Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lpt_commit.c
Go to the documentation of this file.
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  * Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include "ubifs.h"
32 
33 static int dbg_populate_lsave(struct ubifs_info *c);
34 
42 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
43 {
44  ubifs_assert(nnode);
45  while (1) {
46  int i, cont = 0;
47 
48  for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49  struct ubifs_cnode *cnode;
50 
51  cnode = nnode->nbranch[i].cnode;
52  if (cnode &&
53  test_bit(DIRTY_CNODE, &cnode->flags)) {
54  if (cnode->level == 0)
55  return cnode;
56  nnode = (struct ubifs_nnode *)cnode;
57  cont = 1;
58  break;
59  }
60  }
61  if (!cont)
62  return (struct ubifs_cnode *)nnode;
63  }
64 }
65 
72 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
73 {
74  struct ubifs_nnode *nnode;
75  int i;
76 
77  ubifs_assert(cnode);
78  nnode = cnode->parent;
79  if (!nnode)
80  return NULL;
81  for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
82  cnode = nnode->nbranch[i].cnode;
83  if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
84  if (cnode->level == 0)
85  return cnode; /* cnode is a pnode */
86  /* cnode is a nnode */
87  return first_dirty_cnode((struct ubifs_nnode *)cnode);
88  }
89  }
90  return (struct ubifs_cnode *)nnode;
91 }
92 
99 static int get_cnodes_to_commit(struct ubifs_info *c)
100 {
101  struct ubifs_cnode *cnode, *cnext;
102  int cnt = 0;
103 
104  if (!c->nroot)
105  return 0;
106 
107  if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
108  return 0;
109 
110  c->lpt_cnext = first_dirty_cnode(c->nroot);
111  cnode = c->lpt_cnext;
112  if (!cnode)
113  return 0;
114  cnt += 1;
115  while (1) {
116  ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
117  __set_bit(COW_CNODE, &cnode->flags);
118  cnext = next_dirty_cnode(cnode);
119  if (!cnext) {
120  cnode->cnext = c->lpt_cnext;
121  break;
122  }
123  cnode->cnext = cnext;
124  cnode = cnext;
125  cnt += 1;
126  }
127  dbg_cmt("committing %d cnodes", cnt);
128  dbg_lp("committing %d cnodes", cnt);
129  ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
130  return cnt;
131 }
132 
140 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
141 {
142  dbg_lp("LEB %d free %d dirty %d to %d +%d",
143  lnum, c->ltab[lnum - c->lpt_first].free,
144  c->ltab[lnum - c->lpt_first].dirty, free, dirty);
145  ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
146  c->ltab[lnum - c->lpt_first].free = free;
147  c->ltab[lnum - c->lpt_first].dirty += dirty;
148 }
149 
160 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
161 {
162  int i, n;
163 
164  n = *lnum - c->lpt_first + 1;
165  for (i = n; i < c->lpt_lebs; i++) {
166  if (c->ltab[i].tgc || c->ltab[i].cmt)
167  continue;
168  if (c->ltab[i].free == c->leb_size) {
169  c->ltab[i].cmt = 1;
170  *lnum = i + c->lpt_first;
171  return 0;
172  }
173  }
174 
175  for (i = 0; i < n; i++) {
176  if (c->ltab[i].tgc || c->ltab[i].cmt)
177  continue;
178  if (c->ltab[i].free == c->leb_size) {
179  c->ltab[i].cmt = 1;
180  *lnum = i + c->lpt_first;
181  return 0;
182  }
183  }
184  return -ENOSPC;
185 }
186 
193 static int layout_cnodes(struct ubifs_info *c)
194 {
195  int lnum, offs, len, alen, done_lsave, done_ltab, err;
196  struct ubifs_cnode *cnode;
197 
198  err = dbg_chk_lpt_sz(c, 0, 0);
199  if (err)
200  return err;
201  cnode = c->lpt_cnext;
202  if (!cnode)
203  return 0;
204  lnum = c->nhead_lnum;
205  offs = c->nhead_offs;
206  /* Try to place lsave and ltab nicely */
207  done_lsave = !c->big_lpt;
208  done_ltab = 0;
209  if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
210  done_lsave = 1;
211  c->lsave_lnum = lnum;
212  c->lsave_offs = offs;
213  offs += c->lsave_sz;
214  dbg_chk_lpt_sz(c, 1, c->lsave_sz);
215  }
216 
217  if (offs + c->ltab_sz <= c->leb_size) {
218  done_ltab = 1;
219  c->ltab_lnum = lnum;
220  c->ltab_offs = offs;
221  offs += c->ltab_sz;
222  dbg_chk_lpt_sz(c, 1, c->ltab_sz);
223  }
224 
225  do {
226  if (cnode->level) {
227  len = c->nnode_sz;
228  c->dirty_nn_cnt -= 1;
229  } else {
230  len = c->pnode_sz;
231  c->dirty_pn_cnt -= 1;
232  }
233  while (offs + len > c->leb_size) {
234  alen = ALIGN(offs, c->min_io_size);
235  upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
236  dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
237  err = alloc_lpt_leb(c, &lnum);
238  if (err)
239  goto no_space;
240  offs = 0;
241  ubifs_assert(lnum >= c->lpt_first &&
242  lnum <= c->lpt_last);
243  /* Try to place lsave and ltab nicely */
244  if (!done_lsave) {
245  done_lsave = 1;
246  c->lsave_lnum = lnum;
247  c->lsave_offs = offs;
248  offs += c->lsave_sz;
249  dbg_chk_lpt_sz(c, 1, c->lsave_sz);
250  continue;
251  }
252  if (!done_ltab) {
253  done_ltab = 1;
254  c->ltab_lnum = lnum;
255  c->ltab_offs = offs;
256  offs += c->ltab_sz;
