Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mmu-hash64.h
Go to the documentation of this file.
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4  * PowerPC64 memory management structures
5  *
6  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7  * PPC64 rework.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 
18 /*
19  * This is necessary to get the definition of PGTABLE_RANGE which we
20  * need for various slices related matters. Note that this isn't the
21  * complete pgtable.h but only a portion of it.
22  */
23 #include <asm/pgtable-ppc64.h>
24 
25 /*
26  * Segment table
27  */
28 
29 #define STE_ESID_V 0x80
30 #define STE_ESID_KS 0x20
31 #define STE_ESID_KP 0x10
32 #define STE_ESID_N 0x08
33 
34 #define STE_VSID_SHIFT 12
35 
36 /* Location of cpu0's segment table */
37 #define STAB0_PAGE 0x8
38 #define STAB0_OFFSET (STAB0_PAGE << 12)
39 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
40 
41 #ifndef __ASSEMBLY__
42 extern char initial_stab[];
43 #endif /* ! __ASSEMBLY */
44 
45 /*
46  * SLB
47  */
48 
49 #define SLB_NUM_BOLTED 3
50 #define SLB_CACHE_ENTRIES 8
51 #define SLB_MIN_SIZE 32
52 
53 /* Bits in the SLB ESID word */
54 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
55 
56 /* Bits in the SLB VSID word */
57 #define SLB_VSID_SHIFT 12
58 #define SLB_VSID_SHIFT_1T 24
59 #define SLB_VSID_SSIZE_SHIFT 62
60 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
61 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
62 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
63 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
64 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
65 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
66 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
67 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
68 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
69 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
70 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
71 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
72 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
73 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
74 
75 #define SLB_VSID_KERNEL (SLB_VSID_KP)
76 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
77 
78 #define SLBIE_C (0x08000000)
79 #define SLBIE_SSIZE_SHIFT 25
80 
81 /*
82  * Hash table
83  */
84 
85 #define HPTES_PER_GROUP 8
86 
87 #define HPTE_V_SSIZE_SHIFT 62
88 #define HPTE_V_AVPN_SHIFT 7
89 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
90 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
92 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
93 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
94 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
95 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
96 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
97 
98 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
99 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
100 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
101 #define HPTE_R_RPN_SHIFT 12
102 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
103 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
104 #define HPTE_R_N ASM_CONST(0x0000000000000004)
105 #define HPTE_R_G ASM_CONST(0x0000000000000008)
106 #define HPTE_R_M ASM_CONST(0x0000000000000010)
107 #define HPTE_R_I ASM_CONST(0x0000000000000020)
108 #define HPTE_R_W ASM_CONST(0x0000000000000040)
109 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
110 #define HPTE_R_C ASM_CONST(0x0000000000000080)
111 #define HPTE_R_R ASM_CONST(0x0000000000000100)
112 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
113 
114 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
115 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
116 
117 /* Values for PP (assumes Ks=0, Kp=1) */
118 #define PP_RWXX 0 /* Supervisor read/write, User none */
119 #define PP_RWRX 1 /* Supervisor read/write, User read */
120 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
121 #define PP_RXRX 3 /* Supervisor read, User read */
122 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
123 
124 #ifndef __ASSEMBLY__
125 
126 struct hash_pte {
127  unsigned long v;
128  unsigned long r;
129 };
130 
131 extern struct hash_pte *htab_address;
132 extern unsigned long htab_size_bytes;
133 extern unsigned long htab_hash_mask;
134 
135 /*
136  * Page size definition
137  *
138  * shift : is the "PAGE_SHIFT" value for that page size
139  * sllp : is a bit mask with the value of SLB L || LP to be or'ed
140  * directly to a slbmte "vsid" value
141  * penc : is the HPTE encoding mask for the "LP" field:
142  *
143  */
144 struct mmu_psize_def
145 {
146  unsigned int shift; /* number of bits */
147  unsigned int penc; /* HPTE encoding */
148  unsigned int tlbiel; /* tlbiel supported for that page size */
149  unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
150  unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
151 };
152 
153 #endif /* __ASSEMBLY__ */
154 
155 /*
156  * Segment sizes.
157  * These are the values used by hardware in the B field of
158  * SLB entries and the first dword of MMU hashtable entries.
159  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
160  */
161 #define MMU_SEGSIZE_256M 0
162 #define MMU_SEGSIZE_1T 1
163 
164 /*
165  * encode page number shift.
