Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nommu.c
Go to the documentation of this file.
1 /*
2  * linux/mm/nommu.c
3  *
4  * Replacement code for mm functions to support CPU's that don't
5  * have any form of memory management unit (thus no virtual memory).
6  *
7  * See Documentation/nommu-mmap.txt
8  *
9  * Copyright (c) 2004-2008 David Howells <[email protected]>
10  * Copyright (c) 2000-2003 David McCullough <[email protected]>
11  * Copyright (c) 2000-2001 D Jeff Dionne <[email protected]>
12  * Copyright (c) 2002 Greg Ungerer <[email protected]>
13  * Copyright (c) 2007-2010 Paul Mundt <[email protected]>
14  */
15 
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 #if 0
40 #define kenter(FMT, ...) \
41  printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43  printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45  printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48  no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50  no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52  no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54 
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 
68 
69 EXPORT_SYMBOL(mem_map);
71 
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
75 DECLARE_RWSEM(nommu_region_sem);
76 
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79 
80 /*
81  * Return the total memory allocated for this pointer, not
82  * just what the caller asked for.
83  *
84  * Doesn't have to be accurate, i.e. may have races.
85  */
86 unsigned int kobjsize(const void *objp)
87 {
88  struct page *page;
89 
90  /*
91  * If the object we have should not have ksize performed on it,
92  * return size of 0
93  */
94  if (!objp || !virt_addr_valid(objp))
95  return 0;
96 
97  page = virt_to_head_page(objp);
98 
99  /*
100  * If the allocator sets PageSlab, we know the pointer came from
101  * kmalloc().
102  */
103  if (PageSlab(page))
104  return ksize(objp);
105 
106  /*
107  * If it's not a compound page, see if we have a matching VMA
108  * region. This test is intentionally done in reverse order,
109  * so if there's no VMA, we still fall through and hand back
110  * PAGE_SIZE for 0-order pages.
111  */
112  if (!PageCompound(page)) {
113  struct vm_area_struct *vma;
114 
115  vma = find_vma(current->mm, (unsigned long)objp);
116  if (vma)
117  return vma->vm_end - vma->vm_start;
118  }
119 
120  /*
121  * The ksize() function is only guaranteed to work for pointers
122  * returned by kmalloc(). So handle arbitrary pointers here.
123  */
124  return PAGE_SIZE << compound_order(page);
125 }
126 
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128  unsigned long start, int nr_pages, unsigned int foll_flags,
129  struct page **pages, struct vm_area_struct **vmas,
130  int *retry)
131 {
132  struct vm_area_struct *vma;
133  unsigned long vm_flags;
134  int i;
135 
136  /* calculate required read or write permissions.
137  * If FOLL_FORCE is set, we only require the "MAY" flags.
138  */
139  vm_flags = (foll_flags & FOLL_WRITE) ?
140  (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
141  vm_flags &= (foll_flags & FOLL_FORCE) ?
142  (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
143 
144  for (i = 0; i < nr_pages; i++) {
145  vma = find_vma(mm, start);
146  if (!vma)
147  goto finish_or_fault;
148 
149  /* protect what we can, including chardevs */
150  if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
151  !(vm_flags & vma->vm_flags))
152  goto finish_or_fault;
153 
154  if (pages) {
155  pages[i] = virt_to_page(start);
156  if (pages[i])
157  page_cache_get(pages[i]);
158  }
159  if (vmas)
160  vmas[i] = vma;
161  start = (start + PAGE_SIZE) & PAGE_MASK;
162  }
163 
164  return i;
165 
166 finish_or_fault:
167  return i ? : -EFAULT;
168 }
169 
170 /*
171  * get a list of pages in an address range belonging to the specified process
172  * and indicate the VMA that covers each page
173  * - this is potentially dodgy as we may end incrementing the page count of a
174  * slab page or a secondary page from a compound page
175  * - don't permit access to VMAs that don't support it, such as I/O mappings
176  */
177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
178  unsigned long start, int nr_pages, int write, int force,
179  struct page **pages, struct vm_area_struct **vmas)
180 {
181  int flags = 0;
182 
183  if (write)
184  flags |= FOLL_WRITE;
185  if (force)
186  flags |= FOLL_FORCE;
187 
188  return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
189  NULL);
190 }
192 
203 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
204  unsigned long *pfn)
205 {
206  if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
207  return -EINVAL;
208 
209  *pfn = address >> PAGE_SHIFT;
210  return 0;
211 }
213 
214 DEFINE_RWLOCK(vmlist_lock);
216 
217 void vfree(const void *addr)
218 {
219  kfree(addr);
220 }
222 
223 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
224 {
225  /*
226  * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
227  * returns only a logical address.
228  */
229  return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
230 }
232 
233 void *vmalloc_user(unsigned long size)
234 {
235  void *ret;
236 
238  PAGE_KERNEL);
239  if (ret) {
240  struct vm_area_struct *vma;
241 
242  down_write(&current->mm->mmap_sem);
243  vma = find_vma(current->mm, (unsigned long)ret);
244  if (vma)
245  vma->vm_flags |= VM_USERMAP;
246  up_write(&current->mm->mmap_sem);
247  }
248 
249  return ret;
250 }
252 
253 struct page *vmalloc_to_page(const void *addr)
254 {
255  return virt_to_page(addr);
256 }
258 
259 unsigned long vmalloc_to_pfn(const void *addr)
260 {
261  return page_to_pfn(virt_to_page(addr));
262 }
264 
265 long vread(char *buf, char *addr, unsigned long count)
266 {
267  memcpy(buf, addr, count);
268  return count;
269 }
270 
271 long vwrite(char *buf, char *addr, unsigned long count)
272 {
273  /* Don't allow overflow */
274  if ((unsigned long) addr + count < count)
275  count = -(unsigned long) addr;
276 
277  memcpy(addr, buf, count);
278  return(count);
279 }
280 
281 /*
282  * vmalloc - allocate virtually continguos memory
283  *
284  * @size: allocation size
285  *
286  * Allocate enough pages to cover @size from the page level
287  * allocator and map them into continguos kernel virtual space.
288  *
289  * For tight control over page level allocator and protection flags
290  * use __vmalloc() instead.
291  */
292 void *vmalloc(unsigned long size)
293 {
295 }
297 
298 /*
299  * vzalloc - allocate virtually continguos memory with zero fill
300  *
301  * @size: allocation size
302  *
303  * Allocate enough pages to cover @size from the page level
304  * allocator and map them into continguos kernel virtual space.
305  * The memory allocated is set to zero.
306  *
307  * For tight control over page level allocator and protection flags
308  * use __vmalloc() instead.