257  dbg_chk_lpt_sz(c, 1, c->ltab_sz);
258  continue;
259  }
260  break;
261  }
262  if (cnode->parent) {
263  cnode->parent->nbranch[cnode->iip].lnum = lnum;
264  cnode->parent->nbranch[cnode->iip].offs = offs;
265  } else {
266  c->lpt_lnum = lnum;
267  c->lpt_offs = offs;
268  }
269  offs += len;
270  dbg_chk_lpt_sz(c, 1, len);
271  cnode = cnode->cnext;
272  } while (cnode && cnode != c->lpt_cnext);
273 
274  /* Make sure to place LPT's save table */
275  if (!done_lsave) {
276  if (offs + c->lsave_sz > c->leb_size) {
277  alen = ALIGN(offs, c->min_io_size);
278  upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
279  dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
280  err = alloc_lpt_leb(c, &lnum);
281  if (err)
282  goto no_space;
283  offs = 0;
284  ubifs_assert(lnum >= c->lpt_first &&
285  lnum <= c->lpt_last);
286  }
287  done_lsave = 1;
288  c->lsave_lnum = lnum;
289  c->lsave_offs = offs;
290  offs += c->lsave_sz;
291  dbg_chk_lpt_sz(c, 1, c->lsave_sz);
292  }
293 
294  /* Make sure to place LPT's own lprops table */
295  if (!done_ltab) {
296  if (offs + c->ltab_sz > c->leb_size) {
297  alen = ALIGN(offs, c->min_io_size);
298  upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
299  dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
300  err = alloc_lpt_leb(c, &lnum);
301  if (err)
302  goto no_space;
303  offs = 0;
304  ubifs_assert(lnum >= c->lpt_first &&
305  lnum <= c->lpt_last);
306  }
307  done_ltab = 1;
308  c->ltab_lnum = lnum;
309  c->ltab_offs = offs;
310  offs += c->ltab_sz;
311  dbg_chk_lpt_sz(c, 1, c->ltab_sz);
312  }
313 
314  alen = ALIGN(offs, c->min_io_size);
315  upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
316  dbg_chk_lpt_sz(c, 4, alen - offs);
317  err = dbg_chk_lpt_sz(c, 3, alen);
318  if (err)
319  return err;
320  return 0;
321 
322 no_space:
323  ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
324  lnum, offs, len, done_ltab, done_lsave);
327  dump_stack();
328  return err;
329 }
330 
345 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
346 {
347  int i, n;
348 
349  n = *lnum - c->lpt_first + 1;
350  for (i = n; i < c->lpt_lebs; i++)
351  if (c->ltab[i].cmt) {
352  c->ltab[i].cmt = 0;
353  *lnum = i + c->lpt_first;
354  return 0;
355  }
356 
357  for (i = 0; i < n; i++)
358  if (c->ltab[i].cmt) {
359  c->ltab[i].cmt = 0;
360  *lnum = i + c->lpt_first;
361  return 0;
362  }
363  return -ENOSPC;
364 }
365 
372 static int write_cnodes(struct ubifs_info *c)
373 {
374  int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375  struct ubifs_cnode *cnode;
376  void *buf = c->lpt_buf;
377 
378  cnode = c->lpt_cnext;
379  if (!cnode)
380  return 0;
381  lnum = c->nhead_lnum;
382  offs = c->nhead_offs;
383  from = offs;
384  /* Ensure empty LEB is unmapped */
385  if (offs == 0) {
386  err = ubifs_leb_unmap(c, lnum);
387  if (err)
388  return err;
389  }
390  /* Try to place lsave and ltab nicely */
391  done_lsave = !c->big_lpt;
392  done_ltab = 0;
393  if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
394  done_lsave = 1;
395  ubifs_pack_lsave(c, buf + offs, c->lsave);
396  offs += c->lsave_sz;
397  dbg_chk_lpt_sz(c, 1, c->lsave_sz);
398  }
399 
400  if (offs + c->ltab_sz <= c->leb_size) {
401  done_ltab = 1;
402  ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
403  offs += c->ltab_sz;
404  dbg_chk_lpt_sz(c, 1, c->ltab_sz);
405  }
406 
407  /* Loop for each cnode */
408  do {
409  if (cnode->level)
410  len = c->nnode_sz;
411  else
412  len = c->pnode_sz;
413  while (offs + len > c->leb_size) {
414  wlen = offs - from;
415  if (wlen) {
416  alen = ALIGN(wlen, c->min_io_size);
417  memset(buf + offs, 0xff, alen - wlen);
418  err = ubifs_leb_write(c, lnum, buf + from, from,
419  alen);
420  if (err)
421  return err;
422  }
423  dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
424  err = realloc_lpt_leb(c, &lnum);
425  if (err)
426  goto no_space;
427  offs = from = 0;
428  ubifs_assert(lnum >= c->lpt_first &&
429  lnum <= c->lpt_last);
430  err = ubifs_leb_unmap(c, lnum);
431  if (err)
432  return err;
433  /* Try to place lsave and ltab nicely */
434  if (!done_lsave) {
435  done_lsave = 1;
436  ubifs_pack_lsave(c, buf + offs, c->lsave);
437  offs += c->lsave_sz;
438  dbg_chk_lpt_sz(c, 1, c->lsave_sz);
439  continue;
440  }
441  if (!done_ltab) {
442  done_ltab = 1;
443  ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
444  offs += c->ltab_sz;
445  dbg_chk_lpt_sz(c, 1, c->ltab_sz);
446  continue;
447  }
448  break;
449  }
450  if (cnode->level)
451  ubifs_pack_nnode(c, buf + offs,
452  (struct ubifs_nnode *)cnode);
453  else
454  ubifs_pack_pnode(c, buf + offs,
455  (struct ubifs_pnode *)cnode);
456  /*
457  * The reason for the barriers is the same as in case of TNC.
458  * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459  * 'dirty_cow_pnode()' are the functions for which this is
460  * important.
