Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mmu_context_nohash.c
Go to the documentation of this file.
1 /*
2  * This file contains the routines for handling the MMU on those
3  * PowerPC implementations where the MMU is not using the hash
4  * table, such as 8xx, 4xx, BookE's etc...
5  *
6  * Copyright 2008 Ben Herrenschmidt <[email protected]>
7  * IBM Corp.
8  *
9  * Derived from previous arch/powerpc/mm/mmu_context.c
10  * and arch/powerpc/include/asm/mmu_context.h
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  *
17  * TODO:
18  *
19  * - The global context lock will not scale very well
20  * - The maps should be dynamically allocated to allow for processors
21  * that support more PID bits at runtime
22  * - Implement flush_tlb_mm() by making the context stale and picking
23  * a new one
24  * - More aggressively clear stale map bits and maybe find some way to
25  * also clear mm->cpu_vm_mask bits when processes are migrated
26  */
27 
28 //#define DEBUG_MAP_CONSISTENCY
29 //#define DEBUG_CLAMP_LAST_CONTEXT 31
30 //#define DEBUG_HARDER
31 
32 /* We don't use DEBUG because it tends to be compiled in always nowadays
33  * and this would generate way too much output
34  */
35 #ifdef DEBUG_HARDER
36 #define pr_hard(args...) printk(KERN_DEBUG args)
37 #define pr_hardcont(args...) printk(KERN_CONT args)
38 #else
39 #define pr_hard(args...) do { } while(0)
40 #define pr_hardcont(args...) do { } while(0)
41 #endif
42 
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/init.h>
46 #include <linux/spinlock.h>
47 #include <linux/bootmem.h>
48 #include <linux/notifier.h>
49 #include <linux/cpu.h>
50 #include <linux/slab.h>
51 
52 #include <asm/mmu_context.h>
53 #include <asm/tlbflush.h>
54 
55 static unsigned int first_context, last_context;
56 static unsigned int next_context, nr_free_contexts;
57 static unsigned long *context_map;
58 static unsigned long *stale_map[NR_CPUS];
59 static struct mm_struct **context_mm;
60 static DEFINE_RAW_SPINLOCK(context_lock);
61 
62 #define CTX_MAP_SIZE \
63  (sizeof(unsigned long) * (last_context / BITS_PER_LONG + 1))
64 
65 
66 /* Steal a context from a task that has one at the moment.
67  *
68  * This is used when we are running out of available PID numbers
69  * on the processors.
70  *
71  * This isn't an LRU system, it just frees up each context in
72  * turn (sort-of pseudo-random replacement :). This would be the
73  * place to implement an LRU scheme if anyone was motivated to do it.
74  * -- paulus
75  *
76  * For context stealing, we use a slightly different approach for
77  * SMP and UP. Basically, the UP one is simpler and doesn't use
78  * the stale map as we can just flush the local CPU
79  * -- benh
80  */
81 #ifdef CONFIG_SMP
82 static unsigned int steal_context_smp(unsigned int id)
83 {
84  struct mm_struct *mm;
85  unsigned int cpu, max, i;
86 
87  max = last_context - first_context;
88 
89  /* Attempt to free next_context first and then loop until we manage */
90  while (max--) {
91  /* Pick up the victim mm */
92  mm = context_mm[id];
93 
94  /* We have a candidate victim, check if it's active, on SMP
95  * we cannot steal active contexts
96  */
97  if (mm->context.active) {
98  id++;
99  if (id > last_context)
100  id = first_context;
101  continue;
102  }
103  pr_hardcont(" | steal %d from 0x%p", id, mm);
104 
105  /* Mark this mm has having no context anymore */
106  mm->context.id = MMU_NO_CONTEXT;
107 
108  /* Mark it stale on all CPUs that used this mm. For threaded
109  * implementations, we set it on all threads on each core
110  * represented in the mask. A future implementation will use
111  * a core map instead but this will do for now.
