 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1010  NULL, 4);
1011 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1012  NULL, 5);
1013 
1014 static struct attribute *lm90_emergency_attributes[] = {
1015  &sensor_dev_attr_temp1_emergency.dev_attr.attr,
1016  &sensor_dev_attr_temp2_emergency.dev_attr.attr,
1017  &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1018  &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1019  NULL
1020 };
1021 
1022 static const struct attribute_group lm90_emergency_group = {
1023  .attrs = lm90_emergency_attributes,
1024 };
1025 
1026 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1027 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1028 
1029 static struct attribute *lm90_emergency_alarm_attributes[] = {
1030  &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1031  &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1032  NULL
1033 };
1034 
1035 static const struct attribute_group lm90_emergency_alarm_group = {
1036  .attrs = lm90_emergency_alarm_attributes,
1037 };
1038 
1039 /*
1040  * Additional attributes for devices with 3 temperature sensors
1041  */
1042 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL, 0, 5);
1043 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1044  set_temp11, 3, 6);
1045 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1046  set_temp11, 4, 7);
1047 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1048  set_temp8, 6);
1049 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL, 6);
1050 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1051  set_temp8, 7);
1052 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1053  NULL, 7);
1054 
1055 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1056 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1057 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1058 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1059 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1060 
1061 static struct attribute *lm90_temp3_attributes[] = {
1062  &sensor_dev_attr_temp3_input.dev_attr.attr,
1063  &sensor_dev_attr_temp3_min.dev_attr.attr,
1064  &sensor_dev_attr_temp3_max.dev_attr.attr,
1065  &sensor_dev_attr_temp3_crit.dev_attr.attr,
1066  &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1067  &sensor_dev_attr_temp3_emergency.dev_attr.attr,
1068  &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1069 
1070  &sensor_dev_attr_temp3_fault.dev_attr.attr,
1071  &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1072  &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1073  &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1074  &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1075  NULL
1076 };
1077 
1078 static const struct attribute_group lm90_temp3_group = {
1079  .attrs = lm90_temp3_attributes,
1080 };
1081 
1082 /* pec used for ADM1032 only */
1083 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1084  char *buf)
1085 {
1086  struct i2c_client *client = to_i2c_client(dev);
1087  return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1088 }
1089 
1090 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1091  const char *buf, size_t count)
1092 {
1093  struct i2c_client *client = to_i2c_client(dev);
1094  long val;
1095  int err;
1096 
1097  err = kstrtol(buf, 10, &val);
1098  if (err < 0)
1099  return err;
1100 
1101  switch (val) {
1102  case 0:
1103  client->flags &= ~I2C_CLIENT_PEC;
1104  break;
1105  case 1:
1106  client->flags |= I2C_CLIENT_PEC;
1107  break;
1108  default:
1109  return -EINVAL;
1110  }
1111 
1112  return count;
1113 }
1114 
1115 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1116 
1117 /*
1118  * Real code
1119  */
1120 
1121 /* Return 0 if detection is successful, -ENODEV otherwise */
1122 static int lm90_detect(struct i2c_client *client,
1123  struct i2c_board_info *info)
1124 {
1125  struct i2c_adapter *adapter = client->adapter;
1126  int address = client->addr;
1127  const char *name = NULL;
1128  int man_id, chip_id, config1, config2, convrate;
1129 
1130  if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1131  return -ENODEV;
1132 
1133  /* detection and identification */
1134  man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1135  chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1136  config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1137  convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1138  if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1139  return -ENODEV;
1140 
1141  if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1142  config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1143  if (config2 < 0)
1144  return -ENODEV;
1145  } else
1146  config2 = 0; /* Make compiler happy */
1147 
1148  if ((address == 0x4C || address == 0x4D)
1149  && man_id == 0x01) { /* National Semiconductor */
1150  if ((config1 & 0x2A) == 0x00
1151  && (config2 & 0xF8) == 0x00
1152  && convrate <= 0x09) {
1153  if (address == 0x4C
1154  && (chip_id & 0xF0) == 0x20) { /* LM90 */
1155  name = "lm90";
1156  } else
1157  if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1158  name = "lm99";
1159  dev_info(&adapter->dev,
1160  "Assuming LM99 chip at 0x%02x\n",
1161  address);
1162  dev_info(&adapter->dev,
1163  "If it is an LM89, instantiate it "
1164  "with the new_device sysfs "
1165  "interface\n");
1166  } else
1167  if (address == 0x4C
1168  && (chip_id & 0xF0) == 0x10) { /* LM86 */
1169  name = "lm86";
1170  }
1171  }
1172  } else
1173  if ((address == 0x4C || address == 0x4D)
1174  && man_id == 0x41) { /* Analog Devices */
1175  if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1176  && (config1 & 0x3F) == 0x00
1177  && convrate <= 0x0A) {
1178  name = "adm1032";
1179  /*
1180  * The ADM1032 supports PEC, but only if combined
1181  * transactions are not used.
