Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mpage.c
Go to the documentation of this file.
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002 Andrew Morton
10  * Initial version
11  * 27Jun2002 [email protected]
12  * use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 
32 /*
33  * I/O completion handler for multipage BIOs.
34  *
35  * The mpage code never puts partial pages into a BIO (except for end-of-file).
36  * If a page does not map to a contiguous run of blocks then it simply falls
37  * back to block_read_full_page().
38  *
39  * Why is this? If a page's completion depends on a number of different BIOs
40  * which can complete in any order (or at the same time) then determining the
41  * status of that page is hard. See end_buffer_async_read() for the details.
42  * There is no point in duplicating all that complexity.
43  */
44 static void mpage_end_io(struct bio *bio, int err)
45 {
46  const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
47  struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
48 
49  do {
50  struct page *page = bvec->bv_page;
51 
52  if (--bvec >= bio->bi_io_vec)
53  prefetchw(&bvec->bv_page->flags);
54  if (bio_data_dir(bio) == READ) {
55  if (uptodate) {
56  SetPageUptodate(page);
57  } else {
58  ClearPageUptodate(page);
59  SetPageError(page);
60  }
61  unlock_page(page);
62  } else { /* bio_data_dir(bio) == WRITE */
63  if (!uptodate) {
64  SetPageError(page);
65  if (page->mapping)
66  set_bit(AS_EIO, &page->mapping->flags);
67  }
68  end_page_writeback(page);
69  }
70  } while (bvec >= bio->bi_io_vec);
71  bio_put(bio);
72 }
73 
74 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
75 {
76  bio->bi_end_io = mpage_end_io;
77  submit_bio(rw, bio);
78  return NULL;
79 }
80 
81 static struct bio *
82 mpage_alloc(struct block_device *bdev,
83  sector_t first_sector, int nr_vecs,
84  gfp_t gfp_flags)
85 {
86  struct bio *bio;
87 
88  bio = bio_alloc(gfp_flags, nr_vecs);
89 
90  if (bio == NULL && (current->flags & PF_MEMALLOC)) {
91  while (!bio && (nr_vecs /= 2))
92  bio = bio_alloc(gfp_flags, nr_vecs);
93  }
94 
95  if (bio) {
96  bio->bi_bdev = bdev;
97  bio->bi_sector = first_sector;
98  }
99  return bio;
100 }
101 
102 /*
103  * support function for mpage_readpages. The fs supplied get_block might
104  * return an up to date buffer. This is used to map that buffer into
105  * the page, which allows readpage to avoid triggering a duplicate call
106  * to get_block.
107  *
108  * The idea is to avoid adding buffers to pages that don't already have
109  * them. So when the buffer is up to date and the page size == block size,
110  * this marks the page up to date instead of adding new buffers.
111  */
112 static void
113 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
114 {
115  struct inode *inode = page->mapping->host;
116  struct buffer_head *page_bh, *head;
117  int block = 0;
118 
119  if (!page_has_buffers(page)) {
120  /*
121  * don't make any buffers if there is only one buffer on
122  * the page and the page just needs to be set up to date
123  */
124  if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
125  buffer_uptodate(bh)) {
126  SetPageUptodate(page);
127  return;
128  }
129  create_empty_buffers(page, 1 << inode->i_blkbits, 0);
130  }
131  head = page_buffers(page);
132  page_bh = head;
133  do {
134  if (block == page_block) {
135  page_bh->b_state = bh->b_state;
136  page_bh->b_bdev = bh->b_bdev;
137  page_bh->b_blocknr = bh->b_blocknr;
138  break;
139  }
140  page_bh = page_bh->b_this_page;
141  block++;
142  } while (page_bh != head);
143 }
144 
145 /*
146  * This is the worker routine which does all the work of mapping the disk
147  * blocks and constructs largest possible bios, submits them for IO if the
148  * blocks are not contiguous on the disk.
149  *
150  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
151  * represent the validity of its disk mapping and to decide when to do the next
152  * get_block() call.