166  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
167  * 12 bits. This enable us to address upto 76 bit va.
168  * For hpt hash from a va we can ignore the page size bits of va and for
169  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
170  * we work in all cases including 4k page size.
171  */
172 #define VPN_SHIFT 12
173 
174 #ifndef __ASSEMBLY__
175 
176 static inline int segment_shift(int ssize)
177 {
178  if (ssize == MMU_SEGSIZE_256M)
179  return SID_SHIFT;
180  return SID_SHIFT_1T;
181 }
182 
183 /*
184  * The current system page and segment sizes
185  */
186 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
187 extern int mmu_linear_psize;
188 extern int mmu_virtual_psize;
189 extern int mmu_vmalloc_psize;
190 extern int mmu_vmemmap_psize;
191 extern int mmu_io_psize;
192 extern int mmu_kernel_ssize;
193 extern int mmu_highuser_ssize;
194 extern u16 mmu_slb_size;
195 extern unsigned long tce_alloc_start, tce_alloc_end;
196 
197 /*
198  * If the processor supports 64k normal pages but not 64k cache
199  * inhibited pages, we have to be prepared to switch processes
200  * to use 4k pages when they create cache-inhibited mappings.
201  * If this is the case, mmu_ci_restrictions will be set to 1.
202  */
203 extern int mmu_ci_restrictions;
204 
205 /*
206  * This computes the AVPN and B fields of the first dword of a HPTE,
207  * for use when we want to match an existing PTE. The bottom 7 bits
208  * of the returned value are zero.
209  */
210 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
211  int ssize)
212 {
213  unsigned long v;
214  /*
215  * The AVA field omits the low-order 23 bits of the 78 bits VA.
216  * These bits are not needed in the PTE, because the
217  * low-order b of these bits are part of the byte offset
218  * into the virtual page and, if b < 23, the high-order
219  * 23-b of these bits are always used in selecting the
220  * PTEGs to be searched
221  */
222  v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
223  v <<= HPTE_V_AVPN_SHIFT;
224  v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
225  return v;
226 }
227 
228 /*
229  * This function sets the AVPN and L fields of the HPTE appropriately
230  * for the page size
231  */
232 static inline unsigned long hpte_encode_v(unsigned long vpn,
233  int psize, int ssize)
234 {
235  unsigned long v;
236  v = hpte_encode_avpn(vpn, psize, ssize);
237  if (psize != MMU_PAGE_4K)
238  v |= HPTE_V_LARGE;
239  return v;
240 }
241 
242 /*
243  * This function sets the ARPN, and LP fields of the HPTE appropriately
244  * for the page size. We assume the pa is already "clean" that is properly
245  * aligned for the requested page size
246  */
247 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
248 {
249  unsigned long r;
250 
251  /* A 4K page needs no special encoding */
252  if (psize == MMU_PAGE_4K)
253  return pa & HPTE_R_RPN;
254  else {
255  unsigned int penc = mmu_psize_defs[psize].penc;
256  unsigned int shift = mmu_psize_defs[psize].shift;
257  return (pa & ~((1ul << shift) - 1)) | (penc << 12);
258  }
259  return r;
260 }
261 
262 /*
263  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
264  */
265 static inline unsigned long hpt_vpn(unsigned long ea,
266  unsigned long vsid, int ssize)
267 {
268  unsigned long mask;
269  int s_shift = segment_shift(ssize);
270 
271  mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
272  return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
273 }
274 
275 /*
276  * This hashes a virtual address
277  */
278 static inline unsigned long hpt_hash(unsigned long vpn,
279  unsigned int shift, int ssize)
280 {
281  int mask;
282  unsigned long hash, vsid;
283 
284  /* VPN_SHIFT can be atmost 12 */
285  if (ssize == MMU_SEGSIZE_256M) {
286  mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
287  hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
288  ((vpn & mask) >> (shift - VPN_SHIFT));
289  } else {
290  mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
291  vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
292  hash = vsid ^ (vsid << 25) ^
293  ((vpn & mask) >> (shift - VPN_SHIFT)) ;
294  }
295  return hash & 0x7fffffffffUL;
296 }
297 
298 extern int __hash_page_4K(unsigned long ea, unsigned long access,
299  unsigned long vsid, pte_t *ptep, unsigned long trap,
300  unsigned int local, int ssize, int subpage_prot);
301 extern int __hash_page_64K(unsigned long ea, unsigned long access,
302  unsigned long vsid, pte_t *ptep, unsigned long trap,
303  unsigned int local, int ssize);
304 struct mm_struct;
305 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
306 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
307 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
308  pte_t *ptep, unsigned long trap, int local, int ssize,
309  unsigned int shift, unsigned int mmu_psize);
310 extern void hash_failure_debug(unsigned long ea, unsigned long access,
311  unsigned long vsid, unsigned long trap,
312  int ssize, int psize, unsigned long pte);