309  */
310 void *vzalloc(unsigned long size)
311 {
312  return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
313  PAGE_KERNEL);
314 }
316 
328 void *vmalloc_node(unsigned long size, int node)
329 {
330  return vmalloc(size);
331 }
333 
346 void *vzalloc_node(unsigned long size, int node)
347 {
348  return vzalloc(size);
349 }
351 
352 #ifndef PAGE_KERNEL_EXEC
353 # define PAGE_KERNEL_EXEC PAGE_KERNEL
354 #endif
355 
368 void *vmalloc_exec(unsigned long size)
369 {
371 }
372 
380 void *vmalloc_32(unsigned long size)
381 {
382  return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
383 }
385 
396 void *vmalloc_32_user(unsigned long size)
397 {
398  /*
399  * We'll have to sort out the ZONE_DMA bits for 64-bit,
400  * but for now this can simply use vmalloc_user() directly.
401  */
402  return vmalloc_user(size);
403 }
405 
406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
407 {
408  BUG();
409  return NULL;
410 }
412 
413 void vunmap(const void *addr)
414 {
415  BUG();
416 }
418 
419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
420 {
421  BUG();
422  return NULL;
423 }
425 
426 void vm_unmap_ram(const void *mem, unsigned int count)
427 {
428  BUG();
429 }
431 
433 {
434 }
436 
437 /*
438  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
439  * have one.
440  */
441 void __attribute__((weak)) vmalloc_sync_all(void)
442 {
443 }
444 
457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
458 {
459  BUG();
460  return NULL;
461 }
463 
464 void free_vm_area(struct vm_struct *area)
465 {
466  BUG();
467 }
469 
470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
471  struct page *page)
472 {
473  return -EINVAL;
474 }
476 
477 /*
478  * sys_brk() for the most part doesn't need the global kernel
479  * lock, except when an application is doing something nasty
480  * like trying to un-brk an area that has already been mapped
481  * to a regular file. in this case, the unmapping will need
482  * to invoke file system routines that need the global lock.
483  */
484 SYSCALL_DEFINE1(brk, unsigned long, brk)
485 {
486  struct mm_struct *mm = current->mm;
487 
488  if (brk < mm->start_brk || brk > mm->context.end_brk)
489  return mm->brk;
490 
491  if (mm->brk == brk)
492  return mm->brk;
493 
494  /*
495  * Always allow shrinking brk
496  */
497  if (brk <= mm->brk) {
498  mm->brk = brk;
499  return brk;
500  }
501 
502  /*
503  * Ok, looks good - let it rip.
504  */
505  flush_icache_range(mm->brk, brk);
506  return mm->brk = brk;
507 }
508 
509 /*
510  * initialise the VMA and region record slabs
511  */
512 void __init mmap_init(void)
513 {
514  int ret;
515 
516  ret = percpu_counter_init(&vm_committed_as, 0);
517  VM_BUG_ON(ret);
518  vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
519 }
520 
521 /*
522  * validate the region tree
523  * - the caller must hold the region lock
524  */
525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
526 static noinline void validate_nommu_regions(void)
527 {
528  struct vm_region *region, *last;
529  struct rb_node *p, *lastp;
530 
531  lastp = rb_first(&nommu_region_tree);
532  if (!lastp)
533  return;
534 
535  last = rb_entry(lastp, struct vm_region, vm_rb);
536  BUG_ON(unlikely(last->vm_end <= last->vm_start));
537  BUG_ON(unlikely(last->vm_top < last->vm_end));
538 
539  while ((p = rb_next(lastp))) {
540  region = rb_entry(p, struct vm_region, vm_rb);
541  last = rb_entry(lastp, struct vm_region, vm_rb);
542 
543  BUG_ON(unlikely(region->vm_end <= region->vm_start));
544  BUG_ON(unlikely(region->vm_top < region->vm_end));
545  BUG_ON(unlikely(region->vm_start < last->vm_top));
546 
547  lastp = p;
548  }
549 }
550 #else
551 static void validate_nommu_regions(void)
552 {
553 }
554 #endif
555 
556 /*
557  * add a region into the global tree
558  */
559 static void add_nommu_region(struct vm_region *region)
560 {
561  struct vm_region *pregion;
562  struct rb_node **p, *parent;
563 
564  validate_nommu_regions();
565 
566  parent = NULL;
567  p = &nommu_region_tree.rb_node;
568  while (*p) {
569  parent = *p;
570  pregion = rb_entry(parent, struct vm_region, vm_rb);
571  if (region->vm_start < pregion->vm_start)
572  p = &(*p)->rb_left;
573  else if (region->vm_start > pregion->vm_start)
574  p = &(*p)->rb_right;
575  else if (pregion == region)
576  return;
577  else
578  BUG();
579  }
580 
581  rb_link_node(&region->vm_rb, parent, p);
582  rb_insert_color(&region->vm_rb, &nommu_region_tree);
583 
584  validate_nommu_regions();
585 }
586 
587 /*
588  * delete a region from the global tree
589  */
590 static void delete_nommu_region(struct vm_region *region)
591 {
592  BUG_ON(!nommu_region_tree.rb_node);
593 
594  validate_nommu_regions();
595  rb_erase(&region->vm_rb, &nommu_region_tree);
596  validate_nommu_regions();
597 }
598 
599 /*
600  * free a contiguous series of pages
601  */
602 static void free_page_series(unsigned long from, unsigned long to)
603 {
604  for (; from < to; from += PAGE_SIZE) {
605  struct page *page = virt_to_page(from);
606 
607  kdebug("- free %lx", from);
608  atomic_long_dec(&mmap_pages_allocated);
609  if (page_count(page) != 1)
610  kdebug("free page %p: refcount not one: %d",
611  page, page_count(page));
612  put_page(page);
613  }
614 }
615 
616 /*
617  * release a reference to a region
618  * - the caller must hold the region semaphore for writing, which this releases
619  * - the region may not have been added to the tree yet, in which case vm_top
620  * will equal vm_start
621  */
622 static void __put_nommu_region(struct vm_region *region)
623  __releases(nommu_region_sem)
624 {
625  kenter("%p{%d}", region, region->vm_usage);
626 
627  BUG_ON(!nommu_region_tree.rb_node);
628 
629  if (--region->vm_usage == 0) {
630  if (region->vm_top > region->vm_start)
631  delete_nommu_region(region);
632  up_write(&nommu_region_sem);
633 
634  if (region->vm_file)
635  fput(region->vm_file);
636 
637  /* IO memory and memory shared directly out of the pagecache
638  * from ramfs/tmpfs mustn't be released here */
639  if (region->vm_flags & VM_MAPPED_COPY) {
640  kdebug("free series");
641  free_page_series(region->vm_start, region->vm_top);
642  }
643  kmem_cache_free(vm_region_jar, region);