153  */
154 static struct bio *
155 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
156  sector_t *last_block_in_bio, struct buffer_head *map_bh,
157  unsigned long *first_logical_block, get_block_t get_block)
158 {
159  struct inode *inode = page->mapping->host;
160  const unsigned blkbits = inode->i_blkbits;
161  const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
162  const unsigned blocksize = 1 << blkbits;
163  sector_t block_in_file;
164  sector_t last_block;
165  sector_t last_block_in_file;
166  sector_t blocks[MAX_BUF_PER_PAGE];
167  unsigned page_block;
168  unsigned first_hole = blocks_per_page;
169  struct block_device *bdev = NULL;
170  int length;
171  int fully_mapped = 1;
172  unsigned nblocks;
173  unsigned relative_block;
174 
175  if (page_has_buffers(page))
176  goto confused;
177 
178  block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
179  last_block = block_in_file + nr_pages * blocks_per_page;
180  last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
181  if (last_block > last_block_in_file)
182  last_block = last_block_in_file;
183  page_block = 0;
184 
185  /*
186  * Map blocks using the result from the previous get_blocks call first.
187  */
188  nblocks = map_bh->b_size >> blkbits;
189  if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
190  block_in_file < (*first_logical_block + nblocks)) {
191  unsigned map_offset = block_in_file - *first_logical_block;
192  unsigned last = nblocks - map_offset;
193 
194  for (relative_block = 0; ; relative_block++) {
195  if (relative_block == last) {
196  clear_buffer_mapped(map_bh);
197  break;
198  }
199  if (page_block == blocks_per_page)
200  break;
201  blocks[page_block] = map_bh->b_blocknr + map_offset +
202  relative_block;
203  page_block++;
204  block_in_file++;
205  }
206  bdev = map_bh->b_bdev;
207  }
208 
209  /*
210  * Then do more get_blocks calls until we are done with this page.
211  */
212  map_bh->b_page = page;
213  while (page_block < blocks_per_page) {
214  map_bh->b_state = 0;
215  map_bh->b_size = 0;
216 
217  if (block_in_file < last_block) {
218  map_bh->b_size = (last_block-block_in_file) << blkbits;
219  if (get_block(inode, block_in_file, map_bh, 0))
220  goto confused;
221  *first_logical_block = block_in_file;
222  }
223 
224  if (!buffer_mapped(map_bh)) {
225  fully_mapped = 0;
226  if (first_hole == blocks_per_page)
227  first_hole = page_block;
228  page_block++;
229  block_in_file++;
230  continue;
231  }
232 
233  /* some filesystems will copy data into the page during
234  * the get_block call, in which case we don't want to
235  * read it again. map_buffer_to_page copies the data
236  * we just collected from get_block into the page's buffers
237  * so readpage doesn't have to repeat the get_block call
238  */
239  if (buffer_uptodate(map_bh)) {
240  map_buffer_to_page(page, map_bh, page_block);
241  goto confused;
242  }
243 
244  if (first_hole != blocks_per_page)
245  goto confused; /* hole -> non-hole */
246 
247  /* Contiguous blocks? */
248  if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
249  goto confused;
250  nblocks = map_bh->b_size >> blkbits;
251  for (relative_block = 0; ; relative_block++) {
252  if (relative_block == nblocks) {
253  clear_buffer_mapped(map_bh);
254  break;
255  } else if (page_block == blocks_per_page)
256  break;
257  blocks[page_block] = map_bh->b_blocknr+relative_block;
258  page_block++;
259  block_in_file++;
260  }
261  bdev = map_bh->b_bdev;
262  }
263 
264  if (first_hole != blocks_per_page) {
265  zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
266  if (first_hole == 0) {
267  SetPageUptodate(page);
268  unlock_page(page);
269  goto out;
270  }
271  } else if (fully_mapped) {
272  SetPageMappedToDisk(page);
273  }
274 
275  if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
276  cleancache_get_page(page) == 0) {
277  SetPageUptodate(page);
278  goto confused;
279  }
280 
281  /*
282  * This page will go to BIO. Do we need to send this BIO off first?
