Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
m25p80.c
Go to the documentation of this file.
1 /*
2  * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3  *
4  * Author: Mike Lavender, [email protected]
5  *
6  * Copyright (c) 2005, Intec Automation Inc.
7  *
8  * Some parts are based on lart.c by Abraham Van Der Merwe
9  *
10  * Cleaned up and generalized based on mtd_dataflash.c
11  *
12  * This code is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17 
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
29 
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of_platform.h>
34 
35 #include <linux/spi/spi.h>
36 #include <linux/spi/flash.h>
37 
38 /* Flash opcodes. */
39 #define OPCODE_WREN 0x06 /* Write enable */
40 #define OPCODE_RDSR 0x05 /* Read status register */
41 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
42 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
43 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
45 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
46 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
47 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
48 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
49 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
50 
51 /* Used for SST flashes only. */
52 #define OPCODE_BP 0x02 /* Byte program */
53 #define OPCODE_WRDI 0x04 /* Write disable */
54 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
55 
56 /* Used for Macronix flashes only. */
57 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
58 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
59 
60 /* Used for Spansion flashes only. */
61 #define OPCODE_BRWR 0x17 /* Bank register write */
62 
63 /* Status Register bits. */
64 #define SR_WIP 1 /* Write in progress */
65 #define SR_WEL 2 /* Write enable latch */
66 /* meaning of other SR_* bits may differ between vendors */
67 #define SR_BP0 4 /* Block protect 0 */
68 #define SR_BP1 8 /* Block protect 1 */
69 #define SR_BP2 0x10 /* Block protect 2 */
70 #define SR_SRWD 0x80 /* SR write protect */
71 
72 /* Define max times to check status register before we give up. */
73 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
74 #define MAX_CMD_SIZE 5
75 
76 #ifdef CONFIG_M25PXX_USE_FAST_READ
77 #define OPCODE_READ OPCODE_FAST_READ
78 #define FAST_READ_DUMMY_BYTE 1
79 #else
80 #define OPCODE_READ OPCODE_NORM_READ
81 #define FAST_READ_DUMMY_BYTE 0
82 #endif
83 
84 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
85 
86 /****************************************************************************/
87 
88 struct m25p {
89  struct spi_device *spi;
90  struct mutex lock;
91  struct mtd_info mtd;
96 };
97 
98 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
99 {
100  return container_of(mtd, struct m25p, mtd);
101 }
102 
103 /****************************************************************************/
104 
105 /*
106  * Internal helper functions
107  */
108 
109 /*
110  * Read the status register, returning its value in the location
111  * Return the status register value.
112  * Returns negative if error occurred.
113  */
114 static int read_sr(struct m25p *flash)
115 {
116  ssize_t retval;
117  u8 code = OPCODE_RDSR;
118  u8 val;
119 
120  retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
121 
122  if (retval < 0) {
123  dev_err(&flash->spi->dev, "error %d reading SR\n",
124  (int) retval);
125  return retval;
126  }
127 
128  return val;
129 }
130 
131 /*
132  * Write status register 1 byte
133  * Returns negative if error occurred.
134  */
135 static int write_sr(struct m25p *flash, u8 val)
136 {
137  flash->command[0] = OPCODE_WRSR;
138  flash->command[1] = val;
139 
140  return spi_write(flash->spi, flash->command, 2);
141 }
142 
143 /*
144  * Set write enable latch with Write Enable command.
145  * Returns negative if error occurred.
146  */
147 static inline int write_enable(struct m25p *flash)
148 {
149  u8 code = OPCODE_WREN;
150 
151  return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152 }
153 
154 /*
155  * Send write disble instruction to the chip.
156  */
157 static inline int write_disable(struct m25p *flash)
158 {
159  u8 code = OPCODE_WRDI;
160 
161  return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
162 }
163 
164 /*
165  * Enable/disable 4-byte addressing mode.
166  */
167 static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
168 {
169  switch (JEDEC_MFR(jedec_id)) {
170  case CFI_MFR_MACRONIX:
171  flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
172  return spi_write(flash->spi, flash->command, 1);
173  default:
174  /* Spansion style */
175  flash->command[0] = OPCODE_BRWR;
176  flash->command[1] = enable << 7;
177  return spi_write(flash->spi, flash->command, 2);
178  }
179 }
180 
181 /*
182  * Service routine to read status register until ready, or timeout occurs.
183  * Returns non-zero if error.