644  } else {
645  up_write(&nommu_region_sem);
646  }
647 }
648 
649 /*
650  * release a reference to a region
651  */
652 static void put_nommu_region(struct vm_region *region)
653 {
654  down_write(&nommu_region_sem);
655  __put_nommu_region(region);
656 }
657 
658 /*
659  * update protection on a vma
660  */
661 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
662 {
663 #ifdef CONFIG_MPU
664  struct mm_struct *mm = vma->vm_mm;
665  long start = vma->vm_start & PAGE_MASK;
666  while (start < vma->vm_end) {
667  protect_page(mm, start, flags);
668  start += PAGE_SIZE;
669  }
670  update_protections(mm);
671 #endif
672 }
673 
674 /*
675  * add a VMA into a process's mm_struct in the appropriate place in the list
676  * and tree and add to the address space's page tree also if not an anonymous
677  * page
678  * - should be called with mm->mmap_sem held writelocked
679  */
680 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
681 {
682  struct vm_area_struct *pvma, *prev;
683  struct address_space *mapping;
684  struct rb_node **p, *parent, *rb_prev;
685 
686  kenter(",%p", vma);
687 
688  BUG_ON(!vma->vm_region);
689 
690  mm->map_count++;
691  vma->vm_mm = mm;
692 
693  protect_vma(vma, vma->vm_flags);
694 
695  /* add the VMA to the mapping */
696  if (vma->vm_file) {
697  mapping = vma->vm_file->f_mapping;
698 
699  mutex_lock(&mapping->i_mmap_mutex);
700  flush_dcache_mmap_lock(mapping);
701  vma_interval_tree_insert(vma, &mapping->i_mmap);
702  flush_dcache_mmap_unlock(mapping);
703  mutex_unlock(&mapping->i_mmap_mutex);
704  }
705 
706  /* add the VMA to the tree */
707  parent = rb_prev = NULL;
708  p = &mm->mm_rb.rb_node;
709  while (*p) {
710  parent = *p;
711  pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712 
713  /* sort by: start addr, end addr, VMA struct addr in that order
714  * (the latter is necessary as we may get identical VMAs) */
715  if (vma->vm_start < pvma->vm_start)
716  p = &(*p)->rb_left;
717  else if (vma->vm_start > pvma->vm_start) {
718  rb_prev = parent;
719  p = &(*p)->rb_right;
720  } else if (vma->vm_end < pvma->vm_end)
721  p = &(*p)->rb_left;
722  else if (vma->vm_end > pvma->vm_end) {
723  rb_prev = parent;
724  p = &(*p)->rb_right;
725  } else if (vma < pvma)
726  p = &(*p)->rb_left;
727  else if (vma > pvma) {
728  rb_prev = parent;
729  p = &(*p)->rb_right;
730  } else
731  BUG();
732  }
733 
734  rb_link_node(&vma->vm_rb, parent, p);
735  rb_insert_color(&vma->vm_rb, &mm->mm_rb);
736 
737  /* add VMA to the VMA list also */
738  prev = NULL;
739  if (rb_prev)
740  prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
741 
742  __vma_link_list(mm, vma, prev, parent);
743 }
744 
745 /*
746  * delete a VMA from its owning mm_struct and address space
747  */
748 static void delete_vma_from_mm(struct vm_area_struct *vma)
749 {
750  struct address_space *mapping;
751  struct mm_struct *mm = vma->vm_mm;
752 
753  kenter("%p", vma);
754 
755  protect_vma(vma, 0);
756 
757  mm->map_count--;
758  if (mm->mmap_cache == vma)
759  mm->mmap_cache = NULL;
760 
761  /* remove the VMA from the mapping */
762  if (vma->vm_file) {
763  mapping = vma->vm_file->f_mapping;
764 
765  mutex_lock(&mapping->i_mmap_mutex);
766  flush_dcache_mmap_lock(mapping);
767  vma_interval_tree_remove(vma, &mapping->i_mmap);
768  flush_dcache_mmap_unlock(mapping);
769  mutex_unlock(&mapping->i_mmap_mutex);
770  }
771 
772  /* remove from the MM's tree and list */
773  rb_erase(&vma->vm_rb, &mm->mm_rb);
774 
775  if (vma->vm_prev)
776  vma->vm_prev->vm_next = vma->vm_next;
777  else
778  mm->mmap = vma->vm_next;
779 
780  if (vma->vm_next)
781  vma->vm_next->vm_prev = vma->vm_prev;
782 }
783 
784 /*
785  * destroy a VMA record
786  */
787 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
788 {
789  kenter("%p", vma);
790  if (vma->vm_ops && vma->vm_ops->close)
791  vma->vm_ops->close(vma);
792  if (vma->vm_file)
793  fput(vma->vm_file);
794  put_nommu_region(vma->vm_region);
796 }
797 
798 /*
799  * look up the first VMA in which addr resides, NULL if none
800  * - should be called with mm->mmap_sem at least held readlocked
801  */
802 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
803 {
804  struct vm_area_struct *vma;
805 
806  /* check the cache first */
807  vma = mm->mmap_cache;
808  if (vma && vma->vm_start <= addr && vma->vm_end > addr)
809  return vma;
810 
811  /* trawl the list (there may be multiple mappings in which addr
812  * resides) */
813  for (vma = mm->mmap; vma; vma = vma->vm_next) {
814  if (vma->vm_start > addr)
815  return NULL;
816  if (vma->vm_end > addr) {
817  mm->mmap_cache = vma;
818  return vma;
819  }
820  }
821 
822  return NULL;
823 }
825 
826 /*
827  * find a VMA
828  * - we don't extend stack VMAs under NOMMU conditions
829  */
830 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
831 {
832  return find_vma(mm, addr);
833 }
834 
835 /*
836  * expand a stack to a given address
837  * - not supported under NOMMU conditions
838  */
839 int expand_stack(struct vm_area_struct *vma, unsigned long address)
840 {
841  return -ENOMEM;
842 }
843 
844 /*
845  * look up the first VMA exactly that exactly matches addr
846  * - should be called with mm->mmap_sem at least held readlocked
847  */
848 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
849  unsigned long addr,
850  unsigned long len)
851 {
852  struct vm_area_struct *vma;
853  unsigned long end = addr + len;
854 
855  /* check the cache first */
856  vma = mm->mmap_cache;
857  if (vma && vma->vm_start == addr && vma->vm_end == end)
858  return vma;
859 
860  /* trawl the list (there may be multiple mappings in which addr
861  * resides) */
862  for (vma = mm->mmap; vma; vma = vma->vm_next) {
863  if (vma->vm_start < addr)
864  continue;
865  if (vma->vm_start > addr)
866  return NULL;
867  if (vma->vm_end == end) {
868  mm->mmap_cache = vma;
869  return vma;
870  }
871  }
872 
873  return NULL;
874 }
875 
876 /*
877  * determine whether a mapping should be permitted and, if so, what sort of
878  * mapping we're capable of supporting
879  */
880 static int validate_mmap_request(struct file *file,
881  unsigned long addr,
882  unsigned long len,
