Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mmtimer.c
Go to the documentation of this file.
1 /*
2  * Timer device implementation for SGI SN platforms.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License. See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
9  *
10  * This driver exports an API that should be supportable by any HPET or IA-PC
11  * multimedia timer. The code below is currently specific to the SGI Altix
12  * SHub RTC, however.
13  *
14  * 11/01/01 - jbarnes - initial revision
15  * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16  * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17  * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18  * support via the posix timer interface
19  */
20 
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/mm.h>
28 #include <linux/fs.h>
29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h>
33 #include <linux/time.h>
34 #include <linux/math64.h>
35 #include <linux/mutex.h>
36 #include <linux/slab.h>
37 
38 #include <asm/uaccess.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/intr.h>
41 #include <asm/sn/shub_mmr.h>
42 #include <asm/sn/nodepda.h>
43 #include <asm/sn/shubio.h>
44 
45 MODULE_AUTHOR("Jesse Barnes <[email protected]>");
46 MODULE_DESCRIPTION("SGI Altix RTC Timer");
47 MODULE_LICENSE("GPL");
48 
49 /* name of the device, usually in /dev */
50 #define MMTIMER_NAME "mmtimer"
51 #define MMTIMER_DESC "SGI Altix RTC Timer"
52 #define MMTIMER_VERSION "2.1"
53 
54 #define RTC_BITS 55 /* 55 bits for this implementation */
55 
56 static struct k_clock sgi_clock;
57 
58 extern unsigned long sn_rtc_cycles_per_second;
59 
60 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
61 
62 #define rtc_time() (*RTC_COUNTER_ADDR)
63 
64 static DEFINE_MUTEX(mmtimer_mutex);
65 static long mmtimer_ioctl(struct file *file, unsigned int cmd,
66  unsigned long arg);
67 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
68 
69 /*
70  * Period in femtoseconds (10^-15 s)
71  */
72 static unsigned long mmtimer_femtoperiod = 0;
73 
74 static const struct file_operations mmtimer_fops = {
75  .owner = THIS_MODULE,
76  .mmap = mmtimer_mmap,
77  .unlocked_ioctl = mmtimer_ioctl,
78  .llseek = noop_llseek,
79 };
80 
81 /*
82  * We only have comparison registers RTC1-4 currently available per
83  * node. RTC0 is used by SAL.
84  */
85 /* Check for an RTC interrupt pending */
86 static int mmtimer_int_pending(int comparator)
87 {
88  if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
89  SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
90  return 1;
91  else
92  return 0;
93 }
94 
95 /* Clear the RTC interrupt pending bit */
96 static void mmtimer_clr_int_pending(int comparator)
97 {
99  SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
100 }
101 
102 /* Setup timer on comparator RTC1 */
103 static void mmtimer_setup_int_0(int cpu, u64 expires)
104 {
105  u64 val;
106 
107  /* Disable interrupt */
109 
110  /* Initialize comparator value */
112 
113  /* Clear pending bit */
114  mmtimer_clr_int_pending(0);
115 
117  ((u64)cpu_physical_id(cpu) <<
119 
120  /* Set configuration */
122 
123  /* Enable RTC interrupts */
125 
126  /* Initialize comparator value */
127  HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
128 
129 
130 }
131 
132 /* Setup timer on comparator RTC2 */
133 static void mmtimer_setup_int_1(int cpu, u64 expires)
134 {
135  u64 val;
136 
138 
140 
141  mmtimer_clr_int_pending(1);
142 
144  ((u64)cpu_physical_id(cpu) <<
146 
148 
150 
151  HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
152 }
153 
154 /* Setup timer on comparator RTC3 */
155 static void mmtimer_setup_int_2(int cpu, u64 expires)
156 {
157  u64 val;
158 
160 
162 
163  mmtimer_clr_int_pending(2);
164 
166  ((u64)cpu_physical_id(cpu) <<
168 
170 
172 
173  HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
174 }
175 
176 /*
177  * This function must be called with interrupts disabled and preemption off
178  * in order to insure that the setup succeeds in a deterministic time frame.
179  * It will check if the interrupt setup succeeded.