112  */
113  for_each_cpu(cpu, mm_cpumask(mm)) {
114  for (i = cpu_first_thread_sibling(cpu);
115  i <= cpu_last_thread_sibling(cpu); i++)
116  __set_bit(id, stale_map[i]);
117  cpu = i - 1;
118  }
119  return id;
120  }
121 
122  /* This will happen if you have more CPUs than available contexts,
123  * all we can do here is wait a bit and try again
124  */
125  raw_spin_unlock(&context_lock);
126  cpu_relax();
127  raw_spin_lock(&context_lock);
128 
129  /* This will cause the caller to try again */
130  return MMU_NO_CONTEXT;
131 }
132 #endif /* CONFIG_SMP */
133 
134 /* Note that this will also be called on SMP if all other CPUs are
135  * offlined, which means that it may be called for cpu != 0. For
136  * this to work, we somewhat assume that CPUs that are onlined
137  * come up with a fully clean TLB (or are cleaned when offlined)
138  */
139 static unsigned int steal_context_up(unsigned int id)
140 {
141  struct mm_struct *mm;
142  int cpu = smp_processor_id();
143 
144  /* Pick up the victim mm */
145  mm = context_mm[id];
146 
147  pr_hardcont(" | steal %d from 0x%p", id, mm);
148 
149  /* Flush the TLB for that context */
150  local_flush_tlb_mm(mm);
151 
152  /* Mark this mm has having no context anymore */
153  mm->context.id = MMU_NO_CONTEXT;
154 
155  /* XXX This clear should ultimately be part of local_flush_tlb_mm */
156  __clear_bit(id, stale_map[cpu]);
157 
158  return id;
159 }
160 
161 #ifdef DEBUG_MAP_CONSISTENCY
162 static void context_check_map(void)
163 {
164  unsigned int id, nrf, nact;
165 
166  nrf = nact = 0;
167  for (id = first_context; id <= last_context; id++) {
168  int used = test_bit(id, context_map);
169  if (!used)
170  nrf++;
171  if (used != (context_mm[id] != NULL))
172  pr_err("MMU: Context %d is %s and MM is %p !\n",
173  id, used ? "used" : "free", context_mm[id]);
174  if (context_mm[id] != NULL)
175  nact += context_mm[id]->context.active;
176  }
177  if (nrf != nr_free_contexts) {
178  pr_err("MMU: Free context count out of sync ! (%d vs %d)\n",
179  nr_free_contexts, nrf);
180  nr_free_contexts = nrf;
181  }
182  if (nact > num_online_cpus())
183  pr_err("MMU: More active contexts than CPUs ! (%d vs %d)\n",
184  nact, num_online_cpus());
185  if (first_context > 0 && !test_bit(0, context_map))
186  pr_err("MMU: Context 0 has been freed !!!\n");
187 }
188 #else
189 static void context_check_map(void) { }
190 #endif
191 
193 {
194  unsigned int i, id, cpu = smp_processor_id();
195  unsigned long *map;
196 
197  /* No lockless fast path .. yet */
198  raw_spin_lock(&context_lock);
199 
200  pr_hard("[%d] activating context for mm @%p, active=%d, id=%d",
201  cpu, next, next->context.active, next->context.id);
202 
203 #ifdef CONFIG_SMP
204  /* Mark us active and the previous one not anymore */
205  next->context.active++;
206  if (prev) {
207  pr_hardcont(" (old=0x%p a=%d)", prev, prev->context.active);
208  WARN_ON(prev->context.active < 1);
209  prev->context.active--;
210  }
211 
212  again:
213 #endif /* CONFIG_SMP */
214 
215  /* If we already have a valid assigned context, skip all that */
216  id = next->context.id;
217  if (likely(id != MMU_NO_CONTEXT)) {
218 #ifdef DEBUG_MAP_CONSISTENCY
219  if (context_mm[id] != next)
220  pr_err("MMU: mm 0x%p has id %d but context_mm[%d] says 0x%p\n",
221  next, id, id, context_mm[id]);
222 #endif
223  goto ctxt_ok;
224  }
225 
226  /* We really don't have a context, let's try to acquire one */
227  id = next_context;
228  if (id > last_context)
229  id = first_context;
230  map = context_map;
231 
232  /* No more free contexts, let's try to steal one */