283  */
284  if (bio && (*last_block_in_bio != blocks[0] - 1))
285  bio = mpage_bio_submit(READ, bio);
286 
287 alloc_new:
288  if (bio == NULL) {
289  bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
290  min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
291  GFP_KERNEL);
292  if (bio == NULL)
293  goto confused;
294  }
295 
296  length = first_hole << blkbits;
297  if (bio_add_page(bio, page, length, 0) < length) {
298  bio = mpage_bio_submit(READ, bio);
299  goto alloc_new;
300  }
301 
302  relative_block = block_in_file - *first_logical_block;
303  nblocks = map_bh->b_size >> blkbits;
304  if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
305  (first_hole != blocks_per_page))
306  bio = mpage_bio_submit(READ, bio);
307  else
308  *last_block_in_bio = blocks[blocks_per_page - 1];
309 out:
310  return bio;
311 
312 confused:
313  if (bio)
314  bio = mpage_bio_submit(READ, bio);
315  if (!PageUptodate(page))
316  block_read_full_page(page, get_block);
317  else
318  unlock_page(page);
319  goto out;
320 }
321 
365 int
367  unsigned nr_pages, get_block_t get_block)
368 {
369  struct bio *bio = NULL;
370  unsigned page_idx;
371  sector_t last_block_in_bio = 0;
372  struct buffer_head map_bh;
373  unsigned long first_logical_block = 0;
374 
375  map_bh.b_state = 0;
376  map_bh.b_size = 0;
377  for (page_idx = 0; page_idx < nr_pages; page_idx++) {
378  struct page *page = list_entry(pages->prev, struct page, lru);
379 
380  prefetchw(&page->flags);
381  list_del(&page->lru);
382  if (!add_to_page_cache_lru(page, mapping,
383  page->index, GFP_KERNEL)) {
384  bio = do_mpage_readpage(bio, page,
385  nr_pages - page_idx,
386  &last_block_in_bio, &map_bh,
387  &first_logical_block,
388  get_block);
389  }
390  page_cache_release(page);
391  }
392  BUG_ON(!list_empty(pages));
393  if (bio)
394  mpage_bio_submit(READ, bio);
395  return 0;
396 }
398 
399 /*
400  * This isn't called much at all
401  */
402 int mpage_readpage(struct page *page, get_block_t get_block)
403 {
404  struct bio *bio = NULL;
405  sector_t last_block_in_bio = 0;
406  struct buffer_head map_bh;
407  unsigned long first_logical_block = 0;
408 
409  map_bh.b_state = 0;
410  map_bh.b_size = 0;
411  bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
412  &map_bh, &first_logical_block, get_block);
413  if (bio)
414  mpage_bio_submit(READ, bio);
415  return 0;
416 }
418 
419 /*
420  * Writing is not so simple.
421  *
422  * If the page has buffers then they will be used for obtaining the disk
423  * mapping. We only support pages which are fully mapped-and-dirty, with a
424  * special case for pages which are unmapped at the end: end-of-file.
425  *
426  * If the page has no buffers (preferred) then the page is mapped here.
427  *
428  * If all blocks are found to be contiguous then the page can go into the
429  * BIO. Otherwise fall back to the mapping's writepage().
430  *
431  * FIXME: This code wants an estimate of how many pages are still to be
432  * written, so it can intelligently allocate a suitably-sized BIO. For now,
433  * just allocate full-size (16-page) BIOs.