1182  */
1183  if (i2c_check_functionality(adapter,
1185  info->flags |= I2C_CLIENT_PEC;
1186  } else
1187  if (chip_id == 0x51 /* ADT7461 */
1188  && (config1 & 0x1B) == 0x00
1189  && convrate <= 0x0A) {
1190  name = "adt7461";
1191  } else
1192  if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1193  && (config1 & 0x1B) == 0x00
1194  && convrate <= 0x0A) {
1195  name = "adt7461a";
1196  }
1197  } else
1198  if (man_id == 0x4D) { /* Maxim */
1199  int emerg, emerg2, status2;
1200 
1201  /*
1202  * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1203  * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1204  * exists, both readings will reflect the same value. Otherwise,
1205  * the readings will be different.
1206  */
1207  emerg = i2c_smbus_read_byte_data(client,
1209  man_id = i2c_smbus_read_byte_data(client,
1211  emerg2 = i2c_smbus_read_byte_data(client,
1213  status2 = i2c_smbus_read_byte_data(client,
1215  if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1216  return -ENODEV;
1217 
1218  /*
1219  * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1220  * register. Reading from that address will return the last
1221  * read value, which in our case is those of the man_id
1222  * register. Likewise, the config1 register seems to lack a
1223  * low nibble, so the value will be those of the previous
1224  * read, so in our case those of the man_id register.
1225  * MAX6659 has a third set of upper temperature limit registers.
1226  * Those registers also return values on MAX6657 and MAX6658,
1227  * thus the only way to detect MAX6659 is by its address.
1228  * For this reason it will be mis-detected as MAX6657 if its
1229  * address is 0x4C.
1230  */
1231  if (chip_id == man_id
1232  && (address == 0x4C || address == 0x4D || address == 0x4E)
1233  && (config1 & 0x1F) == (man_id & 0x0F)
1234  && convrate <= 0x09) {
1235  if (address == 0x4C)
1236  name = "max6657";
1237  else
1238  name = "max6659";
1239  } else
1240  /*
1241  * Even though MAX6695 and MAX6696 do not have a chip ID
1242  * register, reading it returns 0x01. Bit 4 of the config1
1243  * register is unused and should return zero when read. Bit 0 of
1244  * the status2 register is unused and should return zero when
1245  * read.
1246  *
1247  * MAX6695 and MAX6696 have an additional set of temperature
1248  * limit registers. We can detect those chips by checking if
1249  * one of those registers exists.
1250  */
1251  if (chip_id == 0x01
1252  && (config1 & 0x10) == 0x00
1253  && (status2 & 0x01) == 0x00
1254  && emerg == emerg2
1255  && convrate <= 0x07) {
1256  name = "max6696";
1257  } else
1258  /*
1259  * The chip_id register of the MAX6680 and MAX6681 holds the
1260  * revision of the chip. The lowest bit of the config1 register
1261  * is unused and should return zero when read, so should the
1262  * second to last bit of config1 (software reset).
1263  */
1264  if (chip_id == 0x01
1265  && (config1 & 0x03) == 0x00
1266  && convrate <= 0x07) {
1267  name = "max6680";
1268  } else
1269  /*
1270  * The chip_id register of the MAX6646/6647/6649 holds the
1271  * revision of the chip. The lowest 6 bits of the config1
1272  * register are unused and should return zero when read.