461  */
462  clear_bit(DIRTY_CNODE, &cnode->flags);
464  clear_bit(COW_CNODE, &cnode->flags);
466  offs += len;
467  dbg_chk_lpt_sz(c, 1, len);
468  cnode = cnode->cnext;
469  } while (cnode && cnode != c->lpt_cnext);
470 
471  /* Make sure to place LPT's save table */
472  if (!done_lsave) {
473  if (offs + c->lsave_sz > c->leb_size) {
474  wlen = offs - from;
475  alen = ALIGN(wlen, c->min_io_size);
476  memset(buf + offs, 0xff, alen - wlen);
477  err = ubifs_leb_write(c, lnum, buf + from, from, alen);
478  if (err)
479  return err;
480  dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
481  err = realloc_lpt_leb(c, &lnum);
482  if (err)
483  goto no_space;
484  offs = from = 0;
485  ubifs_assert(lnum >= c->lpt_first &&
486  lnum <= c->lpt_last);
487  err = ubifs_leb_unmap(c, lnum);
488  if (err)
489  return err;
490  }
491  done_lsave = 1;
492  ubifs_pack_lsave(c, buf + offs, c->lsave);
493  offs += c->lsave_sz;
494  dbg_chk_lpt_sz(c, 1, c->lsave_sz);
495  }
496 
497  /* Make sure to place LPT's own lprops table */
498  if (!done_ltab) {
499  if (offs + c->ltab_sz > c->leb_size) {
500  wlen = offs - from;
501  alen = ALIGN(wlen, c->min_io_size);
502  memset(buf + offs, 0xff, alen - wlen);
503  err = ubifs_leb_write(c, lnum, buf + from, from, alen);
504  if (err)
505  return err;
506  dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507  err = realloc_lpt_leb(c, &lnum);
508  if (err)
509  goto no_space;
510  offs = from = 0;
511  ubifs_assert(lnum >= c->lpt_first &&
512  lnum <= c->lpt_last);
513  err = ubifs_leb_unmap(c, lnum);
514  if (err)
515  return err;
516  }
517  done_ltab = 1;
518  ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
519  offs += c->ltab_sz;
520  dbg_chk_lpt_sz(c, 1, c->ltab_sz);
521  }
522 
523  /* Write remaining data in buffer */
524  wlen = offs - from;
525  alen = ALIGN(wlen, c->min_io_size);
526  memset(buf + offs, 0xff, alen - wlen);
527  err = ubifs_leb_write(c, lnum, buf + from, from, alen);
528  if (err)
529  return err;
530 
531  dbg_chk_lpt_sz(c, 4, alen - wlen);
532  err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
533  if (err)
534  return err;
535 
536  c->nhead_lnum = lnum;
537  c->nhead_offs = ALIGN(offs, c->min_io_size);
538 
539  dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
540  dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
541  dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
542  if (c->big_lpt)
543  dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
544 
545  return 0;
546 
547 no_space:
548  ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
549  lnum, offs, len, done_ltab, done_lsave);
552  dump_stack();
553  return err;
554 }
555 
565 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
566  struct ubifs_pnode *pnode)
567 {
568  struct ubifs_nnode *nnode;
569  int iip;
570 
571  /* Try to go right */
572  nnode = pnode->parent;
573  for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
574  if (nnode->nbranch[iip].lnum)
575  return ubifs_get_pnode(c, nnode, iip);
576  }
577 
578  /* Go up while can't go right */
579  do {
580  iip = nnode->iip + 1;
581  nnode = nnode->parent;
582  if (!nnode)
583  return NULL;
584  for (; iip < UBIFS_LPT_FANOUT; iip++) {
585  if (nnode->nbranch[iip].lnum)
586  break;
587  }
588  } while (iip >= UBIFS_LPT_FANOUT);
589 
590  /* Go right */
591  nnode = ubifs_get_nnode(c, nnode, iip);
592  if (IS_ERR(nnode))
593  return (void *)nnode;
594 
595  /* Go down to level 1 */
596  while (nnode->level > 1) {
597  for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
598  if (nnode->nbranch[iip].lnum)
599  break;
600  }
601  if (iip >= UBIFS_LPT_FANOUT) {
602  /*
603  * Should not happen, but we need to keep going
604  * if it does.
605  */
606  iip = 0;
607  }
608  nnode = ubifs_get_nnode(c, nnode, iip);
609  if (IS_ERR(nnode))
610  return (void *)nnode;
611  }
612 
613  for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
614  if (nnode->nbranch[iip].lnum)
615  break;
616  if (iip >= UBIFS_LPT_FANOUT)
617  /* Should not happen, but we need to keep going if it does */
618  iip = 0;
619  return ubifs_get_pnode(c, nnode, iip);
620 }
621 
630 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
631 {
632  int err, h, iip, shft;
633  struct ubifs_nnode *nnode;
634 
635  if (!c->nroot) {
636  err = ubifs_read_nnode(c, NULL, 0);
637  if (err)
638  return ERR_PTR(err);
639  }
641  nnode = c->nroot;
642  shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
643  for (h = 1; h < c->lpt_hght; h++) {
644  iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
645  shft -= UBIFS_LPT_FANOUT_SHIFT;
646  nnode = ubifs_get_nnode(c, nnode, iip);
647  if (IS_ERR(nnode))
648  return ERR_CAST(nnode);
649  }
650  iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
651  return ubifs_get_pnode(c, nnode, iip);
652 }
653 
659 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
660 {
661  ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
662  c->pnode_sz);
663 }
664 
670 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
671 {
672  /* Assumes cnext list is empty i.e. not called during commit */