883  unsigned long prot,
884  unsigned long flags,
885  unsigned long pgoff,
886  unsigned long *_capabilities)
887 {
888  unsigned long capabilities, rlen;
889  int ret;
890 
891  /* do the simple checks first */
892  if (flags & MAP_FIXED) {
894  "%d: Can't do fixed-address/overlay mmap of RAM\n",
895  current->pid);
896  return -EINVAL;
897  }
898 
899  if ((flags & MAP_TYPE) != MAP_PRIVATE &&
900  (flags & MAP_TYPE) != MAP_SHARED)
901  return -EINVAL;
902 
903  if (!len)
904  return -EINVAL;
905 
906  /* Careful about overflows.. */
907  rlen = PAGE_ALIGN(len);
908  if (!rlen || rlen > TASK_SIZE)
909  return -ENOMEM;
910 
911  /* offset overflow? */
912  if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
913  return -EOVERFLOW;
914 
915  if (file) {
916  /* validate file mapping requests */
917  struct address_space *mapping;
918 
919  /* files must support mmap */
920  if (!file->f_op || !file->f_op->mmap)
921  return -ENODEV;
922 
923  /* work out if what we've got could possibly be shared
924  * - we support chardevs that provide their own "memory"
925  * - we support files/blockdevs that are memory backed
926  */
927  mapping = file->f_mapping;
928  if (!mapping)
929  mapping = file->f_path.dentry->d_inode->i_mapping;
930 
931  capabilities = 0;
932  if (mapping && mapping->backing_dev_info)
933  capabilities = mapping->backing_dev_info->capabilities;
934 
935  if (!capabilities) {
936  /* no explicit capabilities set, so assume some
937  * defaults */
938  switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
939  case S_IFREG:
940  case S_IFBLK:
941  capabilities = BDI_CAP_MAP_COPY;
942  break;
943 
944  case S_IFCHR:
945  capabilities =
949  break;
950 
951  default:
952  return -EINVAL;
953  }
954  }
955 
956  /* eliminate any capabilities that we can't support on this
957  * device */
958  if (!file->f_op->get_unmapped_area)
959  capabilities &= ~BDI_CAP_MAP_DIRECT;
960  if (!file->f_op->read)
961  capabilities &= ~BDI_CAP_MAP_COPY;
962 
963  /* The file shall have been opened with read permission. */
964  if (!(file->f_mode & FMODE_READ))
965  return -EACCES;
966 
967  if (flags & MAP_SHARED) {
968  /* do checks for writing, appending and locking */
969  if ((prot & PROT_WRITE) &&
970  !(file->f_mode & FMODE_WRITE))
971  return -EACCES;
972 
973  if (IS_APPEND(file->f_path.dentry->d_inode) &&
974  (file->f_mode & FMODE_WRITE))
975  return -EACCES;
976 
977  if (locks_verify_locked(file->f_path.dentry->d_inode))
978  return -EAGAIN;
979 
980  if (!(capabilities & BDI_CAP_MAP_DIRECT))
981  return -ENODEV;
982 
983  /* we mustn't privatise shared mappings */
984  capabilities &= ~BDI_CAP_MAP_COPY;
985  }
986  else {
987  /* we're going to read the file into private memory we
988  * allocate */
989  if (!(capabilities & BDI_CAP_MAP_COPY))
990  return -ENODEV;
991 
992  /* we don't permit a private writable mapping to be
993  * shared with the backing device */
994  if (prot & PROT_WRITE)
995  capabilities &= ~BDI_CAP_MAP_DIRECT;
996  }
997 
998  if (capabilities & BDI_CAP_MAP_DIRECT) {
999  if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1000  ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1001  ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1002  ) {
1003  capabilities &= ~BDI_CAP_MAP_DIRECT;
1004  if (flags & MAP_SHARED) {
1006  "MAP_SHARED not completely supported on !MMU\n");
1007  return -EINVAL;
1008  }
1009  }
1010  }
1011 
1012  /* handle executable mappings and implied executable
1013  * mappings */
1014  if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1015  if (prot & PROT_EXEC)
1016  return -EPERM;
1017  }
1018  else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1019  /* handle implication of PROT_EXEC by PROT_READ */
1020  if (current->personality & READ_IMPLIES_EXEC) {
1021  if (capabilities & BDI_CAP_EXEC_MAP)
1022  prot |= PROT_EXEC;
1023  }
1024  }
1025  else if ((prot & PROT_READ) &&
1026  (prot & PROT_EXEC) &&
1027  !(capabilities & BDI_CAP_EXEC_MAP)
1028  ) {
1029  /* backing file is not executable, try to copy */
1030  capabilities &= ~BDI_CAP_MAP_DIRECT;
1031  }
1032  }
1033  else {
1034  /* anonymous mappings are always memory backed and can be
1035  * privately mapped
1036  */
1037  capabilities = BDI_CAP_MAP_COPY;
1038 
1039  /* handle PROT_EXEC implication by PROT_READ */
1040  if ((prot & PROT_READ) &&
1041  (current->personality & READ_IMPLIES_EXEC))
1042  prot |= PROT_EXEC;
1043  }
1044 
1045  /* allow the security API to have its say */
1046  ret = security_mmap_addr(addr);
1047  if (ret < 0)
1048  return ret;
1049 
1050  /* looks okay */
1051  *_capabilities = capabilities;
1052  return 0;
1053 }
1054 
1055 /*
1056  * we've determined that we can make the mapping, now translate what we
1057  * now know into VMA flags
1058  */
1059 static unsigned long determine_vm_flags(struct file *file,
1060  unsigned long prot,
1061  unsigned long flags,
1062  unsigned long capabilities)
1063 {
1064  unsigned long vm_flags;
1065 
1066  vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1067  /* vm_flags |= mm->def_flags; */
1068 
1069  if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1070  /* attempt to share read-only copies of mapped file chunks */
1071  vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1072  if (file && !(prot & PROT_WRITE))
1073  vm_flags |= VM_MAYSHARE;
1074  } else {
1075  /* overlay a shareable mapping on the backing device or inode
1076  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1077  * romfs/cramfs */
1078  vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1079  if (flags & MAP_SHARED)
1080  vm_flags |= VM_SHARED;
1081  }
1082 
1083  /* refuse to let anyone share private mappings with this process if
1084  * it's being traced - otherwise breakpoints set in it may interfere
1085  * with another untraced process
1086  */
1087  if ((flags & MAP_PRIVATE) && current->ptrace)
1088  vm_flags &= ~VM_MAYSHARE;
1089 
1090  return vm_flags;
1091 }
1092 
1093 /*
1094  * set up a shared mapping on a file (the driver or filesystem provides and
1095  * pins the storage)
1096  */
1097 static int do_mmap_shared_file(struct vm_area_struct *vma)
1098 {
1099  int ret;