434  */
435 
436 struct mpage_data {
437  struct bio *bio;
440  unsigned use_writepage;
441 };
442 
443 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
444  void *data)
445 {
446  struct mpage_data *mpd = data;
447  struct bio *bio = mpd->bio;
448  struct address_space *mapping = page->mapping;
449  struct inode *inode = page->mapping->host;
450  const unsigned blkbits = inode->i_blkbits;
451  unsigned long end_index;
452  const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
453  sector_t last_block;
454  sector_t block_in_file;
455  sector_t blocks[MAX_BUF_PER_PAGE];
456  unsigned page_block;
457  unsigned first_unmapped = blocks_per_page;
458  struct block_device *bdev = NULL;
459  int boundary = 0;
460  sector_t boundary_block = 0;
461  struct block_device *boundary_bdev = NULL;
462  int length;
463  struct buffer_head map_bh;
464  loff_t i_size = i_size_read(inode);
465  int ret = 0;
466 
467  if (page_has_buffers(page)) {
468  struct buffer_head *head = page_buffers(page);
469  struct buffer_head *bh = head;
470 
471  /* If they're all mapped and dirty, do it */
472  page_block = 0;
473  do {
474  BUG_ON(buffer_locked(bh));
475  if (!buffer_mapped(bh)) {
476  /*
477  * unmapped dirty buffers are created by
478  * __set_page_dirty_buffers -> mmapped data
479  */
480  if (buffer_dirty(bh))
481  goto confused;
482  if (first_unmapped == blocks_per_page)
483  first_unmapped = page_block;
484  continue;
485  }
486 
487  if (first_unmapped != blocks_per_page)
488  goto confused; /* hole -> non-hole */
489 
490  if (!buffer_dirty(bh) || !buffer_uptodate(bh))
491  goto confused;
492  if (page_block) {
493  if (bh->b_blocknr != blocks[page_block-1] + 1)
494  goto confused;
495  }
496  blocks[page_block++] = bh->b_blocknr;
497  boundary = buffer_boundary(bh);
498  if (boundary) {
499  boundary_block = bh->b_blocknr;
500  boundary_bdev = bh->b_bdev;
501  }
502  bdev = bh->b_bdev;
503  } while ((bh = bh->b_this_page) != head);
504 
505  if (first_unmapped)
506  goto page_is_mapped;
507 
508  /*
509  * Page has buffers, but they are all unmapped. The page was
510  * created by pagein or read over a hole which was handled by
511  * block_read_full_page(). If this address_space is also
512  * using mpage_readpages then this can rarely happen.
513  */
514  goto confused;
515  }
516 
517  /*
518  * The page has no buffers: map it to disk
519  */
520  BUG_ON(!PageUptodate(page));
521  block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
522  last_block = (i_size - 1) >> blkbits;
523  map_bh.b_page = page;
524  for (page_block = 0; page_block < blocks_per_page; ) {
525 
526  map_bh.b_state = 0;
527  map_bh.b_size = 1 << blkbits;
528  if (mpd->get_block(inode, block_in_file, &map_bh, 1))
529  goto confused;
530  if (buffer_new(&map_bh))
531  unmap_underlying_metadata(map_bh.b_bdev,
532  map_bh.b_blocknr);
533  if (buffer_boundary(&map_bh)) {
534  boundary_block = map_bh.b_blocknr;
535  boundary_bdev = map_bh.b_bdev;
536  }
537  if (page_block) {
538  if (map_bh.b_blocknr != blocks[page_block-1] + 1)
539  goto confused;
540  }
541  blocks[page_block++] = map_bh.b_blocknr;
542  boundary = buffer_boundary(&map_bh);
543  bdev = map_bh.b_bdev;
544  if (block_in_file == last_block)
545  break;
546  block_in_file++;
547  }
548  BUG_ON(page_block == 0);
549 
550  first_unmapped = page_block;
551 
552 page_is_mapped:
553  end_index = i_size >> PAGE_CACHE_SHIFT;
554  if (page->index >= end_index) {
555  /*
556  * The page straddles i_size. It must be zeroed out on each
557  * and every writepage invocation because it may be mmapped.
558  * "A file is mapped in multiples of the page size. For a file
559  * that is not a multiple of the page size, the remaining memory
560  * is zeroed when mapped, and writes to that region are not
561  * written out to the file."