673  if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
674  struct ubifs_nnode *nnode;
675 
676  c->dirty_pn_cnt += 1;
677  add_pnode_dirt(c, pnode);
678  /* Mark parent and ancestors dirty too */
679  nnode = pnode->parent;
680  while (nnode) {
681  if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
682  c->dirty_nn_cnt += 1;
683  ubifs_add_nnode_dirt(c, nnode);
684  nnode = nnode->parent;
685  } else
686  break;
687  }
688  }
689 }
690 
702 static int make_tree_dirty(struct ubifs_info *c)
703 {
704  struct ubifs_pnode *pnode;
705 
706  pnode = pnode_lookup(c, 0);
707  if (IS_ERR(pnode))
708  return PTR_ERR(pnode);
709 
710  while (pnode) {
711  do_make_pnode_dirty(c, pnode);
712  pnode = next_pnode_to_dirty(c, pnode);
713  if (IS_ERR(pnode))
714  return PTR_ERR(pnode);
715  }
716  return 0;
717 }
718 
726 static int need_write_all(struct ubifs_info *c)
727 {
728  long long free = 0;
729  int i;
730 
731  for (i = 0; i < c->lpt_lebs; i++) {
732  if (i + c->lpt_first == c->nhead_lnum)
733  free += c->leb_size - c->nhead_offs;
734  else if (c->ltab[i].free == c->leb_size)
735  free += c->leb_size;
736  else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
737  free += c->leb_size;
738  }
739  /* Less than twice the size left */
740  if (free <= c->lpt_sz * 2)
741  return 1;
742  return 0;
743 }
744 
753 static void lpt_tgc_start(struct ubifs_info *c)
754 {
755  int i;
756 
757  for (i = 0; i < c->lpt_lebs; i++) {
758  if (i + c->lpt_first == c->nhead_lnum)
759  continue;
760  if (c->ltab[i].dirty > 0 &&
761  c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
762  c->ltab[i].tgc = 1;
763  c->ltab[i].free = c->leb_size;
764  c->ltab[i].dirty = 0;
765  dbg_lp("LEB %d", i + c->lpt_first);
766  }
767  }
768 }
769 
779 static int lpt_tgc_end(struct ubifs_info *c)
780 {
781  int i, err;
782 
783  for (i = 0; i < c->lpt_lebs; i++)
784  if (c->ltab[i].tgc) {
785  err = ubifs_leb_unmap(c, i + c->lpt_first);
786  if (err)
787  return err;
788  c->ltab[i].tgc = 0;
789  dbg_lp("LEB %d", i + c->lpt_first);
790  }
791  return 0;
792 }
793 
806 static void populate_lsave(struct ubifs_info *c)
807 {
808  struct ubifs_lprops *lprops;
809  struct ubifs_lpt_heap *heap;
810  int i, cnt = 0;
811 
812  ubifs_assert(c->big_lpt);
813  if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
816  }
817 
818  if (dbg_populate_lsave(c))
819  return;
820 
821  list_for_each_entry(lprops, &c->empty_list, list) {
822  c->lsave[cnt++] = lprops->lnum;
823  if (cnt >= c->lsave_cnt)
824  return;
825  }
826  list_for_each_entry(lprops, &c->freeable_list, list) {
827  c->lsave[cnt++] = lprops->lnum;
828  if (cnt >= c->lsave_cnt)
829  return;
830  }
831  list_for_each_entry(lprops, &c->frdi_idx_list, list) {
832  c->lsave[cnt++] = lprops->lnum;
833  if (cnt >= c->lsave_cnt)
834  return;
835  }
836  heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
837  for (i = 0; i < heap->cnt; i++) {
838  c->lsave[cnt++] = heap->arr[i]->lnum;
839  if (cnt >= c->lsave_cnt)
840  return;
841  }
842  heap = &c->lpt_heap[LPROPS_DIRTY - 1];
843  for (i = 0; i < heap->cnt; i++) {
844  c->lsave[cnt++] = heap->arr[i]->lnum;
845  if (cnt >= c->lsave_cnt)
846  return;
847  }
848  heap = &c->lpt_heap[LPROPS_FREE - 1];
849  for (i = 0; i < heap->cnt; i++) {
850  c->lsave[cnt++] = heap->arr[i]->lnum;
851  if (cnt >= c->lsave_cnt)
852  return;
853  }
854  /* Fill it up completely */
855  while (cnt < c->lsave_cnt)
856  c->lsave[cnt++] = c->main_first;
857 }
858 
867 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
868 {
869  int err, iip;
870  struct ubifs_nnode *nnode;
871 
872  if (!c->nroot) {
873  err = ubifs_read_nnode(c, NULL, 0);
874  if (err)
875  return ERR_PTR(err);
876  }
877  nnode = c->nroot;
878  while (1) {
879  iip = i & (UBIFS_LPT_FANOUT - 1);
881  if (!i)
882  break;
883  nnode = ubifs_get_nnode(c, nnode, iip);
884  if (IS_ERR(nnode))
885  return nnode;
886  }
887  return nnode;
888 }
889 
905 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
906  int offs)
907 {
908  struct ubifs_nnode *nnode;
909 
910  nnode = nnode_lookup(c, node_num);
911  if (IS_ERR(nnode))
912  return PTR_ERR(nnode);
913  if (nnode->parent) {
914  struct ubifs_nbranch *branch;
915 
916  branch = &nnode->parent->nbranch[nnode->iip];
917  if (branch->lnum != lnum || branch->offs != offs)
918  return 0; /* nnode is obsolete */
919  } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
920  return 0; /* nnode is obsolete */
921  /* Assumes cnext list is empty i.e. not called during commit */
922  if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
923  c->dirty_nn_cnt += 1;
924  ubifs_add_nnode_dirt(c, nnode);
925  /* Mark parent and ancestors dirty too */
926  nnode = nnode->parent;
927  while (nnode) {
928  if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
929  c->dirty_nn_cnt += 1;
930  ubifs_add_nnode_dirt(c, nnode);
931  nnode = nnode->parent;
932  } else
933  break;
934  }
935  }
936  return 0;
937 }
938 
954 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
955  int offs)
956 {
957  struct ubifs_pnode *pnode;