1273  */
1274  if (chip_id == 0x59
1275  && (config1 & 0x3f) == 0x00
1276  && convrate <= 0x07) {
1277  name = "max6646";
1278  }
1279  } else
1280  if (address == 0x4C
1281  && man_id == 0x5C) { /* Winbond/Nuvoton */
1282  if ((config1 & 0x2A) == 0x00
1283  && (config2 & 0xF8) == 0x00) {
1284  if (chip_id == 0x01 /* W83L771W/G */
1285  && convrate <= 0x09) {
1286  name = "w83l771";
1287  } else
1288  if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1289  && convrate <= 0x08) {
1290  name = "w83l771";
1291  }
1292  }
1293  } else
1294  if (address >= 0x48 && address <= 0x4F
1295  && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1296  if (chip_id == 0x00
1297  && (config1 & 0x2A) == 0x00
1298  && (config2 & 0xFE) == 0x00
1299  && convrate <= 0x09) {
1300  name = "sa56004";
1301  }
1302  } else
1303  if ((address == 0x4C || address == 0x4D)
1304  && man_id == 0x47) { /* GMT */
1305  if (chip_id == 0x01 /* G781 */
1306  && (config1 & 0x3F) == 0x00
1307  && convrate <= 0x08)
1308  name = "g781";
1309  }
1310 
1311  if (!name) { /* identification failed */
1312  dev_dbg(&adapter->dev,
1313  "Unsupported chip at 0x%02x (man_id=0x%02X, "
1314  "chip_id=0x%02X)\n", address, man_id, chip_id);
1315  return -ENODEV;
1316  }
1317 
1318  strlcpy(info->type, name, I2C_NAME_SIZE);
1319 
1320  return 0;
1321 }
1322 
1323 static void lm90_remove_files(struct i2c_client *client, struct lm90_data *data)
1324 {
1325  struct device *dev = &client->dev;
1326 
1327  if (data->flags & LM90_HAVE_TEMP3)
1328  sysfs_remove_group(&dev->kobj, &lm90_temp3_group);
1329  if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1330  sysfs_remove_group(&dev->kobj, &lm90_emergency_alarm_group);
1331  if (data->flags & LM90_HAVE_EMERGENCY)
1332  sysfs_remove_group(&dev->kobj, &lm90_emergency_group);
1333  if (data->flags & LM90_HAVE_OFFSET)
1334  device_remove_file(dev, &sensor_dev_attr_temp2_offset.dev_attr);
1335  device_remove_file(dev, &dev_attr_pec);
1336  sysfs_remove_group(&dev->kobj, &lm90_group);
1337 }
1338 
1339 static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data)
1340 {
1341  /* Restore initial configuration */
1343  data->convrate_orig);
1345  data->config_orig);
1346 }
1347 
1348 static void lm90_init_client(struct i2c_client *client)
1349 {
1350  u8 config, convrate;
1351  struct lm90_data *data = i2c_get_clientdata(client);
1352 
1353  if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
1354  dev_warn(&client->dev, "Failed to read convrate register!\n");
1355  convrate = LM90_DEF_CONVRATE_RVAL;
1356  }
1357  data->convrate_orig = convrate;
1358 
1359  /*
1360  * Start the conversions.
1361  */
1362  lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1363  if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
1364  dev_warn(&client->dev, "Initialization failed!\n");
1365  return;
1366  }
1367  data->config_orig = config;
1368 
1369  /* Check Temperature Range Select */
1370  if (data->kind == adt7461) {
1371  if (config & 0x04)
1372  data->flags |= LM90_FLAG_ADT7461_EXT;
1373  }
1374 
1375  /*
1376  * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1377  * 0.125 degree resolution) and range (0x08, extend range
1378  * to -64 degree) mode for the remote temperature sensor.
1379  */
1380  if (data->kind == max6680)
1381  config |= 0x18;
1382 
1383  /*
1384  * Select external channel 0 for max6695/96
1385  */
1386  if (data->kind == max6696)
1387  config &= ~0x08;
1388 
1389  config &= 0xBF; /* run */
1390  if (config != data->config_orig) /* Only write if changed */
1392 }
1393 
1394 static int lm90_probe(struct i2c_client *client,
1395  const struct i2c_device_id *id)
1396 {
1397  struct device *dev = &client->dev;
1398  struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1399  struct lm90_data *data;
1400  int err;
1401 
1402  data = devm_kzalloc(&client->dev, sizeof(struct lm90_data), GFP_KERNEL);
1403  if (!data)
1404  return -ENOMEM;
1405 
1406  i2c_set_clientdata(client, data);
1407  mutex_init(&data->update_lock);
1408 
1409  /* Set the device type */
1410  data->kind = id->driver_data;
