Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
route.h
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * Definitions for the IP router.
7  *
8  * Version: @(#)route.h 1.0.4 05/27/93
9  *
10  * Authors: Ross Biro
11  * Fred N. van Kempen, <[email protected]>
12  * Fixes:
13  * Alan Cox : Reformatted. Added ip_rt_local()
14  * Alan Cox : Support for TCP parameters.
15  * Alexey Kuznetsov: Major changes for new routing code.
16  * Mike McLagan : Routing by source
17  * Robert Olsson : Added rt_cache statistics
18  *
19  * This program is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU General Public License
21  * as published by the Free Software Foundation; either version
22  * 2 of the License, or (at your option) any later version.
23  */
24 #ifndef _ROUTE_H
25 #define _ROUTE_H
26 
27 #include <net/dst.h>
28 #include <net/inetpeer.h>
29 #include <net/flow.h>
30 #include <net/inet_sock.h>
31 #include <linux/in_route.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/rcupdate.h>
34 #include <linux/route.h>
35 #include <linux/ip.h>
36 #include <linux/cache.h>
37 #include <linux/security.h>
38 
39 #define RTO_ONLINK 0x01
40 
41 #define RT_CONN_FLAGS(sk) (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE))
42 
43 struct fib_nh;
44 struct fib_info;
45 struct rtable {
46  struct dst_entry dst;
47 
48  int rt_genid;
49  unsigned int rt_flags;
53 
54  int rt_iif;
55 
56  /* Info on neighbour */
58 
59  /* Miscellaneous cached information */
61 
63 };
64 
65 static inline bool rt_is_input_route(const struct rtable *rt)
66 {
67  return rt->rt_is_input != 0;
68 }
69 
70 static inline bool rt_is_output_route(const struct rtable *rt)
71 {
72  return rt->rt_is_input == 0;
73 }
74 
75 static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr)
76 {
77  if (rt->rt_gateway)
78  return rt->rt_gateway;
79  return daddr;
80 }
81 
82 struct ip_rt_acct {
87 };
88 
89 struct rt_cache_stat {
90  unsigned int in_hit;
91  unsigned int in_slow_tot;
92  unsigned int in_slow_mc;
93  unsigned int in_no_route;
94  unsigned int in_brd;
95  unsigned int in_martian_dst;
96  unsigned int in_martian_src;
97  unsigned int out_hit;
98  unsigned int out_slow_tot;
99  unsigned int out_slow_mc;
100  unsigned int gc_total;
101  unsigned int gc_ignored;
102  unsigned int gc_goal_miss;
103  unsigned int gc_dst_overflow;
104  unsigned int in_hlist_search;
105  unsigned int out_hlist_search;
106 };
107 
108 extern struct ip_rt_acct __percpu *ip_rt_acct;
109 
110 struct in_device;
111 extern int ip_rt_init(void);
112 extern void rt_cache_flush(struct net *net);
113 extern void rt_flush_dev(struct net_device *dev);
114 extern struct rtable *__ip_route_output_key(struct net *, struct flowi4 *flp);
115 extern struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
116  struct sock *sk);
117 extern struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig);
118 
119 static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
120 {
121  return ip_route_output_flow(net, flp, NULL);
122 }
123 
124 static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
125  __be32 saddr, u8 tos, int oif)
126 {
127  struct flowi4 fl4 = {
128  .flowi4_oif = oif,
129  .flowi4_tos = tos,
130  .daddr = daddr,
131  .saddr = saddr,
132  };
133  return ip_route_output_key(net, &fl4);
134 }
135 
136 static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
137  struct sock *sk,
138  __be32 daddr, __be32 saddr,
139  __be16 dport, __be16 sport,
140  __u8 proto, __u8 tos, int oif)
141 {
142  flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos,
143  RT_SCOPE_UNIVERSE, proto,
144  sk ? inet_sk_flowi_flags(sk) : 0,
145  daddr, saddr, dport, sport);
146  if (sk)
147  security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
148  return ip_route_output_flow(net, fl4, sk);
149 }
150 
151 static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
152  __be32 daddr, __be32 saddr,
153  __be32 gre_key, __u8 tos, int oif)
154 {
155  memset(fl4, 0, sizeof(*fl4));
156  fl4->flowi4_oif = oif;
157  fl4->daddr = daddr;
158  fl4->saddr = saddr;
159  fl4->flowi4_tos = tos;
160  fl4->flowi4_proto = IPPROTO_GRE;
161  fl4->fl4_gre_key = gre_key;
162  return ip_route_output_key(net, fl4);
163 }
164 
165 extern int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src,
166  u8 tos, struct net_device *devin);
167 
168 static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
169  u8 tos, struct net_device *devin)
170 {
171  int err;
172 
173  rcu_read_lock();
174  err = ip_route_input_noref(skb, dst, src, tos, devin);
175  if (!err)
176  skb_dst_force(skb);
177  rcu_read_unlock();
178 
179  return err;
180 }
181 
182 extern void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu,
183  int oif, u32 mark, u8 protocol, int flow_flags);
184 extern void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu);
185 extern void ipv4_redirect(struct sk_buff *skb, struct net *net,
186  int oif, u32 mark, u8 protocol, int flow_flags);
187 extern void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk);
188 extern void ip_rt_send_redirect(struct sk_buff *skb);
189 
190 extern unsigned int inet_addr_type(struct net *net, __be32 addr);
191 extern unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr);
192 extern void ip_rt_multicast_event(struct in_device *);
193 extern int ip_rt_ioctl(struct net *, unsigned int cmd, void __user *arg);
194 extern void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
195 extern int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb);
196 
197 struct in_ifaddr;
198 extern void fib_add_ifaddr(struct in_ifaddr *);
199 extern void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
200 
201 static inline void ip_rt_put(struct rtable * rt)
202 {
203  if (rt)
204  dst_release(&rt->dst);
205 }
206 
207 #define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3)
208 
209 extern const __u8 ip_tos2prio[16];
210 
211 static inline char rt_tos2priority(u8 tos)
212 {
213  return ip_tos2prio[IPTOS_TOS(tos)>>1];
214 }
215 
216 /* ip_route_connect() and ip_route_newports() work in tandem whilst
217  * binding a socket for a new outgoing connection.
218  *
219  * In order to use IPSEC properly, we must, in the end, have a
220  * route that was looked up using all available keys including source
221  * and destination ports.
222  *
223  * However, if a source port needs to be allocated (the user specified
224  * a wildcard source port) we need to obtain addressing information
225  * in order to perform that allocation.
226  *
227  * So ip_route_connect() looks up a route using wildcarded source and
228  * destination ports in the key, simply so that we can get a pair of
229  * addresses to use for port allocation.
230  *
231  * Later, once the ports are allocated, ip_route_newports() will make
232  * another route lookup if needed to make sure we catch any IPSEC
233  * rules keyed on the port information.
234  *
235  * The callers allocate the flow key on their stack, and must pass in
236  * the same flowi4 object to both the ip_route_connect() and the
237  * ip_route_newports() calls.
238  */
239 
240 static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src,
241  u32 tos, int oif, u8 protocol,
242  __be16 sport, __be16 dport,
243  struct sock *sk, bool can_sleep)
244 {
245  __u8 flow_flags = 0;
246 
247  if (inet_sk(sk)->transparent)
248  flow_flags |= FLOWI_FLAG_ANYSRC;
249  if (can_sleep)
250  flow_flags |= FLOWI_FLAG_CAN_SLEEP;
251 
252  flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE,
253  protocol, flow_flags, dst, src, dport, sport);
254 }
255 
256 static inline struct rtable *ip_route_connect(struct flowi4 *fl4,
257  __be32 dst, __be32 src, u32 tos,
258  int oif, u8 protocol,
259  __be16 sport, __be16 dport,
260  struct sock *sk, bool can_sleep)
261 {
262  struct net *net = sock_net(sk);
263  struct rtable *rt;
264 
265  ip_route_connect_init(fl4, dst, src, tos, oif, protocol,
266  sport, dport, sk, can_sleep);
267 
268  if (!dst || !src) {
269  rt = __ip_route_output_key(net, fl4);
270  if (IS_ERR(rt))
271  return rt;
272  ip_rt_put(rt);
273  flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr);
274  }
275  security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
276  return ip_route_output_flow(net, fl4, sk);
277 }
278 
279 static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
280  __be16 orig_sport, __be16 orig_dport,
281  __be16 sport, __be16 dport,
282  struct sock *sk)
283 {
284  if (sport != orig_sport || dport != orig_dport) {
285  fl4->fl4_dport = dport;
286  fl4->fl4_sport = sport;
287  ip_rt_put(rt);
288  flowi4_update_output(fl4, sk->sk_bound_dev_if,
289  RT_CONN_FLAGS(sk), fl4->daddr,
290  fl4->saddr);
291  security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
292  return ip_route_output_flow(sock_net(sk), fl4, sk);
293  }
294  return rt;
295 }
296 
297 static inline int inet_iif(const struct sk_buff *skb)
298 {
299  int iif = skb_rtable(skb)->rt_iif;
300 
301  if (iif)
302  return iif;
303  return skb->skb_iif;
304 }
305 
306 extern int sysctl_ip_default_ttl;
307 
308 static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
309 {
310  int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
311 
312  if (hoplimit == 0)
313  hoplimit = sysctl_ip_default_ttl;
314  return hoplimit;
315 }
316 
317 #endif /* _ROUTE_H */