958  struct ubifs_nbranch *branch;
959 
960  pnode = pnode_lookup(c, node_num);
961  if (IS_ERR(pnode))
962  return PTR_ERR(pnode);
963  branch = &pnode->parent->nbranch[pnode->iip];
964  if (branch->lnum != lnum || branch->offs != offs)
965  return 0;
966  do_make_pnode_dirty(c, pnode);
967  return 0;
968 }
969 
984 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
985 {
986  if (lnum != c->ltab_lnum || offs != c->ltab_offs)
987  return 0; /* This ltab node is obsolete */
988  if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
991  }
992  return 0;
993 }
994 
1009 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1010 {
1011  if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1012  return 0; /* This lsave node is obsolete */
1013  if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1014  c->lpt_drty_flgs |= LSAVE_DIRTY;
1016  }
1017  return 0;
1018 }
1019 
1036 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1037  int lnum, int offs)
1038 {
1039  switch (node_type) {
1040  case UBIFS_LPT_NNODE:
1041  return make_nnode_dirty(c, node_num, lnum, offs);
1042  case UBIFS_LPT_PNODE:
1043  return make_pnode_dirty(c, node_num, lnum, offs);
1044  case UBIFS_LPT_LTAB:
1045  return make_ltab_dirty(c, lnum, offs);
1046  case UBIFS_LPT_LSAVE:
1047  return make_lsave_dirty(c, lnum, offs);
1048  }
1049  return -EINVAL;
1050 }
1051 
1057 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1058 {
1059  switch (node_type) {
1060  case UBIFS_LPT_NNODE:
1061  return c->nnode_sz;
1062  case UBIFS_LPT_PNODE:
1063  return c->pnode_sz;
1064  case UBIFS_LPT_LTAB:
1065  return c->ltab_sz;
1066  case UBIFS_LPT_LSAVE:
1067  return c->lsave_sz;
1068  }
1069  return 0;
1070 }
1071 
1078 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1079 {
1080  int offs, pad_len;
1081 
1082  if (c->min_io_size == 1)
1083  return 0;
1084  offs = c->leb_size - len;
1085  pad_len = ALIGN(offs, c->min_io_size) - offs;
1086  return pad_len;
1087 }
1088 
1095 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1096  int *node_num)
1097 {
1098  uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1099  int pos = 0, node_type;
1100 
1101  node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1102  *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1103  return node_type;
1104 }
1105 
1114 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1115 {
1116  uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1117  int pos = 0, node_type, node_len;
1118  uint16_t crc, calc_crc;
1119 
1120  if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1121  return 0;
1122  node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1123  if (node_type == UBIFS_LPT_NOT_A_NODE)
1124  return 0;
1125  node_len = get_lpt_node_len(c, node_type);
1126  if (!node_len || node_len > len)
1127  return 0;
1128  pos = 0;
1129  addr = buf;
1130  crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1131  calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1132  node_len - UBIFS_LPT_CRC_BYTES);
1133  if (crc != calc_crc)
1134  return 0;
1135  return 1;
1136 }
1137 
1150 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1151 {
1152  int err, len = c->leb_size, node_type, node_num, node_len, offs;
1153  void *buf = c->lpt_buf;
1154 
1155  dbg_lp("LEB %d", lnum);
1156 
1157  err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1158  if (err)
1159  return err;
1160 
1161  while (1) {
1162  if (!is_a_node(c, buf, len)) {
1163  int pad_len;
1164 
1165  pad_len = get_pad_len(c, buf, len);
1166  if (pad_len) {
1167  buf += pad_len;
1168  len -= pad_len;
1169  continue;
1170  }
1171  return 0;
1172  }
1173  node_type = get_lpt_node_type(c, buf, &node_num);
1174  node_len = get_lpt_node_len(c, node_type);
1175  offs = c->leb_size - len;
1176  ubifs_assert(node_len != 0);
1177  mutex_lock(&c->lp_mutex);
1178  err = make_node_dirty(c, node_type, node_num, lnum, offs);
1179  mutex_unlock(&c->lp_mutex);
1180  if (err)
1181  return err;
1182  buf += node_len;
1183  len -= node_len;
1184  }
1185  return 0;
1186 }
1187 
1195 static int lpt_gc(struct ubifs_info *c)
1196 {
1197  int i, lnum = -1, dirty = 0;
1198 
1199  mutex_lock(&c->lp_mutex);
1200  for (i = 0; i < c->lpt_lebs; i++) {
1201  ubifs_assert(!c->ltab[i].tgc);
1202  if (i + c->lpt_first == c->nhead_lnum ||
1203  c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1204  continue;
1205  if (c->ltab[i].dirty > dirty) {
1206  dirty = c->ltab[i].dirty;
1207  lnum = i + c->lpt_first;
1208  }
1209  }
1210  mutex_unlock(&c->lp_mutex);
1211  if (lnum == -1)
1212  return -ENOSPC;
1213  return lpt_gc_lnum(c, lnum);
1214 }
1215 
1227 {
1228  int err, cnt;
1229 
1230  dbg_lp("");
1231 
1232  mutex_lock(&c->lp_mutex);
1233  err = dbg_chk_lpt_free_spc(c);
1234  if (err)
1235  goto out;
1236  err = dbg_check_ltab(c);
1237  if (err)
1238  goto out;
1239 
1240  if (c->check_lpt_free) {
1241  /*
1242  * We ensure there is enough free space in
1243  * ubifs_lpt_post_commit() by marking nodes dirty. That
1244  * information is lost when we unmount, so we also need
1245  * to check free space once after mounting also.