180  */
181 static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
182  u64 *set_completion_time)
183 {
184  switch (comparator) {
185  case 0:
186  mmtimer_setup_int_0(cpu, expires);
187  break;
188  case 1:
189  mmtimer_setup_int_1(cpu, expires);
190  break;
191  case 2:
192  mmtimer_setup_int_2(cpu, expires);
193  break;
194  }
195  /* We might've missed our expiration time */
196  *set_completion_time = rtc_time();
197  if (*set_completion_time <= expires)
198  return 1;
199 
200  /*
201  * If an interrupt is already pending then its okay
202  * if not then we failed
203  */
204  return mmtimer_int_pending(comparator);
205 }
206 
207 static int mmtimer_disable_int(long nasid, int comparator)
208 {
209  switch (comparator) {
210  case 0:
211  nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
212  0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
213  break;
214  case 1:
215  nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
216  0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
217  break;
218  case 2:
219  nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
220  0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
221  break;
222  default:
223  return -EFAULT;
224  }
225  return 0;
226 }
227 
228 #define COMPARATOR 1 /* The comparator to use */
229 
230 #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
231 #define TIMER_SET 0 /* Comparator is set for this timer */
232 
233 #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
234 
235 /* There is one of these for each timer */
236 struct mmtimer {
237  struct rb_node list;
238  struct k_itimer *timer;
239  int cpu;
240 };
241 
242 struct mmtimer_node {
245  struct rb_node *next;
247 };
248 static struct mmtimer_node *timers;
249 
250 static unsigned mmtimer_interval_retry_increment =
252 module_param(mmtimer_interval_retry_increment, uint, 0644);
253 MODULE_PARM_DESC(mmtimer_interval_retry_increment,
254  "RTC ticks to add to expiration on interval retry (default 40)");
255 
256 /*
257  * Add a new mmtimer struct to the node's mmtimer list.
258  * This function assumes the struct mmtimer_node is locked.
259  */
260 static void mmtimer_add_list(struct mmtimer *n)
261 {
262  int nodeid = n->timer->it.mmtimer.node;
263  unsigned long expires = n->timer->it.mmtimer.expires;
264  struct rb_node **link = &timers[nodeid].timer_head.rb_node;
265  struct rb_node *parent = NULL;
266  struct mmtimer *x;
267 
268  /*
269  * Find the right place in the rbtree:
270  */
271  while (*link) {
272  parent = *link;
273  x = rb_entry(parent, struct mmtimer, list);
274 
275  if (expires < x->timer->it.mmtimer.expires)
276  link = &(*link)->rb_left;
277  else
278  link = &(*link)->rb_right;
279  }
280 
281  /*
282  * Insert the timer to the rbtree and check whether it
283  * replaces the first pending timer
284  */
285  rb_link_node(&n->list, parent, link);
286  rb_insert_color(&n->list, &timers[nodeid].timer_head);
287 
288  if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
289  struct mmtimer, list)->timer->it.mmtimer.expires)
290  timers[nodeid].next = &n->list;
291 }
292 
293 /*
294  * Set the comparator for the next timer.
295  * This function assumes the struct mmtimer_node is locked.
296  */
297 static void mmtimer_set_next_timer(int nodeid)
298 {
299  struct mmtimer_node *n = &timers[nodeid];
300  struct mmtimer *x;
301  struct k_itimer *t;
302  u64 expires, exp, set_completion_time;
303  int i;
304 
305 restart:
306  if (n->next == NULL)
307  return;
308 
309  x = rb_entry(n->next, struct mmtimer, list);
310  t = x->timer;
311  if (!t->it.mmtimer.incr) {
312  /* Not an interval timer */
313  if (!mmtimer_setup(x->cpu, COMPARATOR,
314  t->it.mmtimer.expires,
315  &set_completion_time)) {
316  /* Late setup, fire now */
317  tasklet_schedule(&n->tasklet);
318  }
319  return;
320  }
321 
322  /* Interval timer */
323  i = 0;
324  expires = exp = t->it.mmtimer.expires;
325  while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
326  &set_completion_time)) {
327  int to;
328 
329  i++;
330  expires = set_completion_time +
331  mmtimer_interval_retry_increment + (1 << i);
332  /* Calculate overruns as we go. */
333  to = ((u64)(expires - exp) / t->it.mmtimer.incr);
334  if (to) {
335  t->it_overrun += to;