233  if (nr_free_contexts == 0) {
234 #ifdef CONFIG_SMP
235  if (num_online_cpus() > 1) {
236  id = steal_context_smp(id);
237  if (id == MMU_NO_CONTEXT)
238  goto again;
239  goto stolen;
240  }
241 #endif /* CONFIG_SMP */
242  id = steal_context_up(id);
243  goto stolen;
244  }
246 
247  /* We know there's at least one free context, try to find it */
248  while (__test_and_set_bit(id, map)) {
249  id = find_next_zero_bit(map, last_context+1, id);
250  if (id > last_context)
251  id = first_context;
252  }
253  stolen:
254  next_context = id + 1;
255  context_mm[id] = next;
256  next->context.id = id;
257  pr_hardcont(" | new id=%d,nrf=%d", id, nr_free_contexts);
258 
259  context_check_map();
260  ctxt_ok:
261 
262  /* If that context got marked stale on this CPU, then flush the
263  * local TLB for it and unmark it before we use it
264  */
265  if (test_bit(id, stale_map[cpu])) {
266  pr_hardcont(" | stale flush %d [%d..%d]",
267  id, cpu_first_thread_sibling(cpu),
268  cpu_last_thread_sibling(cpu));
269 
270  local_flush_tlb_mm(next);
271 
272  /* XXX This clear should ultimately be part of local_flush_tlb_mm */
273  for (i = cpu_first_thread_sibling(cpu);
274  i <= cpu_last_thread_sibling(cpu); i++) {
275  __clear_bit(id, stale_map[i]);
276  }
277  }
278 
279  /* Flick the MMU and release lock */
280  pr_hardcont(" -> %d\n", id);
281  set_context(id, next->pgd);
282  raw_spin_unlock(&context_lock);
283 }
284 
285 /*
286  * Set up the context for a new address space.
287  */
288 int init_new_context(struct task_struct *t, struct mm_struct *mm)
289 {
290  pr_hard("initing context for mm @%p\n", mm);
291 
292  mm->context.id = MMU_NO_CONTEXT;
293  mm->context.active = 0;
294 
295 #ifdef CONFIG_PPC_MM_SLICES
296  if (slice_mm_new_context(mm))
298 #endif
299 
300  return 0;
301 }
302 
303 /*
304  * We're finished using the context for an address space.
305  */
306 void destroy_context(struct mm_struct *mm)
307 {
308  unsigned long flags;
309  unsigned int id;
310 
311  if (mm->context.id == MMU_NO_CONTEXT)
312  return;
313 
314  WARN_ON(mm->context.active != 0);
315 
316  raw_spin_lock_irqsave(&context_lock, flags);
317  id = mm->context.id;
318  if (id != MMU_NO_CONTEXT) {
320  mm->context.id = MMU_NO_CONTEXT;
321 #ifdef DEBUG_MAP_CONSISTENCY
322  mm->context.active = 0;
323 #endif
324  context_mm[id] = NULL;
326  }
327  raw_spin_unlock_irqrestore(&context_lock, flags);
328 }
329 
330 #ifdef CONFIG_SMP
331 
332 static int __cpuinit mmu_context_cpu_notify(struct notifier_block *self,
333  unsigned long action, void *hcpu)
334 {
335  unsigned int cpu = (unsigned int)(long)hcpu;
336 
337  /* We don't touch CPU 0 map, it's allocated at aboot and kept
338  * around forever
339  */
340  if (cpu == boot_cpuid)
341  return NOTIFY_OK;
342 
343  switch (action) {
344  case CPU_UP_PREPARE:
346  pr_devel("MMU: Allocating stale context map for CPU %d\n", cpu);
347  stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
348  break;
349 #ifdef CONFIG_HOTPLUG_CPU
350  case CPU_UP_CANCELED:
352  case CPU_DEAD:
353  case CPU_DEAD_FROZEN:
354  pr_devel("MMU: Freeing stale context map for CPU %d\n", cpu);
355  kfree(stale_map[cpu]);
356  stale_map[cpu] = NULL;
357 
358  /* We also clear the cpu_vm_mask bits of CPUs going away */
359  clear_tasks_mm_cpumask(cpu);
360  break;
361 #endif /* CONFIG_HOTPLUG_CPU */
362  }
363  return NOTIFY_OK;
364 }
365 
366 static struct notifier_block __cpuinitdata mmu_context_cpu_nb = {
367  .notifier_call = mmu_context_cpu_notify,
368 };
369 
370 #endif /* CONFIG_SMP */
371 
372 /*
373  * Initialize the context management stuff.