1246  */
1247  c->check_lpt_free = 0;
1248  while (need_write_all(c)) {
1249  mutex_unlock(&c->lp_mutex);
1250  err = lpt_gc(c);
1251  if (err)
1252  return err;
1253  mutex_lock(&c->lp_mutex);
1254  }
1255  }
1256 
1257  lpt_tgc_start(c);
1258 
1259  if (!c->dirty_pn_cnt) {
1260  dbg_cmt("no cnodes to commit");
1261  err = 0;
1262  goto out;
1263  }
1264 
1265  if (!c->big_lpt && need_write_all(c)) {
1266  /* If needed, write everything */
1267  err = make_tree_dirty(c);
1268  if (err)
1269  goto out;
1270  lpt_tgc_start(c);
1271  }
1272 
1273  if (c->big_lpt)
1274  populate_lsave(c);
1275 
1276  cnt = get_cnodes_to_commit(c);
1277  ubifs_assert(cnt != 0);
1278 
1279  err = layout_cnodes(c);
1280  if (err)
1281  goto out;
1282 
1283  /* Copy the LPT's own lprops for end commit to write */
1284  memcpy(c->ltab_cmt, c->ltab,
1285  sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1287 
1288 out:
1289  mutex_unlock(&c->lp_mutex);
1290  return err;
1291 }
1292 
1297 static void free_obsolete_cnodes(struct ubifs_info *c)
1298 {
1299  struct ubifs_cnode *cnode, *cnext;
1300 
1301  cnext = c->lpt_cnext;
1302  if (!cnext)
1303  return;
1304  do {
1305  cnode = cnext;
1306  cnext = cnode->cnext;
1307  if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1308  kfree(cnode);
1309  else
1310  cnode->cnext = NULL;
1311  } while (cnext != c->lpt_cnext);
1312  c->lpt_cnext = NULL;
1313 }
1314 
1325 {
1326  int err;
1327 
1328  dbg_lp("");
1329 
1330  if (!c->lpt_cnext)
1331  return 0;
1332 
1333  err = write_cnodes(c);
1334  if (err)
1335  return err;
1336 
1337  mutex_lock(&c->lp_mutex);
1338  free_obsolete_cnodes(c);
1339  mutex_unlock(&c->lp_mutex);
1340 
1341  return 0;
1342 }
1343 
1352 {
1353  int err;
1354 
1355  mutex_lock(&c->lp_mutex);
1356  err = lpt_tgc_end(c);
1357  if (err)
1358  goto out;
1359  if (c->big_lpt)
1360  while (need_write_all(c)) {
1361  mutex_unlock(&c->lp_mutex);
1362  err = lpt_gc(c);
1363  if (err)
1364  return err;
1365  mutex_lock(&c->lp_mutex);
1366  }
1367 out:
1368  mutex_unlock(&c->lp_mutex);
1369  return err;
1370 }
1371 
1380 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1381 {
1382  struct ubifs_nnode *nnode;
1383  int h, i, found;
1384 
1385  nnode = c->nroot;
1386  *hght = 0;
1387  if (!nnode)
1388  return NULL;
1389  for (h = 1; h < c->lpt_hght; h++) {
1390  found = 0;
1391  for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1392  if (nnode->nbranch[i].nnode) {
1393  found = 1;
1394  nnode = nnode->nbranch[i].nnode;
1395  *hght = h;
1396  break;
1397  }
1398  }
1399  if (!found)
1400  break;
1401  }
1402  return nnode;
1403 }
1404 
1414 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1415  struct ubifs_nnode *nnode, int *hght)
1416 {
1417  struct ubifs_nnode *parent;
1418  int iip, h, i, found;
1419 
1420  parent = nnode->parent;
1421  if (!parent)
1422  return NULL;
1423  if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1424  *hght -= 1;
1425  return parent;
1426  }
1427  for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1428  nnode = parent->nbranch[iip].nnode;
1429  if (nnode)
1430  break;
1431  }
1432  if (!nnode) {
1433  *hght -= 1;
1434  return parent;
1435  }
1436  for (h = *hght + 1; h < c->lpt_hght; h++) {
1437  found = 0;
1438  for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1439  if (nnode->nbranch[i].nnode) {
1440  found = 1;
1441  nnode = nnode->nbranch[i].nnode;
1442  *hght = h;
1443  break;
1444  }
1445  }
1446  if (!found)
1447  break;
1448  }
1449  return nnode;
1450 }
1451 
1457 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1458 {
1459  struct ubifs_nnode *nnode;
1460  int i, hght;
1461 
1462  /* Free write-only things first */
1463 
1464  free_obsolete_cnodes(c); /* Leftover from a failed commit */
1465 
1466  vfree(c->ltab_cmt);
1467  c->ltab_cmt = NULL;
1468  vfree(c->lpt_buf);
1469  c->lpt_buf = NULL;
1470  kfree(c->lsave);
1471  c->lsave = NULL;
1472 
1473  if (wr_only)
1474  return;
1475 
1476  /* Now free the rest */
1477 
1478  nnode = first_nnode(c, &hght);
1479  while (nnode) {
1480  for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1481  kfree(nnode->nbranch[i].nnode);
1482  nnode = next_nnode(c, nnode, &hght);
1483  }
1484  for (i = 0; i < LPROPS_HEAP_CNT; i++)
1485  kfree(c->lpt_heap[i].arr);
1486  kfree(c->dirty_idx.arr);
1487  kfree(c->nroot);
1488  vfree(c->ltab);
1489  kfree(c->lpt_nod_buf);
1490 }
1491 
1492 /*
1493  * Everything below is related to debugging.