336  t->it.mmtimer.expires += t->it.mmtimer.incr * to;
337  exp = t->it.mmtimer.expires;
338  }
339  if (i > 20) {
340  printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
341  t->it.mmtimer.clock = TIMER_OFF;
342  n->next = rb_next(&x->list);
343  rb_erase(&x->list, &n->timer_head);
344  kfree(x);
345  goto restart;
346  }
347  }
348 }
349 
377 static long mmtimer_ioctl(struct file *file, unsigned int cmd,
378  unsigned long arg)
379 {
380  int ret = 0;
381 
382  mutex_lock(&mmtimer_mutex);
383 
384  switch (cmd) {
385  case MMTIMER_GETOFFSET: /* offset of the counter */
386  /*
387  * SN RTC registers are on their own 64k page
388  */
389  if(PAGE_SIZE <= (1 << 16))
390  ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
391  else
392  ret = -ENOSYS;
393  break;
394 
395  case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
396  if(copy_to_user((unsigned long __user *)arg,
397  &mmtimer_femtoperiod, sizeof(unsigned long)))
398  ret = -EFAULT;
399  break;
400 
401  case MMTIMER_GETFREQ: /* frequency in Hz */
402  if(copy_to_user((unsigned long __user *)arg,
404  sizeof(unsigned long)))
405  ret = -EFAULT;
406  break;
407 
408  case MMTIMER_GETBITS: /* number of bits in the clock */
409  ret = RTC_BITS;
410  break;
411 
412  case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
413  ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
414  break;
415 
416  case MMTIMER_GETCOUNTER:
417  if(copy_to_user((unsigned long __user *)arg,
418  RTC_COUNTER_ADDR, sizeof(unsigned long)))
419  ret = -EFAULT;
420  break;
421  default:
422  ret = -ENOTTY;
423  break;
424  }
425  mutex_unlock(&mmtimer_mutex);
426  return ret;
427 }
428 
437 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
438 {
439  unsigned long mmtimer_addr;
440 
441  if (vma->vm_end - vma->vm_start != PAGE_SIZE)
442  return -EINVAL;
443 
444  if (vma->vm_flags & VM_WRITE)
445  return -EPERM;
446 
447  if (PAGE_SIZE > (1 << 16))
448  return -ENOSYS;
449 
451 
452  mmtimer_addr = __pa(RTC_COUNTER_ADDR);
453  mmtimer_addr &= ~(PAGE_SIZE - 1);
454  mmtimer_addr &= 0xfffffffffffffffUL;
455 
456  if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
457  PAGE_SIZE, vma->vm_page_prot)) {
458  printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
459  return -EAGAIN;
460  }
461 
462  return 0;
463 }
464 
465 static struct miscdevice mmtimer_miscdev = {
466  SGI_MMTIMER,
467  MMTIMER_NAME,
468  &mmtimer_fops
469 };
470 
471 static struct timespec sgi_clock_offset;
472 static int sgi_clock_period;
473 
474 /*
475  * Posix Timer Interface
476  */
477 
478 static struct timespec sgi_clock_offset;
479 static int sgi_clock_period;
480 
481 static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
482 {
483  u64 nsec;
484 
485  nsec = rtc_time() * sgi_clock_period
486  + sgi_clock_offset.tv_nsec;
487  *tp = ns_to_timespec(nsec);
488  tp->tv_sec += sgi_clock_offset.tv_sec;
489  return 0;
490 };
491 
492 static int sgi_clock_set(const clockid_t clockid, const struct timespec *tp)
493 {
494 
495  u64 nsec;
496  u32 rem;
497 
498  nsec = rtc_time() * sgi_clock_period;
499 
500  sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
501 
502  if (rem <= tp->tv_nsec)
503  sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
504  else {
505  sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
506  sgi_clock_offset.tv_sec--;
507  }
508  return 0;
509 }
510 
524 static irqreturn_t
525 mmtimer_interrupt(int irq, void *dev_id)
526 {
527  unsigned long expires = 0;
528  int result = IRQ_NONE;
529  unsigned indx = cpu_to_node(smp_processor_id());
530  struct mmtimer *base;
531 
532  spin_lock(&timers[indx].lock);
533  base = rb_entry(timers[indx].next, struct mmtimer, list);
534  if (base == NULL) {
535  spin_unlock(&timers[indx].lock);
536  return result;
537  }
538 
539  if (base->cpu == smp_processor_id()) {
540  if (base->timer)
541  expires = base->timer->it.mmtimer.expires;
542  /* expires test won't work with shared irqs */
543  if ((mmtimer_int_pending(COMPARATOR) > 0) ||
544  (expires && (expires <= rtc_time()))) {
545  mmtimer_clr_int_pending(COMPARATOR);
546  tasklet_schedule(&timers[indx].tasklet);
547  result = IRQ_HANDLED;
548  }
549  }
550  spin_unlock(&timers[indx].lock);
551  return result;
552 }
553 
554 static void mmtimer_tasklet(unsigned long data)
555 {
556  int nodeid = data;
557  struct mmtimer_node *mn = &timers[nodeid];
558  struct mmtimer *x;
559  struct k_itimer *t;
560  unsigned long flags;
561 
562  /* Send signal and deal with periodic signals */
563  spin_lock_irqsave(&mn->lock, flags);
564  if (!mn->next)
565  goto out;
566 
567  x = rb_entry(mn->next, struct mmtimer, list);
568  t = x->timer;
569 
570  if (t->it.mmtimer.clock == TIMER_OFF)
571  goto out;
572 
573  t->it_overrun = 0;
574 
575  mn->next = rb_next(&x->list);
576  rb_erase(&x->list, &mn->timer_head);
577 
578  if (posix_timer_event(t, 0) != 0)
579  t->it_overrun++;
580 
581  if(t->it.mmtimer.incr) {
582  t->it.mmtimer.expires += t->it.mmtimer.incr;
583  mmtimer_add_list(x);
584  } else {
585  /* Ensure we don't false trigger in mmtimer_interrupt */
586  t->it.mmtimer.clock = TIMER_OFF;
587  t->it.mmtimer.expires = 0;
588  kfree(x);
589  }
590  /* Set comparator for next timer, if there is one */
591  mmtimer_set_next_timer(nodeid);
592 
593  t->it_overrun_last = t->it_overrun;
594 out:
595  spin_unlock_irqrestore(&mn->lock, flags);
596 }
597 
598 static int sgi_timer_create(struct k_itimer *timer)
599 {
600  /* Insure that a newly created timer is off */
601  timer->it.mmtimer.clock = TIMER_OFF;
602  return 0;
603 }
604 
605 /* This does not really delete a timer. It just insures
606  * that the timer is not active
607  *
608  * Assumption: it_lock is already held with irq's disabled
609  */
610 static int sgi_timer_del(struct k_itimer *timr)
611 {
612  cnodeid_t nodeid = timr->it.mmtimer.node;
613  unsigned long irqflags;
614 
615  spin_lock_irqsave(&timers[nodeid].lock, irqflags);
616  if (timr->it.mmtimer.clock != TIMER_OFF) {
617  unsigned long expires = timr->it.mmtimer.expires;
618  struct rb_node *n = timers[nodeid].timer_head.rb_node;
619  struct mmtimer *uninitialized_var(t);
620  int r = 0;
621 
622  timr->it.mmtimer.clock = TIMER_OFF;
623  timr->it.mmtimer.expires = 0;
624 
625  while (n) {
626  t = rb_entry(n, struct mmtimer, list);
627  if (t->timer == timr)
628  break;
629 
630  if (expires < t->timer->it.mmtimer.expires)
631  n = n->rb_left;
632  else
633  n = n->rb_right;
634  }
635 
636  if (!n) {
637  spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
638  return 0;
639  }
640 
641  if (timers[nodeid].next == n) {
642  timers[nodeid].next = rb_next(n);
643  r = 1;
644  }
645 
646  rb_erase(n, &timers[nodeid].timer_head);
647  kfree(t);
648 
649  if (r) {
650  mmtimer_disable_int(cnodeid_to_nasid(nodeid),
651  COMPARATOR);
652  mmtimer_set_next_timer(nodeid);
653  }
654  }
655  spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
656  return 0;
657 }
658 
659 /* Assumption: it_lock is already held with irq's disabled */
660 static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
661 {
662 
663  if (timr->it.mmtimer.clock == TIMER_OFF) {
664  cur_setting->it_interval.tv_nsec = 0;
665  cur_setting->it_interval.tv_sec = 0;
666  cur_setting->it_value.tv_nsec = 0;
667  cur_setting->it_value.tv_sec =0;
668  return;
669  }
670 
671  cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
672  cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
673 }
674 
675 
676 static int sgi_timer_set(struct k_itimer *timr, int flags,
677  struct itimerspec * new_setting,
678  struct itimerspec * old_setting)
679 {
680  unsigned long when, period, irqflags;
681  int err = 0;
682  cnodeid_t nodeid;
683  struct mmtimer *base;
684  struct rb_node *n;
685 
686  if (old_setting)
687  sgi_timer_get(timr, old_setting);
688 
689  sgi_timer_del(timr);
690  when = timespec_to_ns(&new_setting->it_value);
691  period = timespec_to_ns(&new_setting->it_interval);
692 
693  if (when == 0)
694  /* Clear timer */
695  return 0;
696 
697  base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
698  if (base == NULL)
699  return -ENOMEM;
700 
701  if (flags & TIMER_ABSTIME) {
702  struct timespec n;
703  unsigned long now;
704 
705  getnstimeofday(&n);
706  now = timespec_to_ns(&n);
707  if (when > now)
708  when -= now;
709  else
710  /* Fire the timer immediately */
711  when = 0;
712  }
713 
714  /*
715  * Convert to sgi clock period. Need to keep rtc_time() as near as possible
716  * to getnstimeofday() in order to be as faithful as possible to the time
717  * specified.
718  */
719  when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
720  period = (period + sgi_clock_period - 1) / sgi_clock_period;
721 
722  /*
723  * We are allocating a local SHub comparator. If we would be moved to another
724  * cpu then another SHub may be local to us. Prohibit that by switching off
725  * preemption.
726  */
727  preempt_disable();
728 
729  nodeid = cpu_to_node(smp_processor_id());
730 
731  /* Lock the node timer structure */
732  spin_lock_irqsave(&timers[nodeid].lock, irqflags);
733 
734  base->timer = timr;
735  base->cpu = smp_processor_id();
736 
737  timr->it.mmtimer.clock = TIMER_SET;
738  timr->it.mmtimer.node = nodeid;
739  timr->it.mmtimer.incr = period;
740  timr->it.mmtimer.expires = when;
741 
742  n = timers[nodeid].next;
743 
744  /* Add the new struct mmtimer to node's timer list */
745  mmtimer_add_list(base);
746 
747  if (timers[nodeid].next == n) {
748  /* No need to reprogram comparator for now */
749  spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
750  preempt_enable();
751  return err;
752  }
753 
754  /* We need to reprogram the comparator */
755  if (n)
756  mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
757 
758  mmtimer_set_next_timer(nodeid);
759 
760  /* Unlock the node timer structure */
761  spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
762 
763  preempt_enable();
764 
765  return err;
766 }
767 
768 static int sgi_clock_getres(const clockid_t which_clock, struct timespec *tp)
769 {
770  tp->tv_sec = 0;
771  tp->tv_nsec = sgi_clock_period;
772  return 0;
773 }
774 
775 static struct k_clock sgi_clock = {
776  .clock_set = sgi_clock_set,
777  .clock_get = sgi_clock_get,
778  .clock_getres = sgi_clock_getres,
779  .timer_create = sgi_timer_create,
780  .timer_set = sgi_timer_set,
781  .timer_del = sgi_timer_del,
782  .timer_get = sgi_timer_get
783 };
784 
790 static int __init mmtimer_init(void)
791 {
792  cnodeid_t node, maxn = -1;
793 
794  if (!ia64_platform_is("sn2"))
795  return 0;
796 
797  /*
798  * Sanity check the cycles/sec variable
799  */
800  if (sn_rtc_cycles_per_second < 100000) {
801  printk(KERN_ERR "%s: unable to determine clock frequency\n",
802  MMTIMER_NAME);
803  goto out1;
804  }
805 
806  mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
808 
809  if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
810  printk(KERN_WARNING "%s: unable to allocate interrupt.",
811  MMTIMER_NAME);
812  goto out1;
813  }
814 
815  if (misc_register(&mmtimer_miscdev)) {
816  printk(KERN_ERR "%s: failed to register device\n",
817  MMTIMER_NAME);
818  goto out2;
819  }
820 
821  /* Get max numbered node, calculate slots needed */
822  for_each_online_node(node) {
823  maxn = node;
824  }
825  maxn++;
826 
827  /* Allocate list of node ptrs to mmtimer_t's */
828  timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
829  if (!timers) {
830  printk(KERN_ERR "%s: failed to allocate memory for device\n",
831  MMTIMER_NAME);
832  goto out3;
833  }
834 
835  /* Initialize struct mmtimer's for each online node */
836  for_each_online_node(node) {
837  spin_lock_init(&timers[node].lock);
838  tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
839  (unsigned long) node);
840  }
841 
842  sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second;
844 
845  printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
846  sn_rtc_cycles_per_second/(unsigned long)1E6);
847 
848  return 0;
849 
850 out3:
851  misc_deregister(&mmtimer_miscdev);
852 out2:
854 out1:
855  return -1;
856 }
857 
858 module_init(mmtimer_init);