562  */
563  unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
564 
565  if (page->index > end_index || !offset)
566  goto confused;
567  zero_user_segment(page, offset, PAGE_CACHE_SIZE);
568  }
569 
570  /*
571  * This page will go to BIO. Do we need to send this BIO off first?
572  */
573  if (bio && mpd->last_block_in_bio != blocks[0] - 1)
574  bio = mpage_bio_submit(WRITE, bio);
575 
576 alloc_new:
577  if (bio == NULL) {
578  bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
580  if (bio == NULL)
581  goto confused;
582  }
583 
584  /*
585  * Must try to add the page before marking the buffer clean or
586  * the confused fail path above (OOM) will be very confused when
587  * it finds all bh marked clean (i.e. it will not write anything)
588  */
589  length = first_unmapped << blkbits;
590  if (bio_add_page(bio, page, length, 0) < length) {
591  bio = mpage_bio_submit(WRITE, bio);
592  goto alloc_new;
593  }
594 
595  /*
596  * OK, we have our BIO, so we can now mark the buffers clean. Make
597  * sure to only clean buffers which we know we'll be writing.
598  */
599  if (page_has_buffers(page)) {
600  struct buffer_head *head = page_buffers(page);
601  struct buffer_head *bh = head;
602  unsigned buffer_counter = 0;
603 
604  do {
605  if (buffer_counter++ == first_unmapped)
606  break;
607  clear_buffer_dirty(bh);
608  bh = bh->b_this_page;
609  } while (bh != head);
610 
611  /*
612  * we cannot drop the bh if the page is not uptodate
613  * or a concurrent readpage would fail to serialize with the bh
614  * and it would read from disk before we reach the platter.
615  */
616  if (buffer_heads_over_limit && PageUptodate(page))
617  try_to_free_buffers(page);
618  }
619 
620  BUG_ON(PageWriteback(page));
621  set_page_writeback(page);
622  unlock_page(page);
623  if (boundary || (first_unmapped != blocks_per_page)) {
624  bio = mpage_bio_submit(WRITE, bio);
625  if (boundary_block) {
626  write_boundary_block(boundary_bdev,
627  boundary_block, 1 << blkbits);
628  }
629  } else {
630  mpd->last_block_in_bio = blocks[blocks_per_page - 1];
631  }
632  goto out;
633 
634 confused:
635  if (bio)
636  bio = mpage_bio_submit(WRITE, bio);
637 
638  if (mpd->use_writepage) {
639  ret = mapping->a_ops->writepage(page, wbc);
640  } else {
641  ret = -EAGAIN;
642  goto out;
643  }
644  /*
645  * The caller has a ref on the inode, so *mapping is stable
646  */
647  mapping_set_error(mapping, ret);
648 out:
649  mpd->bio = bio;
650  return ret;
651 }
652 
672 int
674  struct writeback_control *wbc, get_block_t get_block)
675 {
676  struct blk_plug plug;
677  int ret;
678 
679  blk_start_plug(&plug);
680 
681  if (!get_block)
682  ret = generic_writepages(mapping, wbc);
683  else {
684  struct mpage_data mpd = {
685  .bio = NULL,
686  .last_block_in_bio = 0,
687  .get_block = get_block,
688  .use_writepage = 1,
689  };
690 
691  ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
692  if (mpd.bio)
693  mpage_bio_submit(WRITE, mpd.bio);
694  }
695  blk_finish_plug(&plug);
696  return ret;
697 }
699 
700 int mpage_writepage(struct page *page, get_block_t get_block,
701  struct writeback_control *wbc)
702 {
703  struct mpage_data mpd = {
704  .bio = NULL,
705  .last_block_in_bio = 0,
706  .get_block = get_block,
707  .use_writepage = 0,
708  };
709  int ret = __mpage_writepage(page, wbc, &mpd);
710  if (mpd.bio)
711  mpage_bio_submit(WRITE, mpd.bio);
712  return ret;
713 }