1100 
1101  ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1102  if (ret == 0) {
1103  vma->vm_region->vm_top = vma->vm_region->vm_end;
1104  return 0;
1105  }
1106  if (ret != -ENOSYS)
1107  return ret;
1108 
1109  /* getting -ENOSYS indicates that direct mmap isn't possible (as
1110  * opposed to tried but failed) so we can only give a suitable error as
1111  * it's not possible to make a private copy if MAP_SHARED was given */
1112  return -ENODEV;
1113 }
1114 
1115 /*
1116  * set up a private mapping or an anonymous shared mapping
1117  */
1118 static int do_mmap_private(struct vm_area_struct *vma,
1119  struct vm_region *region,
1120  unsigned long len,
1121  unsigned long capabilities)
1122 {
1123  struct page *pages;
1124  unsigned long total, point, n;
1125  void *base;
1126  int ret, order;
1127 
1128  /* invoke the file's mapping function so that it can keep track of
1129  * shared mappings on devices or memory
1130  * - VM_MAYSHARE will be set if it may attempt to share
1131  */
1132  if (capabilities & BDI_CAP_MAP_DIRECT) {
1133  ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1134  if (ret == 0) {
1135  /* shouldn't return success if we're not sharing */
1136  BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1137  vma->vm_region->vm_top = vma->vm_region->vm_end;
1138  return 0;
1139  }
1140  if (ret != -ENOSYS)
1141  return ret;
1142 
1143  /* getting an ENOSYS error indicates that direct mmap isn't
1144  * possible (as opposed to tried but failed) so we'll try to
1145  * make a private copy of the data and map that instead */
1146  }
1147 
1148 
1149  /* allocate some memory to hold the mapping
1150  * - note that this may not return a page-aligned address if the object
1151  * we're allocating is smaller than a page
1152  */
1153  order = get_order(len);
1154  kdebug("alloc order %d for %lx", order, len);
1155 
1156  pages = alloc_pages(GFP_KERNEL, order);
1157  if (!pages)
1158  goto enomem;
1159 
1160  total = 1 << order;
1161  atomic_long_add(total, &mmap_pages_allocated);
1162 
1163  point = len >> PAGE_SHIFT;
1164 
1165  /* we allocated a power-of-2 sized page set, so we may want to trim off
1166  * the excess */
1167  if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1168  while (total > point) {
1169  order = ilog2(total - point);
1170  n = 1 << order;
1171  kdebug("shave %lu/%lu @%lu", n, total - point, total);
1172  atomic_long_sub(n, &mmap_pages_allocated);
1173  total -= n;
1174  set_page_refcounted(pages + total);
1175  __free_pages(pages + total, order);
1176  }
1177  }
1178 
1179  for (point = 1; point < total; point++)
1180  set_page_refcounted(&pages[point]);
1181 
1182  base = page_address(pages);
1183  region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1184  region->vm_start = (unsigned long) base;
1185  region->vm_end = region->vm_start + len;
1186  region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1187 
1188  vma->vm_start = region->vm_start;
1189  vma->vm_end = region->vm_start + len;
1190 
1191  if (vma->vm_file) {
1192  /* read the contents of a file into the copy */
1193  mm_segment_t old_fs;
1194  loff_t fpos;
1195 
1196  fpos = vma->vm_pgoff;
1197  fpos <<= PAGE_SHIFT;
1198 
1199  old_fs = get_fs();
1200  set_fs(KERNEL_DS);
1201  ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1202  set_fs(old_fs);
1203 
1204  if (ret < 0)
1205  goto error_free;
1206 
1207  /* clear the last little bit */
1208  if (ret < len)
1209  memset(base + ret, 0, len - ret);
1210 
1211  }
1212 
1213  return 0;
1214 
1215 error_free:
1216  free_page_series(region->vm_start, region->vm_top);
1217  region->vm_start = vma->vm_start = 0;
1218  region->vm_end = vma->vm_end = 0;
1219  region->vm_top = 0;
1220  return ret;
1221 
1222 enomem:
1223  printk("Allocation of length %lu from process %d (%s) failed\n",
1224  len, current->pid, current->comm);
1225  show_free_areas(0);
1226  return -ENOMEM;
1227 }
1228 
1229 /*
1230  * handle mapping creation for uClinux
1231  */
1232 unsigned long do_mmap_pgoff(struct file *file,
1233  unsigned long addr,
1234  unsigned long len,
1235  unsigned long prot,
1236  unsigned long flags,
1237  unsigned long pgoff)
1238 {
1239  struct vm_area_struct *vma;
1240  struct vm_region *region;
1241  struct rb_node *rb;
1242  unsigned long capabilities, vm_flags, result;
1243  int ret;
1244 
1245  kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1246 
1247  /* decide whether we should attempt the mapping, and if so what sort of
1248  * mapping */
1249  ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1250  &capabilities);
1251  if (ret < 0) {
1252  kleave(" = %d [val]", ret);
1253  return ret;
1254  }
1255 
1256  /* we ignore the address hint */
1257  addr = 0;
1258  len = PAGE_ALIGN(len);
1259 
1260  /* we've determined that we can make the mapping, now translate what we
1261  * now know into VMA flags */
1262  vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1263 
1264  /* we're going to need to record the mapping */
1265  region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1266  if (!region)
1267  goto error_getting_region;
1268 
1269  vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1270  if (!vma)
1271  goto error_getting_vma;
1272 
1273  region->vm_usage = 1;
1274  region->vm_flags = vm_flags;
1275  region->vm_pgoff = pgoff;
1276 
1277  INIT_LIST_HEAD(&vma->anon_vma_chain);
1278  vma->vm_flags = vm_flags;
1279  vma->vm_pgoff = pgoff;
1280 
1281  if (file) {
1282  region->vm_file = get_file(file);
1283  vma->vm_file = get_file(file);
1284  }
1285 
1286  down_write(&nommu_region_sem);
1287 
1288  /* if we want to share, we need to check for regions created by other
1289  * mmap() calls that overlap with our proposed mapping
1290  * - we can only share with a superset match on most regular files
1291  * - shared mappings on character devices and memory backed files are
1292  * permitted to overlap inexactly as far as we are concerned for in
1293  * these cases, sharing is handled in the driver or filesystem rather
1294  * than here
1295  */
1296  if (vm_flags & VM_MAYSHARE) {
1297  struct vm_region *pregion;
1298  unsigned long pglen, rpglen, pgend, rpgend, start;
1299 