184  */
185 static int wait_till_ready(struct m25p *flash)
186 {
187  unsigned long deadline;
188  int sr;
189 
190  deadline = jiffies + MAX_READY_WAIT_JIFFIES;
191 
192  do {
193  if ((sr = read_sr(flash)) < 0)
194  break;
195  else if (!(sr & SR_WIP))
196  return 0;
197 
198  cond_resched();
199 
200  } while (!time_after_eq(jiffies, deadline));
201 
202  return 1;
203 }
204 
205 /*
206  * Erase the whole flash memory
207  *
208  * Returns 0 if successful, non-zero otherwise.
209  */
210 static int erase_chip(struct m25p *flash)
211 {
212  pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
213  (long long)(flash->mtd.size >> 10));
214 
215  /* Wait until finished previous write command. */
216  if (wait_till_ready(flash))
217  return 1;
218 
219  /* Send write enable, then erase commands. */
220  write_enable(flash);
221 
222  /* Set up command buffer. */
223  flash->command[0] = OPCODE_CHIP_ERASE;
224 
225  spi_write(flash->spi, flash->command, 1);
226 
227  return 0;
228 }
229 
230 static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
231 {
232  /* opcode is in cmd[0] */
233  cmd[1] = addr >> (flash->addr_width * 8 - 8);
234  cmd[2] = addr >> (flash->addr_width * 8 - 16);
235  cmd[3] = addr >> (flash->addr_width * 8 - 24);
236  cmd[4] = addr >> (flash->addr_width * 8 - 32);
237 }
238 
239 static int m25p_cmdsz(struct m25p *flash)
240 {
241  return 1 + flash->addr_width;
242 }
243 
244 /*
245  * Erase one sector of flash memory at offset ``offset'' which is any
246  * address within the sector which should be erased.
247  *
248  * Returns 0 if successful, non-zero otherwise.
249  */
250 static int erase_sector(struct m25p *flash, u32 offset)
251 {
252  pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
253  __func__, flash->mtd.erasesize / 1024, offset);
254 
255  /* Wait until finished previous write command. */
256  if (wait_till_ready(flash))
257  return 1;
258 
259  /* Send write enable, then erase commands. */
260  write_enable(flash);
261 
262  /* Set up command buffer. */
263  flash->command[0] = flash->erase_opcode;
264  m25p_addr2cmd(flash, offset, flash->command);
265 
266  spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
267 
268  return 0;
269 }
270 
271 /****************************************************************************/
272 
273 /*
274  * MTD implementation
275  */
276 
277 /*
278  * Erase an address range on the flash chip. The address range may extend
279  * one or more erase sectors. Return an error is there is a problem erasing.
280  */
281 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
282 {
283  struct m25p *flash = mtd_to_m25p(mtd);
284  u32 addr,len;
285  uint32_t rem;
286 
287  pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
288  __func__, (long long)instr->addr,
289  (long long)instr->len);
290 
291  div_u64_rem(instr->len, mtd->erasesize, &rem);
292  if (rem)
293  return -EINVAL;
294 
295  addr = instr->addr;
296  len = instr->len;
297 
298  mutex_lock(&flash->lock);
299 
300  /* whole-chip erase? */
301  if (len == flash->mtd.size) {
302  if (erase_chip(flash)) {
303  instr->state = MTD_ERASE_FAILED;
304  mutex_unlock(&flash->lock);
305  return -EIO;
306  }
307 
308  /* REVISIT in some cases we could speed up erasing large regions
309  * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
310  * to use "small sector erase", but that's not always optimal.
311  */
312 
313  /* "sector"-at-a-time erase */
314  } else {
315  while (len) {
316  if (erase_sector(flash, addr)) {
317  instr->state = MTD_ERASE_FAILED;
318  mutex_unlock(&flash->lock);
319  return -EIO;
320  }
321 
322  addr += mtd->erasesize;
323  len -= mtd->erasesize;
324  }
325  }
326 
327  mutex_unlock(&flash->lock);
328 
329  instr->state = MTD_ERASE_DONE;
330  mtd_erase_callback(instr);
331 
332  return 0;
333 }
334 
335 /*
336  * Read an address range from the flash chip. The address range
337  * may be any size provided it is within the physical boundaries.
338  */
339 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
340  size_t *retlen, u_char *buf)
341 {
342  struct m25p *flash = mtd_to_m25p(mtd);
343  struct spi_transfer t[2];
344  struct spi_message m;
345 
346  pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
347  __func__, (u32)from, len);
348 
349  spi_message_init(&m);
350  memset(t, 0, (sizeof t));
351 
352  /* NOTE:
353  * OPCODE_FAST_READ (if available) is faster.
354  * Should add 1 byte DUMMY_BYTE.
355  */
356  t[0].tx_buf = flash->command;
357  t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
358  spi_message_add_tail(&t[0], &m);
359 
360  t[1].rx_buf = buf;
361  t[1].len = len;
362  spi_message_add_tail(&t[1], &m);
363 
364  mutex_lock(&flash->lock);
365 
366  /* Wait till previous write/erase is done. */
367  if (wait_till_ready(flash)) {
368  /* REVISIT status return?? */
369  mutex_unlock(&flash->lock);
370  return 1;
371  }
372 
373  /* FIXME switch to OPCODE_FAST_READ. It's required for higher
374  * clocks; and at this writing, every chip this driver handles
375  * supports that opcode.
376  */
377 
378  /* Set up the write data buffer. */
379  flash->command[0] = OPCODE_READ;
380  m25p_addr2cmd(flash, from, flash->command);
381 
382  spi_sync(flash->spi, &m);
383 
384  *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
385 
386  mutex_unlock(&flash->lock);
387 
388  return 0;
389 }
390 
391 /*
392  * Write an address range to the flash chip. Data must be written in
393  * FLASH_PAGESIZE chunks. The address range may be any size provided
394  * it is within the physical boundaries.
395  */
396 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
397  size_t *retlen, const u_char *buf)
398 {
399  struct m25p *flash = mtd_to_m25p(mtd);
401  struct spi_transfer t[2];
402  struct spi_message m;
403 
404  pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
405  __func__, (u32)to, len);
406 
407  spi_message_init(&m);
408  memset(t, 0, (sizeof t));
409 
410  t[0].tx_buf = flash->command;
411  t[0].len = m25p_cmdsz(flash);
412  spi_message_add_tail(&t[0], &m);
413 
414  t[1].tx_buf = buf;
415  spi_message_add_tail(&t[1], &m);
416 
417  mutex_lock(&flash->lock);
418 
419  /* Wait until finished previous write command. */
420  if (wait_till_ready(flash)) {
421  mutex_unlock(&flash->lock);
422  return 1;
423  }
424 
425  write_enable(flash);
426 
427  /* Set up the opcode in the write buffer. */
428  flash->command[0] = OPCODE_PP;
429  m25p_addr2cmd(flash, to, flash->command);
430 
431  page_offset = to & (flash->page_size - 1);
432 
433  /* do all the bytes fit onto one page? */
434  if (page_offset + len <= flash->page_size) {
435  t[1].len = len;
436 
437  spi_sync(flash->spi, &m);
438 
439  *retlen = m.actual_length - m25p_cmdsz(flash);
440  } else {
441  u32 i;
442 
443  /* the size of data remaining on the first page */
444  page_size = flash->page_size - page_offset;
445 
446  t[1].len = page_size;
447  spi_sync(flash->spi, &m);
448 
449  *retlen = m.actual_length - m25p_cmdsz(flash);
450 
451  /* write everything in flash->page_size chunks */
452  for (i = page_size; i < len; i += page_size) {
453  page_size = len - i;
454  if (page_size > flash->page_size)
455  page_size = flash->page_size;
456 
457  /* write the next page to flash */
458  m25p_addr2cmd(flash, to + i, flash->command);
459 
460  t[1].tx_buf = buf + i;
461  t[1].len = page_size;
462 
463  wait_till_ready(flash);
464 
465  write_enable(flash);
466 
467  spi_sync(flash->spi, &m);
468 
469  *retlen += m.actual_length - m25p_cmdsz(flash);
470  }
471  }
472 
473  mutex_unlock(&flash->lock);
474 
475  return 0;
476 }
477 
478 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
479  size_t *retlen, const u_char *buf)
480 {
481  struct m25p *flash = mtd_to_m25p(mtd);
482  struct spi_transfer t[2];
483  struct spi_message m;
484  size_t actual;
485  int cmd_sz, ret;
486 
487  pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
488  __func__, (u32)to, len);
489 
490  spi_message_init(&m);
491  memset(t, 0, (sizeof t));
492 
493  t[0].tx_buf = flash->command;
494  t[0].len = m25p_cmdsz(flash);
495  spi_message_add_tail(&t[0], &m);
496 
497  t[1].tx_buf = buf;
498  spi_message_add_tail(&t[1], &m);
499 
500  mutex_lock(&flash->lock);
501 
502  /* Wait until finished previous write command. */
503  ret = wait_till_ready(flash);
504  if (ret)
505  goto time_out;
506 
507  write_enable(flash);
508 
509  actual = to % 2;
510  /* Start write from odd address. */
511  if (actual) {
512  flash->command[0] = OPCODE_BP;
513  m25p_addr2cmd(flash, to, flash->command);
514 
515  /* write one byte. */
516  t[1].len = 1;
517  spi_sync(flash->spi, &m);
518  ret = wait_till_ready(flash);
519  if (ret)
520  goto time_out;
521  *retlen += m.actual_length - m25p_cmdsz(flash);
522  }
523  to += actual;
524 
525  flash->command[0] = OPCODE_AAI_WP;
526  m25p_addr2cmd(flash, to, flash->command);
527 
528  /* Write out most of the data here. */
529  cmd_sz = m25p_cmdsz(flash);
530  for (; actual < len - 1; actual += 2) {
531  t[0].len = cmd_sz;
532  /* write two bytes. */
533  t[1].len = 2;
534  t[1].tx_buf = buf + actual;
535 
536  spi_sync(flash->spi, &m);
537  ret = wait_till_ready(flash);
538  if (ret)
539  goto time_out;
540  *retlen += m.actual_length - cmd_sz;
541  cmd_sz = 1;
542  to += 2;
543  }
544  write_disable(flash);
545  ret = wait_till_ready(flash);
546  if (ret)
547  goto time_out;
548 
549  /* Write out trailing byte if it exists. */
550  if (actual != len) {
551  write_enable(flash);
552  flash->command[0] = OPCODE_BP;
553  m25p_addr2cmd(flash, to, flash->command);
554  t[0].len = m25p_cmdsz(flash);
555  t[1].len = 1;
556  t[1].tx_buf = buf + actual;
557 
558  spi_sync(flash->spi, &m);
559  ret = wait_till_ready(flash);
560  if (ret)
561  goto time_out;
562  *retlen += m.actual_length - m25p_cmdsz(flash);
563  write_disable(flash);
564  }
565 
566 time_out:
567  mutex_unlock(&flash->lock);
568  return ret;
569 }
570 
571 /****************************************************************************/
572 
573 /*
574  * SPI device driver setup and teardown
575  */
576 
577 struct flash_info {
578  /* JEDEC id zero means "no ID" (most older chips); otherwise it has
579  * a high byte of zero plus three data bytes: the manufacturer id,
580  * then a two byte device id.
581  */
584 
585  /* The size listed here is what works with OPCODE_SE, which isn't
586  * necessarily called a "sector" by the vendor.
587  */
588  unsigned sector_size;
590 
593 
595 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
596 #define M25P_NO_ERASE 0x02 /* No erase command needed */
597 };
598 
599 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
600  ((kernel_ulong_t)&(struct flash_info) { \
601  .jedec_id = (_jedec_id), \
602  .ext_id = (_ext_id), \
603  .sector_size = (_sector_size), \
604  .n_sectors = (_n_sectors), \
605  .page_size = 256, \
606  .flags = (_flags), \
607  })
608 
609 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
610  ((kernel_ulong_t)&(struct flash_info) { \
611  .sector_size = (_sector_size), \
612  .n_sectors = (_n_sectors), \
613  .page_size = (_page_size), \
614  .addr_width = (_addr_width), \
615  .flags = M25P_NO_ERASE, \
616  })
617 
618 /* NOTE: double check command sets and memory organization when you add
619  * more flash chips. This current list focusses on newer chips, which
620  * have been converging on command sets which including JEDEC ID.
621  */
622 static const struct spi_device_id m25p_ids[] = {
623  /* Atmel -- some are (confusingly) marketed as "DataFlash" */
624  { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
625  { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
626 
627  { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
628  { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
629  { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
630 
631  { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
632  { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
633  { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
634  { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
635 
636  { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
637 
638  /* EON -- en25xxx */
639  { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
640  { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
641  { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
642  { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
643  { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
644 
645  /* Everspin */
646  { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) },
647 
648  /* Intel/Numonyx -- xxxs33b */
649  { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
650  { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
651  { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
652  { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
653 
654  /* Macronix */
655  { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
656  { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
657  { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
658  { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
659  { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
660  { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
661  { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
662  { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
663  { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
664  { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
665 
666  /* Micron */
667  { "n25q128", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
668  { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
669 
670  /* Spansion -- single (large) sector size only, at least
671  * for the chips listed here (without boot sectors).
672  */
673  { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
674  { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
675  { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
676  { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
677  { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
678  { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
679  { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
680  { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
681  { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
682  { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
683  { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
684  { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
685  { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
686  { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
687  { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
688  { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
689  { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
690 
691  /* SST -- large erase sizes are "overlays", "sectors" are 4K */
692  { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
693  { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
694  { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
695  { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
696  { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
697  { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
698  { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
699  { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
700 
701  /* ST Microelectronics -- newer production may have feature updates */
702  { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
703  { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
704  { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
705  { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
706  { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
707  { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
708  { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
709  { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
710  { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
711  { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
712 
713  { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
714  { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
715  { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
716  { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
717  { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
718  { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
719  { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
720  { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
721  { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
722 
723  { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
724  { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
725  { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
726 
727  { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
728  { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
729  { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
730 
731  { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
732  { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
733  { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
734  { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
735 
736  /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
737  { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
738  { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
739  { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
740  { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
741  { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
742  { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
743  { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
744  { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
745  { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
746  { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
747  { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
748 
749  /* Catalyst / On Semiconductor -- non-JEDEC */
750  { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
751  { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
752  { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
753  { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
754  { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
755  { },
756 };
757 MODULE_DEVICE_TABLE(spi, m25p_ids);
758 
759 static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
760 {
761  int tmp;
762  u8 code = OPCODE_RDID;
763  u8 id[5];
764  u32 jedec;
765  u16 ext_jedec;
766  struct flash_info *info;
767 
768  /* JEDEC also defines an optional "extended device information"
769  * string for after vendor-specific data, after the three bytes
770  * we use here. Supporting some chips might require using it.
771  */
772  tmp = spi_write_then_read(spi, &code, 1, id, 5);
773  if (tmp < 0) {
774  pr_debug("%s: error %d reading JEDEC ID\n",
775  dev_name(&spi->dev), tmp);
776  return ERR_PTR(tmp);
777  }
778  jedec = id[0];
779  jedec = jedec << 8;
780  jedec |= id[1];
781  jedec = jedec << 8;
782  jedec |= id[2];
783 
784  ext_jedec = id[3] << 8 | id[4];
785 
786  for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
787  info = (void *)m25p_ids[tmp].driver_data;
788  if (info->jedec_id == jedec) {
789  if (info->ext_id != 0 && info->ext_id != ext_jedec)
790  continue;
791  return &m25p_ids[tmp];
792  }
793  }
794  dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
795  return ERR_PTR(-ENODEV);
796 }
797 
798 
799 /*
800  * board specific setup should have ensured the SPI clock used here
801  * matches what the READ command supports, at least until this driver
802  * understands FAST_READ (for clocks over 25 MHz).
803  */
804 static int __devinit m25p_probe(struct spi_device *spi)
805 {
806  const struct spi_device_id *id = spi_get_device_id(spi);
807  struct flash_platform_data *data;
808  struct m25p *flash;
809  struct flash_info *info;
810  unsigned i;
812 
813 #ifdef CONFIG_MTD_OF_PARTS
814  if (!of_device_is_available(spi->dev.of_node))
815  return -ENODEV;
816 #endif
817 
818  /* Platform data helps sort out which chip type we have, as
819  * well as how this board partitions it. If we don't have
820  * a chip ID, try the JEDEC id commands; they'll work for most
821  * newer chips, even if we don't recognize the particular chip.
822  */
823  data = spi->dev.platform_data;
824  if (data && data->type) {
825  const struct spi_device_id *plat_id;
826 
827  for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
828  plat_id = &m25p_ids[i];
829  if (strcmp(data->type, plat_id->name))
830  continue;
831  break;
832  }
833 
834  if (i < ARRAY_SIZE(m25p_ids) - 1)
835  id = plat_id;
836  else
837  dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
838  }
839 
840  info = (void *)id->driver_data;
841 
842  if (info->jedec_id) {
843  const struct spi_device_id *jid;
844 
845  jid = jedec_probe(spi);
846  if (IS_ERR(jid)) {
847  return PTR_ERR(jid);
848  } else if (jid != id) {
849  /*
850  * JEDEC knows better, so overwrite platform ID. We
851  * can't trust partitions any longer, but we'll let
852  * mtd apply them anyway, since some partitions may be
853  * marked read-only, and we don't want to lose that
854  * information, even if it's not 100% accurate.
855  */
856  dev_warn(&spi->dev, "found %s, expected %s\n",
857  jid->name, id->name);
858  id = jid;
859  info = (void *)jid->driver_data;
860  }
861  }
862 
863  flash = kzalloc(sizeof *flash, GFP_KERNEL);
864  if (!flash)
865  return -ENOMEM;
867  if (!flash->command) {
868  kfree(flash);
869  return -ENOMEM;
870  }
871 
872  flash->spi = spi;
873  mutex_init(&flash->lock);
874  dev_set_drvdata(&spi->dev, flash);
875 
876  /*
877  * Atmel, SST and Intel/Numonyx serial flash tend to power
878  * up with the software protection bits set
879  */
880 
881  if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
882  JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
883  JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
884  write_enable(flash);
885  write_sr(flash, 0);
886  }
887 
888  if (data && data->name)
889  flash->mtd.name = data->name;
890  else
891  flash->mtd.name = dev_name(&spi->dev);
892 
893  flash->mtd.type = MTD_NORFLASH;
894  flash->mtd.writesize = 1;
895  flash->mtd.flags = MTD_CAP_NORFLASH;
896  flash->mtd.size = info->sector_size * info->n_sectors;
897  flash->mtd._erase = m25p80_erase;
898  flash->mtd._read = m25p80_read;
899 
900  /* sst flash chips use AAI word program */
901  if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
902  flash->mtd._write = sst_write;
903  else
904  flash->mtd._write = m25p80_write;
905 
906  /* prefer "small sector" erase if possible */
907  if (info->flags & SECT_4K) {
908  flash->erase_opcode = OPCODE_BE_4K;
909  flash->mtd.erasesize = 4096;
910  } else {
911  flash->erase_opcode = OPCODE_SE;
912  flash->mtd.erasesize = info->sector_size;
913  }
914 
915  if (info->flags & M25P_NO_ERASE)
916  flash->mtd.flags |= MTD_NO_ERASE;
917 
918  ppdata.of_node = spi->dev.of_node;
919  flash->mtd.dev.parent = &spi->dev;
920  flash->page_size = info->page_size;
921  flash->mtd.writebufsize = flash->page_size;
922 
923  if (info->addr_width)
924  flash->addr_width = info->addr_width;
925  else {
926  /* enable 4-byte addressing if the device exceeds 16MiB */
927  if (flash->mtd.size > 0x1000000) {
928  flash->addr_width = 4;
929  set_4byte(flash, info->jedec_id, 1);
930  } else
931  flash->addr_width = 3;
932  }
933 
934  dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
935  (long long)flash->mtd.size >> 10);
936 
937  pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
938  ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
939  flash->mtd.name,
940  (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
941  flash->mtd.erasesize, flash->mtd.erasesize / 1024,
942  flash->mtd.numeraseregions);
943 
944  if (flash->mtd.numeraseregions)
945  for (i = 0; i < flash->mtd.numeraseregions; i++)
946  pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
947  ".erasesize = 0x%.8x (%uKiB), "
948  ".numblocks = %d }\n",
949  i, (long long)flash->mtd.eraseregions[i].offset,
950  flash->mtd.eraseregions[i].erasesize,
951  flash->mtd.eraseregions[i].erasesize / 1024,
952  flash->mtd.eraseregions[i].numblocks);
953 
954 
955  /* partitions should match sector boundaries; and it may be good to
956  * use readonly partitions for writeprotected sectors (BP2..BP0).
957  */
958  return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
959  data ? data->parts : NULL,
960  data ? data->nr_parts : 0);
961 }
962 
963 
964 static int __devexit m25p_remove(struct spi_device *spi)
965 {
966  struct m25p *flash = dev_get_drvdata(&spi->dev);
967  int status;
968 
969  /* Clean up MTD stuff. */
970  status = mtd_device_unregister(&flash->mtd);
971  if (status == 0) {
972  kfree(flash->command);
973  kfree(flash);
974  }
975  return 0;
976 }
977 
978 
979 static struct spi_driver m25p80_driver = {
980  .driver = {
981  .name = "m25p80",
982  .owner = THIS_MODULE,
983  },
984  .id_table = m25p_ids,
985  .probe = m25p_probe,
986  .remove = __devexit_p(m25p_remove),
987 
988  /* REVISIT: many of these chips have deep power-down modes, which
989  * should clearly be entered on suspend() to minimize power use.
990  * And also when they're otherwise idle...
991  */
992 };
993 
994 module_spi_driver(m25p80_driver);
995 
996 MODULE_LICENSE("GPL");
997 MODULE_AUTHOR("Mike Lavender");
998 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");