374  */
376 {
377  /* Mark init_mm as being active on all possible CPUs since
378  * we'll get called with prev == init_mm the first time
379  * we schedule on a given CPU
380  */
381  init_mm.context.active = NR_CPUS;
382 
383  /*
384  * The MPC8xx has only 16 contexts. We rotate through them on each
385  * task switch. A better way would be to keep track of tasks that
386  * own contexts, and implement an LRU usage. That way very active
387  * tasks don't always have to pay the TLB reload overhead. The
388  * kernel pages are mapped shared, so the kernel can run on behalf
389  * of any task that makes a kernel entry. Shared does not mean they
390  * are not protected, just that the ASID comparison is not performed.
391  * -- Dan
392  *
393  * The IBM4xx has 256 contexts, so we can just rotate through these
394  * as a way of "switching" contexts. If the TID of the TLB is zero,
395  * the PID/TID comparison is disabled, so we can use a TID of zero
396  * to represent all kernel pages as shared among all contexts.
397  * -- Dan
398  *
399  * The IBM 47x core supports 16-bit PIDs, thus 65535 contexts. We
400  * should normally never have to steal though the facility is
401  * present if needed.
402  * -- BenH
403  */
404  if (mmu_has_feature(MMU_FTR_TYPE_8xx)) {
405  first_context = 0;
406  last_context = 15;
407  } else if (mmu_has_feature(MMU_FTR_TYPE_47x)) {
408  first_context = 1;
409  last_context = 65535;
410  } else
411 #ifdef CONFIG_PPC_BOOK3E_MMU
412  if (mmu_has_feature(MMU_FTR_TYPE_3E)) {
413  u32 mmucfg = mfspr(SPRN_MMUCFG);
414  u32 pid_bits = (mmucfg & MMUCFG_PIDSIZE_MASK)
416  first_context = 1;
417  last_context = (1UL << (pid_bits + 1)) - 1;
418  } else
419 #endif
420  {
421  first_context = 1;
422  last_context = 255;
423  }
424 
425 #ifdef DEBUG_CLAMP_LAST_CONTEXT
426  last_context = DEBUG_CLAMP_LAST_CONTEXT;
427 #endif
428  /*
429  * Allocate the maps used by context management
430  */
432  context_mm = alloc_bootmem(sizeof(void *) * (last_context + 1));
433 #ifndef CONFIG_SMP
434  stale_map[0] = alloc_bootmem(CTX_MAP_SIZE);
435 #else
436  stale_map[boot_cpuid] = alloc_bootmem(CTX_MAP_SIZE);
437 
438  register_cpu_notifier(&mmu_context_cpu_nb);
439 #endif
440 
442  "MMU: Allocated %zu bytes of context maps for %d contexts\n",
443  2 * CTX_MAP_SIZE + (sizeof(void *) * (last_context + 1)),
444  last_context - first_context + 1);
445 
446  /*
447  * Some processors have too few contexts to reserve one for
448  * init_mm, and require using context 0 for a normal task.
449  * Other processors reserve the use of context zero for the kernel.
450  * This code assumes first_context < 32.
451  */
452  context_map[0] = (1 << first_context) - 1;
453  next_context = first_context;
454  nr_free_contexts = last_context - first_context + 1;
455 }
456