1300  pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301  pgend = pgoff + pglen;
1302 
1303  for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1304  pregion = rb_entry(rb, struct vm_region, vm_rb);
1305 
1306  if (!(pregion->vm_flags & VM_MAYSHARE))
1307  continue;
1308 
1309  /* search for overlapping mappings on the same file */
1310  if (pregion->vm_file->f_path.dentry->d_inode !=
1311  file->f_path.dentry->d_inode)
1312  continue;
1313 
1314  if (pregion->vm_pgoff >= pgend)
1315  continue;
1316 
1317  rpglen = pregion->vm_end - pregion->vm_start;
1318  rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319  rpgend = pregion->vm_pgoff + rpglen;
1320  if (pgoff >= rpgend)
1321  continue;
1322 
1323  /* handle inexactly overlapping matches between
1324  * mappings */
1325  if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1326  !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1327  /* new mapping is not a subset of the region */
1328  if (!(capabilities & BDI_CAP_MAP_DIRECT))
1329  goto sharing_violation;
1330  continue;
1331  }
1332 
1333  /* we've found a region we can share */
1334  pregion->vm_usage++;
1335  vma->vm_region = pregion;
1336  start = pregion->vm_start;
1337  start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1338  vma->vm_start = start;
1339  vma->vm_end = start + len;
1340 
1341  if (pregion->vm_flags & VM_MAPPED_COPY) {
1342  kdebug("share copy");
1343  vma->vm_flags |= VM_MAPPED_COPY;
1344  } else {
1345  kdebug("share mmap");
1346  ret = do_mmap_shared_file(vma);
1347  if (ret < 0) {
1348  vma->vm_region = NULL;
1349  vma->vm_start = 0;
1350  vma->vm_end = 0;
1351  pregion->vm_usage--;
1352  pregion = NULL;
1353  goto error_just_free;
1354  }
1355  }
1356  fput(region->vm_file);
1357  kmem_cache_free(vm_region_jar, region);
1358  region = pregion;
1359  result = start;
1360  goto share;
1361  }
1362 
1363  /* obtain the address at which to make a shared mapping
1364  * - this is the hook for quasi-memory character devices to
1365  * tell us the location of a shared mapping
1366  */
1367  if (capabilities & BDI_CAP_MAP_DIRECT) {
1368  addr = file->f_op->get_unmapped_area(file, addr, len,
1369  pgoff, flags);
1370  if (IS_ERR_VALUE(addr)) {
1371  ret = addr;
1372  if (ret != -ENOSYS)
1373  goto error_just_free;
1374 
1375  /* the driver refused to tell us where to site
1376  * the mapping so we'll have to attempt to copy
1377  * it */
1378  ret = -ENODEV;
1379  if (!(capabilities & BDI_CAP_MAP_COPY))
1380  goto error_just_free;
1381 
1382  capabilities &= ~BDI_CAP_MAP_DIRECT;
1383  } else {
1384  vma->vm_start = region->vm_start = addr;
1385  vma->vm_end = region->vm_end = addr + len;
1386  }
1387  }
1388  }
1389 
1390  vma->vm_region = region;
1391 
1392  /* set up the mapping
1393  * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1394  */
1395  if (file && vma->vm_flags & VM_SHARED)
1396  ret = do_mmap_shared_file(vma);
1397  else
1398  ret = do_mmap_private(vma, region, len, capabilities);
1399  if (ret < 0)
1400  goto error_just_free;
1401  add_nommu_region(region);
1402 
1403  /* clear anonymous mappings that don't ask for uninitialized data */
1404  if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1405  memset((void *)region->vm_start, 0,
1406  region->vm_end - region->vm_start);
1407 
1408  /* okay... we have a mapping; now we have to register it */
1409  result = vma->vm_start;
1410 
1411  current->mm->total_vm += len >> PAGE_SHIFT;
1412 
1413 share:
1414  add_vma_to_mm(current->mm, vma);
1415 
1416  /* we flush the region from the icache only when the first executable
1417  * mapping of it is made */
1418  if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1419  flush_icache_range(region->vm_start, region->vm_end);
1420  region->vm_icache_flushed = true;
1421  }
1422 
1423  up_write(&nommu_region_sem);
1424 
1425  kleave(" = %lx", result);
1426  return result;
1427 
1428 error_just_free:
1429  up_write(&nommu_region_sem);
1430 error:
1431  if (region->vm_file)
1432  fput(region->vm_file);
1433  kmem_cache_free(vm_region_jar, region);
1434  if (vma->vm_file)
1435  fput(vma->vm_file);
1437  kleave(" = %d", ret);
1438  return ret;
1439 
1440 sharing_violation:
1441  up_write(&nommu_region_sem);
1442  printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1443  ret = -EINVAL;
1444  goto error;
1445 
1446 error_getting_vma:
1447  kmem_cache_free(vm_region_jar, region);
1448  printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1449  " from process %d failed\n",
1450  len, current->pid);
1451  show_free_areas(0);
1452  return -ENOMEM;
1453 
1454 error_getting_region:
1455  printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1456  " from process %d failed\n",
1457  len, current->pid);
1458  show_free_areas(0);
1459  return -ENOMEM;
1460 }
1461 
1462 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1463  unsigned long, prot, unsigned long, flags,
1464  unsigned long, fd, unsigned long, pgoff)
1465 {
1466  struct file *file = NULL;
1467  unsigned long retval = -EBADF;
1468 
1469  audit_mmap_fd(fd, flags);
1470  if (!(flags & MAP_ANONYMOUS)) {
1471  file = fget(fd);
1472  if (!file)
1473  goto out;
1474  }
1475 
1476  flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1477 
1478  retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1479 
1480  if (file)
1481  fput(file);
1482 out:
1483  return retval;
1484 }
1485 
1486 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1487 struct mmap_arg_struct {
1488  unsigned long addr;
1489  unsigned long len;
1490  unsigned long prot;
1491  unsigned long flags;
1492  unsigned long fd;
1493  unsigned long offset;
1494 };
1495 
1496 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1497 {
1498  struct mmap_arg_struct a;
1499 
1500  if (copy_from_user(&a, arg, sizeof(a)))
1501  return -EFAULT;
1502  if (a.offset & ~PAGE_MASK)
1503  return -EINVAL;
1504 
1505  return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1506  a.offset >> PAGE_SHIFT);
1507 }
1508 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1509 
1510 /*
1511  * split a vma into two pieces at address 'addr', a new vma is allocated either
1512  * for the first part or the tail.