1494  */
1495 
1501 static int dbg_is_all_ff(uint8_t *buf, int len)
1502 {
1503  int i;
1504 
1505  for (i = 0; i < len; i++)
1506  if (buf[i] != 0xff)
1507  return 0;
1508  return 1;
1509 }
1510 
1517 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1518 {
1519  struct ubifs_nnode *nnode;
1520  int hght;
1521 
1522  /* Entire tree is in memory so first_nnode / next_nnode are OK */
1523  nnode = first_nnode(c, &hght);
1524  for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1525  struct ubifs_nbranch *branch;
1526 
1527  cond_resched();
1528  if (nnode->parent) {
1529  branch = &nnode->parent->nbranch[nnode->iip];
1530  if (branch->lnum != lnum || branch->offs != offs)
1531  continue;
1532  if (test_bit(DIRTY_CNODE, &nnode->flags))
1533  return 1;
1534  return 0;
1535  } else {
1536  if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1537  continue;
1538  if (test_bit(DIRTY_CNODE, &nnode->flags))
1539  return 1;
1540  return 0;
1541  }
1542  }
1543  return 1;
1544 }
1545 
1552 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1553 {
1554  int i, cnt;
1555 
1556  cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1557  for (i = 0; i < cnt; i++) {
1558  struct ubifs_pnode *pnode;
1559  struct ubifs_nbranch *branch;
1560 
1561  cond_resched();
1562  pnode = pnode_lookup(c, i);
1563  if (IS_ERR(pnode))
1564  return PTR_ERR(pnode);
1565  branch = &pnode->parent->nbranch[pnode->iip];
1566  if (branch->lnum != lnum || branch->offs != offs)
1567  continue;
1568  if (test_bit(DIRTY_CNODE, &pnode->flags))
1569  return 1;
1570  return 0;
1571  }
1572  return 1;
1573 }
1574 
1581 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1582 {
1583  if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1584  return 1;
1585  return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1586 }
1587 
1594 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1595 {
1596  if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1597  return 1;
1598  return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1599 }
1600 
1608 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1609  int offs)
1610 {
1611  switch (node_type) {
1612  case UBIFS_LPT_NNODE:
1613  return dbg_is_nnode_dirty(c, lnum, offs);
1614  case UBIFS_LPT_PNODE:
1615  return dbg_is_pnode_dirty(c, lnum, offs);
1616  case UBIFS_LPT_LTAB:
1617  return dbg_is_ltab_dirty(c, lnum, offs);
1618  case UBIFS_LPT_LSAVE:
1619  return dbg_is_lsave_dirty(c, lnum, offs);
1620  }
1621  return 1;
1622 }
1623 
1632 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1633 {
1634  int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1635  int ret;
1636  void *buf, *p;
1637 
1638  if (!dbg_is_chk_lprops(c))
1639  return 0;
1640 
1641  buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1642  if (!buf) {
1643  ubifs_err("cannot allocate memory for ltab checking");
1644  return 0;
1645  }
1646 
1647  dbg_lp("LEB %d", lnum);
1648 
1649  err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1650  if (err)
1651  goto out;
1652 
1653  while (1) {
1654  if (!is_a_node(c, p, len)) {
1655  int i, pad_len;
1656 
1657  pad_len = get_pad_len(c, p, len);
1658  if (pad_len) {
1659  p += pad_len;
1660  len -= pad_len;
1661  dirty += pad_len;
1662  continue;
1663  }
1664  if (!dbg_is_all_ff(p, len)) {
1665  ubifs_err("invalid empty space in LEB %d at %d",
1666  lnum, c->leb_size - len);
1667  err = -EINVAL;
1668  }
1669  i = lnum - c->lpt_first;
1670  if (len != c->ltab[i].free) {
1671  ubifs_err("invalid free space in LEB %d (free %d, expected %d)",
1672  lnum, len, c->ltab[i].free);
1673  err = -EINVAL;
1674  }
1675  if (dirty != c->ltab[i].dirty) {
1676  ubifs_err("invalid dirty space in LEB %d (dirty %d, expected %d)",
1677  lnum, dirty, c->ltab[i].dirty);
1678  err = -EINVAL;
1679  }
1680  goto out;
1681  }
1682  node_type = get_lpt_node_type(c, p, &node_num);
1683  node_len = get_lpt_node_len(c, node_type);
1684  ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1685  if (ret == 1)
1686  dirty += node_len;
1687  p += node_len;
1688  len -= node_len;
1689  }
1690 
1691  err = 0;
1692 out:
1693  vfree(buf);
1694  return err;
1695 }
1696 
1704 {
1705  int lnum, err, i, cnt;
1706 
1707  if (!dbg_is_chk_lprops(c))
1708  return 0;
1709 
1710  /* Bring the entire tree into memory */
1711  cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1712  for (i = 0; i < cnt; i++) {
1713  struct ubifs_pnode *pnode;
1714 
1715  pnode = pnode_lookup(c, i);
1716  if (IS_ERR(pnode))
1717  return PTR_ERR(pnode);
1718  cond_resched();
1719  }
1720 
1721  /* Check nodes */
1722  err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1723  if (err)
1724  return err;
1725 
1726  /* Check each LEB */
1727  for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1728  err = dbg_check_ltab_lnum(c, lnum);
1729  if (err) {
1730  ubifs_err("failed at LEB %d", lnum);
1731  return err;
1732  }
1733  }
1734 
1735  dbg_lp("succeeded");
1736  return 0;
1737 }
1738 
1746 {
1747  long long free = 0;
1748  int i;
1749 
1750  if (!dbg_is_chk_lprops(c))
1751  return 0;
1752 
1753  for (i = 0; i < c->lpt_lebs; i++) {
1754  if (c->ltab[i].tgc || c->ltab[i].cmt)
1755  continue;
1756  if (i + c->lpt_first == c->nhead_lnum)
1757  free += c->leb_size - c->nhead_offs;
1758  else if (c->ltab[i].free == c->leb_size)
1759  free += c->leb_size;
1760  }
1761  if (free < c->lpt_sz) {
1762  ubifs_err("LPT space error: free %lld lpt_sz %lld",
1763  free, c->lpt_sz);
1766  dump_stack();
1767  return -EINVAL;
1768  }
1769  return 0;
1770 }
1771 
1786 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1787 {
1788  struct ubifs_debug_info *d = c->dbg;
1789  long long chk_lpt_sz, lpt_sz;
1790  int err = 0;
1791 
1792  if (!dbg_is_chk_lprops(c))
1793  return 0;
1794 
1795  switch (action) {
1796  case 0:
1797  d->chk_lpt_sz = 0;
1798  d->chk_lpt_sz2 = 0;
1799  d->chk_lpt_lebs = 0;
1800  d->chk_lpt_wastage = 0;
1801  if (c->dirty_pn_cnt > c->pnode_cnt) {
1802  ubifs_err("dirty pnodes %d exceed max %d",
1803  c->dirty_pn_cnt, c->pnode_cnt);
1804  err = -EINVAL;
1805  }
1806  if (c->dirty_nn_cnt > c->nnode_cnt) {
1807  ubifs_err("dirty nnodes %d exceed max %d",
1808  c->dirty_nn_cnt, c->nnode_cnt);
1809  err = -EINVAL;
1810  }
1811  return err;
1812  case 1:
1813  d->chk_lpt_sz += len;
1814  return 0;
1815  case 2:
1816  d->chk_lpt_sz += len;
1817  d->chk_lpt_wastage += len;
1818  d->chk_lpt_lebs += 1;
1819  return 0;
1820  case 3:
1821  chk_lpt_sz = c->leb_size;
1822  chk_lpt_sz *= d->chk_lpt_lebs;
1823  chk_lpt_sz += len - c->nhead_offs;
1824  if (d->chk_lpt_sz != chk_lpt_sz) {
1825  ubifs_err("LPT wrote %lld but space used was %lld",
1826  d->chk_lpt_sz, chk_lpt_sz);
1827  err = -EINVAL;
1828  }
1829  if (d->chk_lpt_sz > c->lpt_sz) {
1830  ubifs_err("LPT wrote %lld but lpt_sz is %lld",
1831  d->chk_lpt_sz, c->lpt_sz);
1832  err = -EINVAL;
1833  }
1834  if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1835  ubifs_err("LPT layout size %lld but wrote %lld",
1836  d->chk_lpt_sz, d->chk_lpt_sz2);
1837  err = -EINVAL;
1838  }
1839  if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1840  ubifs_err("LPT new nhead offs: expected %d was %d",
1841  d->new_nhead_offs, len);
1842  err = -EINVAL;
1843  }
1844  lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1845  lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1846  lpt_sz += c->ltab_sz;
1847  if (c->big_lpt)
1848  lpt_sz += c->lsave_sz;
1849  if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1850  ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1851  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1852  err = -EINVAL;
1853  }
1854  if (err) {
1857  dump_stack();
1858  }
1859  d->chk_lpt_sz2 = d->chk_lpt_sz;
1860  d->chk_lpt_sz = 0;
1861  d->chk_lpt_wastage = 0;
1862  d->chk_lpt_lebs = 0;
1863  d->new_nhead_offs = len;
1864  return err;
1865  case 4:
1866  d->chk_lpt_sz += len;
1867  d->chk_lpt_wastage += len;
1868  return 0;
1869  default:
1870  return -EINVAL;
1871  }
1872 }
1873 
1884 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1885 {
1886  int err, len = c->leb_size, node_type, node_num, node_len, offs;
1887  void *buf, *p;
1888 
1889  pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1890  buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1891  if (!buf) {
1892  ubifs_err("cannot allocate memory to dump LPT");
1893  return;
1894  }
1895 
1896  err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1897  if (err)
1898  goto out;
1899 
1900  while (1) {
1901  offs = c->leb_size - len;
1902  if (!is_a_node(c, p, len)) {
1903  int pad_len;
1904 
1905  pad_len = get_pad_len(c, p, len);
1906  if (pad_len) {
1907  pr_err("LEB %d:%d, pad %d bytes\n",
1908  lnum, offs, pad_len);
1909  p += pad_len;
1910  len -= pad_len;
1911  continue;
1912  }
1913  if (len)
1914  pr_err("LEB %d:%d, free %d bytes\n",
1915  lnum, offs, len);
1916  break;
1917  }
1918 
1919  node_type = get_lpt_node_type(c, p, &node_num);
1920  switch (node_type) {
1921  case UBIFS_LPT_PNODE:
1922  {
1923  node_len = c->pnode_sz;
1924  if (c->big_lpt)
1925  pr_err("LEB %d:%d, pnode num %d\n",
1926  lnum, offs, node_num);
1927  else
1928  pr_err("LEB %d:%d, pnode\n", lnum, offs);
1929  break;
1930  }
1931  case UBIFS_LPT_NNODE:
1932  {
1933  int i;
1934  struct ubifs_nnode nnode;
1935 
1936  node_len = c->nnode_sz;
1937  if (c->big_lpt)
1938  pr_err("LEB %d:%d, nnode num %d, ",
1939  lnum, offs, node_num);
1940  else
1941  pr_err("LEB %d:%d, nnode, ",
1942  lnum, offs);
1943  err = ubifs_unpack_nnode(c, p, &nnode);
1944  for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1945  pr_cont("%d:%d", nnode.nbranch[i].lnum,
1946  nnode.nbranch[i].offs);
1947  if (i != UBIFS_LPT_FANOUT - 1)
1948  pr_cont(", ");
1949  }
1950  pr_cont("\n");
1951  break;
1952  }
1953  case UBIFS_LPT_LTAB:
1954  node_len = c->ltab_sz;
1955  pr_err("LEB %d:%d, ltab\n", lnum, offs);
1956  break;
1957  case UBIFS_LPT_LSAVE:
1958  node_len = c->lsave_sz;
1959  pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1960  break;
1961  default:
1962  ubifs_err("LPT node type %d not recognized", node_type);
1963  goto out;
1964  }
1965 
1966  p += node_len;
1967  len -= node_len;
1968  }
1969 
1970  pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1971 out:
1972  vfree(buf);
1973  return;
1974 }
1975 
1983 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1984 {
1985  int i;
1986 
1987  pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1988  for (i = 0; i < c->lpt_lebs; i++)
1989  dump_lpt_leb(c, i + c->lpt_first);
1990  pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1991 }
1992 
2002 static int dbg_populate_lsave(struct ubifs_info *c)
2003 {
2004  struct ubifs_lprops *lprops;
2005  struct ubifs_lpt_heap *heap;
2006  int i;
2007 
2008  if (!dbg_is_chk_gen(c))
2009  return 0;
2010  if (random32() & 3)
2011  return 0;
2012 
2013  for (i = 0; i < c->lsave_cnt; i++)
2014  c->lsave[i] = c->main_first;
2015 
2016  list_for_each_entry(lprops, &c->empty_list, list)
2017  c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2018  list_for_each_entry(lprops, &c->freeable_list, list)
2019  c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2020  list_for_each_entry(lprops, &c->frdi_idx_list, list)
2021  c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2022 
2023  heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2024  for (i = 0; i < heap->cnt; i++)
2025  c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2026  heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2027  for (i = 0; i < heap->cnt; i++)
2028  c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2029  heap = &c->lpt_heap[LPROPS_FREE - 1];
2030  for (i = 0; i < heap->cnt; i++)
2031  c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2032 
2033  return 1;
2034 }