1411  if (data->kind == adm1032) {
1412  if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1413  client->flags &= ~I2C_CLIENT_PEC;
1414  }
1415 
1416  /*
1417  * Different devices have different alarm bits triggering the
1418  * ALERT# output
1419  */
1420  data->alert_alarms = lm90_params[data->kind].alert_alarms;
1421 
1422  /* Set chip capabilities */
1423  data->flags = lm90_params[data->kind].flags;
1424  data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1425 
1426  /* Set maximum conversion rate */
1427  data->max_convrate = lm90_params[data->kind].max_convrate;
1428 
1429  /* Initialize the LM90 chip */
1430  lm90_init_client(client);
1431 
1432  /* Register sysfs hooks */
1433  err = sysfs_create_group(&dev->kobj, &lm90_group);
1434  if (err)
1435  goto exit_restore;
1436  if (client->flags & I2C_CLIENT_PEC) {
1437  err = device_create_file(dev, &dev_attr_pec);
1438  if (err)
1439  goto exit_remove_files;
1440  }
1441  if (data->flags & LM90_HAVE_OFFSET) {
1442  err = device_create_file(dev,
1443  &sensor_dev_attr_temp2_offset.dev_attr);
1444  if (err)
1445  goto exit_remove_files;
1446  }
1447  if (data->flags & LM90_HAVE_EMERGENCY) {
1448  err = sysfs_create_group(&dev->kobj, &lm90_emergency_group);
1449  if (err)
1450  goto exit_remove_files;
1451  }
1452  if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
1453  err = sysfs_create_group(&dev->kobj,
1454  &lm90_emergency_alarm_group);
1455  if (err)
1456  goto exit_remove_files;
1457  }
1458  if (data->flags & LM90_HAVE_TEMP3) {
1459  err = sysfs_create_group(&dev->kobj, &lm90_temp3_group);
1460  if (err)
1461  goto exit_remove_files;
1462  }
1463 
1464  data->hwmon_dev = hwmon_device_register(dev);
1465  if (IS_ERR(data->hwmon_dev)) {
1466  err = PTR_ERR(data->hwmon_dev);
1467  goto exit_remove_files;
1468  }
1469 
1470  return 0;
1471 
1472 exit_remove_files:
1473  lm90_remove_files(client, data);
1474 exit_restore:
1475  lm90_restore_conf(client, data);
1476  return err;
1477 }
1478 
1479 static int lm90_remove(struct i2c_client *client)
1480 {
1481  struct lm90_data *data = i2c_get_clientdata(client);
1482 
1484  lm90_remove_files(client, data);
1485  lm90_restore_conf(client, data);
1486 
1487  return 0;
1488 }
1489 
1490 static void lm90_alert(struct i2c_client *client, unsigned int flag)
1491 {
1492  struct lm90_data *data = i2c_get_clientdata(client);
1493  u8 config, alarms, alarms2 = 0;
1494 
1495  lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
1496 
1497  if (data->kind == max6696)
1498  lm90_read_reg(client, MAX6696_REG_R_STATUS2, &alarms2);
1499 
1500  if ((alarms & 0x7f) == 0 && (alarms2 & 0xfe) == 0) {
1501  dev_info(&client->dev, "Everything OK\n");
1502  } else {
1503  if (alarms & 0x61)
1504  dev_warn(&client->dev,
1505  "temp%d out of range, please check!\n", 1);
1506  if (alarms & 0x1a)
1507  dev_warn(&client->dev,
1508  "temp%d out of range, please check!\n", 2);
1509  if (alarms & 0x04)
1510  dev_warn(&client->dev,
1511  "temp%d diode open, please check!\n", 2);
1512 
1513  if (alarms2 & 0x18)
1514  dev_warn(&client->dev,
1515  "temp%d out of range, please check!\n", 3);
1516 
1517  /*
1518  * Disable ALERT# output, because these chips don't implement
1519  * SMBus alert correctly; they should only hold the alert line
1520  * low briefly.
1521  */
1522  if ((data->flags & LM90_HAVE_BROKEN_ALERT)
1523  && (alarms & data->alert_alarms)) {
1524  dev_dbg(&client->dev, "Disabling ALERT#\n");
1525  lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
1527  config | 0x80);
1528  }
1529  }
1530 }
1531 
1532 static struct i2c_driver lm90_driver = {
1533  .class = I2C_CLASS_HWMON,
1534  .driver = {
1535  .name = "lm90",
1536  },
1537  .probe = lm90_probe,
1538  .remove = lm90_remove,
1539  .alert = lm90_alert,
1540  .id_table = lm90_id,
1541  .detect = lm90_detect,
1542  .address_list = normal_i2c,
1543 };
1544 
1545 module_i2c_driver(lm90_driver);
1546 
1547 MODULE_AUTHOR("Jean Delvare <[email protected]>");
1548 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1549 MODULE_LICENSE("GPL");