1513  */
1514 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1515  unsigned long addr, int new_below)
1516 {
1517  struct vm_area_struct *new;
1518  struct vm_region *region;
1519  unsigned long npages;
1520 
1521  kenter("");
1522 
1523  /* we're only permitted to split anonymous regions (these should have
1524  * only a single usage on the region) */
1525  if (vma->vm_file)
1526  return -ENOMEM;
1527 
1528  if (mm->map_count >= sysctl_max_map_count)
1529  return -ENOMEM;
1530 
1531  region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1532  if (!region)
1533  return -ENOMEM;
1534 
1536  if (!new) {
1537  kmem_cache_free(vm_region_jar, region);
1538  return -ENOMEM;
1539  }
1540 
1541  /* most fields are the same, copy all, and then fixup */
1542  *new = *vma;
1543  *region = *vma->vm_region;
1544  new->vm_region = region;
1545 
1546  npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1547 
1548  if (new_below) {
1549  region->vm_top = region->vm_end = new->vm_end = addr;
1550  } else {
1551  region->vm_start = new->vm_start = addr;
1552  region->vm_pgoff = new->vm_pgoff += npages;
1553  }
1554 
1555  if (new->vm_ops && new->vm_ops->open)
1556  new->vm_ops->open(new);
1557 
1558  delete_vma_from_mm(vma);
1559  down_write(&nommu_region_sem);
1560  delete_nommu_region(vma->vm_region);
1561  if (new_below) {
1562  vma->vm_region->vm_start = vma->vm_start = addr;
1563  vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1564  } else {
1565  vma->vm_region->vm_end = vma->vm_end = addr;
1566  vma->vm_region->vm_top = addr;
1567  }
1568  add_nommu_region(vma->vm_region);
1569  add_nommu_region(new->vm_region);
1570  up_write(&nommu_region_sem);
1571  add_vma_to_mm(mm, vma);
1572  add_vma_to_mm(mm, new);
1573  return 0;
1574 }
1575 
1576 /*
1577  * shrink a VMA by removing the specified chunk from either the beginning or
1578  * the end
1579  */
1580 static int shrink_vma(struct mm_struct *mm,
1581  struct vm_area_struct *vma,
1582  unsigned long from, unsigned long to)
1583 {
1584  struct vm_region *region;
1585 
1586  kenter("");
1587 
1588  /* adjust the VMA's pointers, which may reposition it in the MM's tree
1589  * and list */
1590  delete_vma_from_mm(vma);
1591  if (from > vma->vm_start)
1592  vma->vm_end = from;
1593  else
1594  vma->vm_start = to;
1595  add_vma_to_mm(mm, vma);
1596 
1597  /* cut the backing region down to size */
1598  region = vma->vm_region;
1599  BUG_ON(region->vm_usage != 1);
1600 
1601  down_write(&nommu_region_sem);
1602  delete_nommu_region(region);
1603  if (from > region->vm_start) {
1604  to = region->vm_top;
1605  region->vm_top = region->vm_end = from;
1606  } else {
1607  region->vm_start = to;
1608  }
1609  add_nommu_region(region);
1610  up_write(&nommu_region_sem);
1611 
1612  free_page_series(from, to);
1613  return 0;
1614 }
1615 
1616 /*
1617  * release a mapping
1618  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1619  * VMA, though it need not cover the whole VMA
1620  */
1621 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1622 {
1623  struct vm_area_struct *vma;
1624  unsigned long end;
1625  int ret;
1626 
1627  kenter(",%lx,%zx", start, len);
1628 
1629  len = PAGE_ALIGN(len);
1630  if (len == 0)
1631  return -EINVAL;
1632 
1633  end = start + len;
1634 
1635  /* find the first potentially overlapping VMA */
1636  vma = find_vma(mm, start);
1637  if (!vma) {
1638  static int limit = 0;
1639  if (limit < 5) {
1641  "munmap of memory not mmapped by process %d"
1642  " (%s): 0x%lx-0x%lx\n",
1643  current->pid, current->comm,
1644  start, start + len - 1);
1645  limit++;
1646  }
1647  return -EINVAL;
1648  }
1649 
1650  /* we're allowed to split an anonymous VMA but not a file-backed one */
1651  if (vma->vm_file) {
1652  do {
1653  if (start > vma->vm_start) {
1654  kleave(" = -EINVAL [miss]");
1655  return -EINVAL;
1656  }
1657  if (end == vma->vm_end)
1658  goto erase_whole_vma;
1659  vma = vma->vm_next;
1660  } while (vma);
1661  kleave(" = -EINVAL [split file]");
1662  return -EINVAL;
1663  } else {
1664  /* the chunk must be a subset of the VMA found */
1665  if (start == vma->vm_start && end == vma->vm_end)
1666  goto erase_whole_vma;
1667  if (start < vma->vm_start || end > vma->vm_end) {
1668  kleave(" = -EINVAL [superset]");
1669  return -EINVAL;
1670  }
1671  if (start & ~PAGE_MASK) {
1672  kleave(" = -EINVAL [unaligned start]");
1673  return -EINVAL;
1674  }
1675  if (end != vma->vm_end && end & ~PAGE_MASK) {
1676  kleave(" = -EINVAL [unaligned split]");
1677  return -EINVAL;
1678  }
1679  if (start != vma->vm_start && end != vma->vm_end) {
1680  ret = split_vma(mm, vma, start, 1);
1681  if (ret < 0) {
1682  kleave(" = %d [split]", ret);
1683  return ret;
1684  }
1685  }
1686  return shrink_vma(mm, vma, start, end);
1687  }
1688 
1689 erase_whole_vma:
1690  delete_vma_from_mm(vma);
1691  delete_vma(mm, vma);
1692  kleave(" = 0");
1693  return 0;
1694 }
1696 
1697 int vm_munmap(unsigned long addr, size_t len)
1698 {
1699  struct mm_struct *mm = current->mm;
1700  int ret;
1701 
1702  down_write(&mm->mmap_sem);
1703  ret = do_munmap(mm, addr, len);
1704  up_write(&mm->mmap_sem);
1705  return ret;
1706 }
1708 
1709 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1710 {
1711  return vm_munmap(addr, len);
1712 }
1713 
1714 /*
1715  * release all the mappings made in a process's VM space
1716  */
1717 void exit_mmap(struct mm_struct *mm)
1718 {
1719  struct vm_area_struct *vma;
1720 
1721  if (!mm)
1722  return;
1723 
1724  kenter("");
1725 
1726  mm->total_vm = 0;
1727 
1728  while ((vma = mm->mmap)) {
1729  mm->mmap = vma->vm_next;
1730  delete_vma_from_mm(vma);
1731  delete_vma(mm, vma);
1732  cond_resched();
1733  }
1734 
1735  kleave("");
1736 }
1737 
1738 unsigned long vm_brk(unsigned long addr, unsigned long len)
1739 {
1740  return -ENOMEM;
1741 }
1742 
1743 /*
1744  * expand (or shrink) an existing mapping, potentially moving it at the same
1745  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1746  *
1747  * under NOMMU conditions, we only permit changing a mapping's size, and only
1748  * as long as it stays within the region allocated by do_mmap_private() and the
1749  * block is not shareable
1750  *
1751  * MREMAP_FIXED is not supported under NOMMU conditions
1752  */
1753 unsigned long do_mremap(unsigned long addr,
1754  unsigned long old_len, unsigned long new_len,
1755  unsigned long flags, unsigned long new_addr)
1756 {
1757  struct vm_area_struct *vma;
1758 
1759  /* insanity checks first */
1760  old_len = PAGE_ALIGN(old_len);
1761  new_len = PAGE_ALIGN(new_len);
1762  if (old_len == 0 || new_len == 0)
1763  return (unsigned long) -EINVAL;
1764 
1765  if (addr & ~PAGE_MASK)
1766  return -EINVAL;
1767 
1768  if (flags & MREMAP_FIXED && new_addr != addr)
1769  return (unsigned long) -EINVAL;
1770 
1771  vma = find_vma_exact(current->mm, addr, old_len);
1772  if (!vma)
1773  return (unsigned long) -EINVAL;
1774 
1775  if (vma->vm_end != vma->vm_start + old_len)
1776  return (unsigned long) -EFAULT;
1777 
1778  if (vma->vm_flags & VM_MAYSHARE)
1779  return (unsigned long) -EPERM;
1780 
1781  if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1782  return (unsigned long) -ENOMEM;
1783 
1784  /* all checks complete - do it */
1785  vma->vm_end = vma->vm_start + new_len;
1786  return vma->vm_start;
1787 }
1789 
1790 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1791  unsigned long, new_len, unsigned long, flags,
1792  unsigned long, new_addr)
1793 {
1794  unsigned long ret;
1795 
1796  down_write(&current->mm->mmap_sem);
1797  ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1798  up_write(&current->mm->mmap_sem);
1799  return ret;
1800 }
1801 
1802 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1803  unsigned int foll_flags)
1804 {
1805  return NULL;
1806 }
1807 
1808 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1809  unsigned long pfn, unsigned long size, pgprot_t prot)
1810 {
1811  if (addr != (pfn << PAGE_SHIFT))
1812  return -EINVAL;
1813 
1814  vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1815  return 0;
1816 }
1818 
1819 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1820  unsigned long pgoff)
1821 {
1822  unsigned int size = vma->vm_end - vma->vm_start;
1823 
1824  if (!(vma->vm_flags & VM_USERMAP))
1825  return -EINVAL;
1826 
1827  vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1828  vma->vm_end = vma->vm_start + size;
1829 
1830  return 0;
1831 }
1833 
1834 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1835  unsigned long len, unsigned long pgoff, unsigned long flags)
1836 {
1837  return -ENOMEM;
1838 }
1839 
1840 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1841 {
1842 }
1843 
1844 void unmap_mapping_range(struct address_space *mapping,
1845  loff_t const holebegin, loff_t const holelen,
1846  int even_cows)
1847 {
1848 }
1850 
1851 /*
1852  * Check that a process has enough memory to allocate a new virtual
1853  * mapping. 0 means there is enough memory for the allocation to
1854  * succeed and -ENOMEM implies there is not.
1855  *
1856  * We currently support three overcommit policies, which are set via the
1857  * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1858  *
1859  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1860  * Additional code 2002 Jul 20 by Robert Love.
1861  *
1862  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1863  *
1864  * Note this is a helper function intended to be used by LSMs which
1865  * wish to use this logic.
1866  */
1867 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1868 {
1869  unsigned long free, allowed;
1870 
1871  vm_acct_memory(pages);
1872 
1873  /*
1874  * Sometimes we want to use more memory than we have
1875  */
1877  return 0;
1878 
1880  free = global_page_state(NR_FREE_PAGES);
1881  free += global_page_state(NR_FILE_PAGES);
1882 
1883  /*
1884  * shmem pages shouldn't be counted as free in this
1885  * case, they can't be purged, only swapped out, and
1886  * that won't affect the overall amount of available
1887  * memory in the system.
1888  */
1889  free -= global_page_state(NR_SHMEM);
1890 
1891  free += nr_swap_pages;
1892 
1893  /*
1894  * Any slabs which are created with the
1895  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1896  * which are reclaimable, under pressure. The dentry
1897  * cache and most inode caches should fall into this
1898  */
1899  free += global_page_state(NR_SLAB_RECLAIMABLE);
1900 
1901  /*
1902  * Leave reserved pages. The pages are not for anonymous pages.
1903  */
1904  if (free <= totalreserve_pages)
1905  goto error;
1906  else
1907  free -= totalreserve_pages;
1908 
1909  /*
1910  * Leave the last 3% for root
1911  */
1912  if (!cap_sys_admin)
1913  free -= free / 32;
1914 
1915  if (free > pages)
1916  return 0;
1917 
1918  goto error;
1919  }
1920 
1921  allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1922  /*
1923  * Leave the last 3% for root
1924  */
1925  if (!cap_sys_admin)
1926  allowed -= allowed / 32;
1927  allowed += total_swap_pages;
1928 
1929  /* Don't let a single process grow too big:
1930  leave 3% of the size of this process for other processes */
1931  if (mm)
1932  allowed -= mm->total_vm / 32;
1933 
1934  if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1935  return 0;
1936 
1937 error:
1938  vm_unacct_memory(pages);
1939 
1940  return -ENOMEM;
1941 }
1942 
1943 int in_gate_area_no_mm(unsigned long addr)
1944 {
1945  return 0;
1946 }
1947 
1948 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1949 {
1950  BUG();
1951  return 0;
1952 }
1954 
1955 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1956  unsigned long size, pgoff_t pgoff)
1957 {
1958  BUG();
1959  return 0;
1960 }
1962 
1963 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1964  unsigned long addr, void *buf, int len, int write)
1965 {
1966  struct vm_area_struct *vma;
1967 
1968  down_read(&mm->mmap_sem);
1969 
1970  /* the access must start within one of the target process's mappings */
1971  vma = find_vma(mm, addr);
1972  if (vma) {
1973  /* don't overrun this mapping */
1974  if (addr + len >= vma->vm_end)
1975  len = vma->vm_end - addr;
1976 
1977  /* only read or write mappings where it is permitted */
1978  if (write && vma->vm_flags & VM_MAYWRITE)
1979  copy_to_user_page(vma, NULL, addr,
1980  (void *) addr, buf, len);
1981  else if (!write && vma->vm_flags & VM_MAYREAD)
1982  copy_from_user_page(vma, NULL, addr,
1983  buf, (void *) addr, len);
1984  else
1985  len = 0;
1986  } else {
1987  len = 0;
1988  }
1989 
1990  up_read(&mm->mmap_sem);
1991 
1992  return len;
1993 }
1994 
2005 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2006  void *buf, int len, int write)
2007 {
2008  return __access_remote_vm(NULL, mm, addr, buf, len, write);
2009 }
2010 
2011 /*
2012  * Access another process' address space.
2013  * - source/target buffer must be kernel space
2014  */
2015 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2016 {
2017  struct mm_struct *mm;
2018 
2019  if (addr + len < addr)
2020  return 0;
2021 
2022  mm = get_task_mm(tsk);
2023  if (!mm)
2024  return 0;
2025 
2026  len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2027 
2028  mmput(mm);
2029  return len;
2030 }
2031 
2044  size_t newsize)
2045 {
2046  struct vm_area_struct *vma;
2047  struct vm_region *region;
2048  pgoff_t low, high;
2049  size_t r_size, r_top;
2050 
2051  low = newsize >> PAGE_SHIFT;
2052  high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2053 
2054  down_write(&nommu_region_sem);
2055  mutex_lock(&inode->i_mapping->i_mmap_mutex);
2056 
2057  /* search for VMAs that fall within the dead zone */
2058  vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2059  /* found one - only interested if it's shared out of the page
2060  * cache */
2061  if (vma->vm_flags & VM_SHARED) {
2062  mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2063  up_write(&nommu_region_sem);
2064  return -ETXTBSY; /* not quite true, but near enough */
2065  }
2066  }
2067 
2068  /* reduce any regions that overlap the dead zone - if in existence,
2069  * these will be pointed to by VMAs that don't overlap the dead zone
2070  *
2071  * we don't check for any regions that start beyond the EOF as there
2072  * shouldn't be any
2073  */
2074  vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2075  0, ULONG_MAX) {
2076  if (!(vma->vm_flags & VM_SHARED))
2077  continue;
2078 
2079  region = vma->vm_region;
2080  r_size = region->vm_top - region->vm_start;
2081  r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2082 
2083  if (r_top > newsize) {
2084  region->vm_top -= r_top - newsize;
2085  if (region->vm_end > region->vm_top)
2086  region->vm_end = region->vm_top;
2087  }
2088  }
2089 
2090  mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2091  up_write(&nommu_region_sem);
2092  return 0;
2093 }