313 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
314  unsigned long pstart, unsigned long prot,
315  int psize, int ssize);
316 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
317 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
318 
319 extern void hpte_init_native(void);
320 extern void hpte_init_lpar(void);
321 extern void hpte_init_beat(void);
322 extern void hpte_init_beat_v3(void);
323 
324 extern void stabs_alloc(void);
325 extern void slb_initialize(void);
326 extern void slb_flush_and_rebolt(void);
327 extern void stab_initialize(unsigned long stab);
328 
329 extern void slb_vmalloc_update(void);
330 extern void slb_set_size(u16 size);
331 #endif /* __ASSEMBLY__ */
332 
333 /*
334  * VSID allocation (256MB segment)
335  *
336  * We first generate a 38-bit "proto-VSID". For kernel addresses this
337  * is equal to the ESID | 1 << 37, for user addresses it is:
338  * (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
339  *
340  * This splits the proto-VSID into the below range
341  * 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
342  * 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
343  *
344  * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
345  * That is, we assign half of the space to user processes and half
346  * to the kernel.
347  *
348  * The proto-VSIDs are then scrambled into real VSIDs with the
349  * multiplicative hash:
350  *
351  * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
352  *
353  * VSID_MULTIPLIER is prime, so in particular it is
354  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
355  * Because the modulus is 2^n-1 we can compute it efficiently without
356  * a divide or extra multiply (see below).
357  *
358  * This scheme has several advantages over older methods:
359  *
360  * - We have VSIDs allocated for every kernel address
361  * (i.e. everything above 0xC000000000000000), except the very top
362  * segment, which simplifies several things.
363  *
364  * - We allow for USER_ESID_BITS significant bits of ESID and
365  * CONTEXT_BITS bits of context for user addresses.
366  * i.e. 64T (46 bits) of address space for up to half a million contexts.
367  *
368  * - The scramble function gives robust scattering in the hash
369  * table (at least based on some initial results). The previous
370  * method was more susceptible to pathological cases giving excessive
371  * hash collisions.
372  */
373 
374 /*
375  * This should be computed such that protovosid * vsid_mulitplier
376  * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
377  */
378 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
379 #define VSID_BITS_256M 38
380 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
381 
382 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
383 #define VSID_BITS_1T 26
384 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
385 
386 #define CONTEXT_BITS 19
387 #define USER_ESID_BITS 18
388 #define USER_ESID_BITS_1T 6
389 
390 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
391 
392 /*
393  * This macro generates asm code to compute the VSID scramble
394  * function. Used in slb_allocate() and do_stab_bolted. The function
395  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
396  *
397  * rt = register continaing the proto-VSID and into which the
398  * VSID will be stored
399  * rx = scratch register (clobbered)
400  *
401  * - rt and rx must be different registers
402  * - The answer will end up in the low VSID_BITS bits of rt. The higher
403  * bits may contain other garbage, so you may need to mask the
404  * result.
405  */
406 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
407  lis rx,VSID_MULTIPLIER_##size@h; \
408  ori rx,rx,VSID_MULTIPLIER_##size@l; \
409  mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
410  \
411  srdi rx,rt,VSID_BITS_##size; \
412  clrldi rt,rt,(64-VSID_BITS_##size); \
413  add rt,rt,rx; /* add high and low bits */ \
414  /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
415  * 2^36-1+2^28-1. That in particular means that if r3 >= \
416  * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
417  * the bit clear, r3 already has the answer we want, if it \
418  * doesn't, the answer is the low 36 bits of r3+1. So in all \
419  * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
420  addi rx,rt,1; \
421  srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
422  add rt,rt,rx
423 
424 /* 4 bits per slice and we have one slice per 1TB */
425 #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
426 
427 #ifndef __ASSEMBLY__
428 
429 #ifdef CONFIG_PPC_SUBPAGE_PROT
430 /*
431  * For the sub-page protection option, we extend the PGD with one of
432  * these. Basically we have a 3-level tree, with the top level being
433  * the protptrs array. To optimize speed and memory consumption when
434  * only addresses < 4GB are being protected, pointers to the first
435  * four pages of sub-page protection words are stored in the low_prot
436  * array.
437  * Each page of sub-page protection words protects 1GB (4 bytes
438  * protects 64k). For the 3-level tree, each page of pointers then
439  * protects 8TB.
440  */
441 struct subpage_prot_table {
442  unsigned long maxaddr; /* only addresses < this are protected */
443  unsigned int **protptrs[2];
444  unsigned int *low_prot[4];
445 };
446 
447 #define SBP_L1_BITS (PAGE_SHIFT - 2)
448 #define SBP_L2_BITS (PAGE_SHIFT - 3)
449 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
450 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
451 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
452 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
453 
454 extern void subpage_prot_free(struct mm_struct *mm);
455 extern void subpage_prot_init_new_context(struct mm_struct *mm);
456 #else
457 static inline void subpage_prot_free(struct mm_struct *mm) {}
458 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
459 #endif /* CONFIG_PPC_SUBPAGE_PROT */
461 typedef unsigned long mm_context_id_t;
462 struct spinlock;
463 
464 typedef struct {
465  mm_context_id_t id;
466  u16 user_psize; /* page size index */
468 #ifdef CONFIG_PPC_MM_SLICES
469  u64 low_slices_psize; /* SLB page size encodings */
470  unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
471 #else
472  u16 sllp; /* SLB page size encoding */
473 #endif
474  unsigned long vdso_base;
475 #ifdef CONFIG_PPC_SUBPAGE_PROT
476  struct subpage_prot_table spt;
477 #endif /* CONFIG_PPC_SUBPAGE_PROT */
478 #ifdef CONFIG_PPC_ICSWX
479  struct spinlock *cop_lockp; /* guard acop and cop_pid */
480  unsigned long acop; /* mask of enabled coprocessor types */
481  unsigned int cop_pid; /* pid value used with coprocessors */
482 #endif /* CONFIG_PPC_ICSWX */
483 } mm_context_t;
484 
485 
486 #if 0
487 /*
488  * The code below is equivalent to this function for arguments
489  * < 2^VSID_BITS, which is all this should ever be called
490  * with. However gcc is not clever enough to compute the
491  * modulus (2^n-1) without a second multiply.
492  */
493 #define vsid_scramble(protovsid, size) \
494  ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
495 
496 #else /* 1 */
497 #define vsid_scramble(protovsid, size) \
498  ({ \
499  unsigned long x; \
500  x = (protovsid) * VSID_MULTIPLIER_##size; \
501  x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
502  (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
503  })
504 #endif /* 1 */
505 
506 /*
507  * This is only valid for addresses >= PAGE_OFFSET
508  * The proto-VSID space is divided into two class
509  * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
510  * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
511  *
512  * With KERNEL_START at 0xc000000000000000, the proto vsid for
513  * the kernel ends up with 0xc00000000 (36 bits). With 64TB
514  * support we need to have kernel proto-VSID in the
515  * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
516  */
517 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
518 {
519  unsigned long proto_vsid;
520  /*
521  * We need to make sure proto_vsid for the kernel is
522  * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
523  */
524  if (ssize == MMU_SEGSIZE_256M) {
525  proto_vsid = ea >> SID_SHIFT;
526  proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
527  return vsid_scramble(proto_vsid, 256M);
528  }
529  proto_vsid = ea >> SID_SHIFT_1T;
530  proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
531  return vsid_scramble(proto_vsid, 1T);
532 }
533 
534 /* Returns the segment size indicator for a user address */
535 static inline int user_segment_size(unsigned long addr)
536 {
537  /* Use 1T segments if possible for addresses >= 1T */
538  if (addr >= (1UL << SID_SHIFT_1T))
539  return mmu_highuser_ssize;
540  return MMU_SEGSIZE_256M;
541 }
542 
543 /* This is only valid for user addresses (which are below 2^44) */
544 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
545  int ssize)
546 {
547  if (ssize == MMU_SEGSIZE_256M)
548  return vsid_scramble((context << USER_ESID_BITS)
549  | (ea >> SID_SHIFT), 256M);
550  return vsid_scramble((context << USER_ESID_BITS_1T)
551  | (ea >> SID_SHIFT_1T), 1T);
552 }
553 
554 #endif /* __ASSEMBLY__ */
555 
556 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */