Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
input.c
Go to the documentation of this file.
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  * ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING. If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  * lksctp developers <[email protected]>
33  *
34  * Or submit a bug report through the following website:
35  * http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  * La Monte H.P. Yarroll <[email protected]>
39  * Karl Knutson <[email protected]>
40  * Xingang Guo <[email protected]>
41  * Jon Grimm <[email protected]>
42  * Hui Huang <[email protected]>
43  * Daisy Chang <[email protected]>
44  * Sridhar Samudrala <[email protected]>
45  * Ardelle Fan <[email protected]>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <linux/slab.h>
57 #include <net/ip.h>
58 #include <net/icmp.h>
59 #include <net/snmp.h>
60 #include <net/sock.h>
61 #include <net/xfrm.h>
62 #include <net/sctp/sctp.h>
63 #include <net/sctp/sm.h>
64 #include <net/sctp/checksum.h>
65 #include <net/net_namespace.h>
66 
67 /* Forward declarations for internal helpers. */
68 static int sctp_rcv_ootb(struct sk_buff *);
69 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
70  struct sk_buff *skb,
71  const union sctp_addr *paddr,
72  const union sctp_addr *laddr,
73  struct sctp_transport **transportp);
74 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
75  const union sctp_addr *laddr);
76 static struct sctp_association *__sctp_lookup_association(
77  struct net *net,
78  const union sctp_addr *local,
79  const union sctp_addr *peer,
80  struct sctp_transport **pt);
81 
82 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
83 
84 
85 /* Calculate the SCTP checksum of an SCTP packet. */
86 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
87 {
88  struct sctphdr *sh = sctp_hdr(skb);
89  __le32 cmp = sh->checksum;
90  struct sk_buff *list;
91  __le32 val;
92  __u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
93 
94  skb_walk_frags(skb, list)
95  tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
96  tmp);
97 
98  val = sctp_end_cksum(tmp);
99 
100  if (val != cmp) {
101  /* CRC failure, dump it. */
103  return -1;
104  }
105  return 0;
106 }
107 
109  union {
111 #if IS_ENABLED(CONFIG_IPV6)
112  struct inet6_skb_parm h6;
113 #endif
114  } header;
115  struct sctp_chunk *chunk;
116 };
117 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0]))
118 
119 /*
120  * This is the routine which IP calls when receiving an SCTP packet.
121  */
122 int sctp_rcv(struct sk_buff *skb)
123 {
124  struct sock *sk;
125  struct sctp_association *asoc;
126  struct sctp_endpoint *ep = NULL;
127  struct sctp_ep_common *rcvr;
128  struct sctp_transport *transport = NULL;
129  struct sctp_chunk *chunk;
130  struct sctphdr *sh;
131  union sctp_addr src;
132  union sctp_addr dest;
133  int family;
134  struct sctp_af *af;
135  struct net *net = dev_net(skb->dev);
136 
137  if (skb->pkt_type!=PACKET_HOST)
138  goto discard_it;
139 
141 
142  if (skb_linearize(skb))
143  goto discard_it;
144 
145  sh = sctp_hdr(skb);
146 
147  /* Pull up the IP and SCTP headers. */
148  __skb_pull(skb, skb_transport_offset(skb));
149  if (skb->len < sizeof(struct sctphdr))
150  goto discard_it;
151  if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
152  sctp_rcv_checksum(net, skb) < 0)
153  goto discard_it;
154 
155  skb_pull(skb, sizeof(struct sctphdr));
156 
157  /* Make sure we at least have chunk headers worth of data left. */
158  if (skb->len < sizeof(struct sctp_chunkhdr))
159  goto discard_it;
160 
161  family = ipver2af(ip_hdr(skb)->version);
162  af = sctp_get_af_specific(family);
163  if (unlikely(!af))
164  goto discard_it;
165 
166  /* Initialize local addresses for lookups. */
167  af->from_skb(&src, skb, 1);
168  af->from_skb(&dest, skb, 0);
169 
170  /* If the packet is to or from a non-unicast address,
171  * silently discard the packet.
172  *
173  * This is not clearly defined in the RFC except in section
174  * 8.4 - OOTB handling. However, based on the book "Stream Control
175  * Transmission Protocol" 2.1, "It is important to note that the
176  * IP address of an SCTP transport address must be a routable
177  * unicast address. In other words, IP multicast addresses and
178  * IP broadcast addresses cannot be used in an SCTP transport
179  * address."
180  */
181  if (!af->addr_valid(&src, NULL, skb) ||
182  !af->addr_valid(&dest, NULL, skb))
183  goto discard_it;
184 
185  asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
186 
187  if (!asoc)
188  ep = __sctp_rcv_lookup_endpoint(net, &dest);
189 
190  /* Retrieve the common input handling substructure. */
191  rcvr = asoc ? &asoc->base : &ep->base;
192  sk = rcvr->sk;
193 
194  /*
195  * If a frame arrives on an interface and the receiving socket is
196  * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
197  */
198  if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
199  {
200  if (asoc) {
201  sctp_association_put(asoc);
202  asoc = NULL;
203  } else {
204  sctp_endpoint_put(ep);
205  ep = NULL;
206  }
207  sk = net->sctp.ctl_sock;
208  ep = sctp_sk(sk)->ep;
209  sctp_endpoint_hold(ep);
210  rcvr = &ep->base;
211  }
212 
213  /*
214  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
215  * An SCTP packet is called an "out of the blue" (OOTB)
216  * packet if it is correctly formed, i.e., passed the
217  * receiver's checksum check, but the receiver is not
218  * able to identify the association to which this
219  * packet belongs.
220  */
221  if (!asoc) {
222  if (sctp_rcv_ootb(skb)) {
224  goto discard_release;
225  }
226  }
227 
228  if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
229  goto discard_release;
230  nf_reset(skb);
231 
232  if (sk_filter(sk, skb))
233  goto discard_release;
234 
235  /* Create an SCTP packet structure. */
236  chunk = sctp_chunkify(skb, asoc, sk);
237  if (!chunk)
238  goto discard_release;
239  SCTP_INPUT_CB(skb)->chunk = chunk;
240 
241  /* Remember what endpoint is to handle this packet. */
242  chunk->rcvr = rcvr;
243 
244  /* Remember the SCTP header. */
245  chunk->sctp_hdr = sh;
246 
247  /* Set the source and destination addresses of the incoming chunk. */
248  sctp_init_addrs(chunk, &src, &dest);
249 
250  /* Remember where we came from. */
251  chunk->transport = transport;
252 
253  /* Acquire access to the sock lock. Note: We are safe from other
254  * bottom halves on this lock, but a user may be in the lock too,
255  * so check if it is busy.
256  */
257  sctp_bh_lock_sock(sk);
258 
259  if (sk != rcvr->sk) {
260  /* Our cached sk is different from the rcvr->sk. This is
261  * because migrate()/accept() may have moved the association
262  * to a new socket and released all the sockets. So now we
263  * are holding a lock on the old socket while the user may
264  * be doing something with the new socket. Switch our veiw
265  * of the current sk.
266  */
268  sk = rcvr->sk;
269  sctp_bh_lock_sock(sk);
270  }
271 
272  if (sock_owned_by_user(sk)) {
273  if (sctp_add_backlog(sk, skb)) {
275  sctp_chunk_free(chunk);
276  skb = NULL; /* sctp_chunk_free already freed the skb */
277  goto discard_release;
278  }
280  } else {
282  sctp_inq_push(&chunk->rcvr->inqueue, chunk);
283  }
284 
286 
287  /* Release the asoc/ep ref we took in the lookup calls. */
288  if (asoc)
289  sctp_association_put(asoc);
290  else
291  sctp_endpoint_put(ep);
292 
293  return 0;
294 
295 discard_it:
297  kfree_skb(skb);
298  return 0;
299 
300 discard_release:
301  /* Release the asoc/ep ref we took in the lookup calls. */
302  if (asoc)
303  sctp_association_put(asoc);
304  else
305  sctp_endpoint_put(ep);
306 
307  goto discard_it;
308 }
309 
310 /* Process the backlog queue of the socket. Every skb on
311  * the backlog holds a ref on an association or endpoint.
312  * We hold this ref throughout the state machine to make
313  * sure that the structure we need is still around.
314  */
315 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316 {
317  struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
318  struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
319  struct sctp_ep_common *rcvr = NULL;
320  int backloged = 0;
321 
322  rcvr = chunk->rcvr;
323 
324  /* If the rcvr is dead then the association or endpoint
325  * has been deleted and we can safely drop the chunk
326  * and refs that we are holding.
327  */
328  if (rcvr->dead) {
329  sctp_chunk_free(chunk);
330  goto done;
331  }
332 
333  if (unlikely(rcvr->sk != sk)) {
334  /* In this case, the association moved from one socket to
335  * another. We are currently sitting on the backlog of the
336  * old socket, so we need to move.
337  * However, since we are here in the process context we
338  * need to take make sure that the user doesn't own
339  * the new socket when we process the packet.
340  * If the new socket is user-owned, queue the chunk to the
341  * backlog of the new socket without dropping any refs.
342  * Otherwise, we can safely push the chunk on the inqueue.
343  */
344 
345  sk = rcvr->sk;
346  sctp_bh_lock_sock(sk);
347 
348  if (sock_owned_by_user(sk)) {
349  if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
350  sctp_chunk_free(chunk);
351  else
352  backloged = 1;
353  } else
354  sctp_inq_push(inqueue, chunk);
355 
357 
358  /* If the chunk was backloged again, don't drop refs */
359  if (backloged)
360  return 0;
361  } else {
362  sctp_inq_push(inqueue, chunk);
363  }
364 
365 done:
366  /* Release the refs we took in sctp_add_backlog */
367  if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
368  sctp_association_put(sctp_assoc(rcvr));
369  else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
370  sctp_endpoint_put(sctp_ep(rcvr));
371  else
372  BUG();
373 
374  return 0;
375 }
376 
377 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
378 {
379  struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
380  struct sctp_ep_common *rcvr = chunk->rcvr;
381  int ret;
382 
383  ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
384  if (!ret) {
385  /* Hold the assoc/ep while hanging on the backlog queue.
386  * This way, we know structures we need will not disappear
387  * from us
388  */
389  if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
390  sctp_association_hold(sctp_assoc(rcvr));
391  else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
392  sctp_endpoint_hold(sctp_ep(rcvr));
393  else
394  BUG();
395  }
396  return ret;
397 
398 }
399 
400 /* Handle icmp frag needed error. */
401 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
402  struct sctp_transport *t, __u32 pmtu)
403 {
404  if (!t || (t->pathmtu <= pmtu))
405  return;
406 
407  if (sock_owned_by_user(sk)) {
408  asoc->pmtu_pending = 1;
409  t->pmtu_pending = 1;
410  return;
411  }
412 
413  if (t->param_flags & SPP_PMTUD_ENABLE) {
414  /* Update transports view of the MTU */
415  sctp_transport_update_pmtu(sk, t, pmtu);
416 
417  /* Update association pmtu. */
418  sctp_assoc_sync_pmtu(sk, asoc);
419  }
420 
421  /* Retransmit with the new pmtu setting.
422  * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
423  * Needed will never be sent, but if a message was sent before
424  * PMTU discovery was disabled that was larger than the PMTU, it
425  * would not be fragmented, so it must be re-transmitted fragmented.
426  */
428 }
429 
430 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
431  struct sk_buff *skb)
432 {
433  struct dst_entry *dst;
434 
435  if (!t)
436  return;
437  dst = sctp_transport_dst_check(t);
438  if (dst)
439  dst->ops->redirect(dst, sk, skb);
440 }
441 
442 /*
443  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
444  *
445  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
446  * or a "Protocol Unreachable" treat this message as an abort
447  * with the T bit set.
448  *
449  * This function sends an event to the state machine, which will abort the
450  * association.
451  *
452  */
454  struct sctp_association *asoc,
455  struct sctp_transport *t)
456 {
457  SCTP_DEBUG_PRINTK("%s\n", __func__);
458 
459  if (sock_owned_by_user(sk)) {
460  if (timer_pending(&t->proto_unreach_timer))
461  return;
462  else {
464  jiffies + (HZ/20)))
465  sctp_association_hold(asoc);
466  }
467 
468  } else {
469  struct net *net = sock_net(sk);
470 
471  if (timer_pending(&t->proto_unreach_timer) &&
473  sctp_association_put(asoc);
474 
476  SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
477  asoc->state, asoc->ep, asoc, t,
478  GFP_ATOMIC);
479  }
480 }
481 
482 /* Common lookup code for icmp/icmpv6 error handler. */
483 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
484  struct sctphdr *sctphdr,
485  struct sctp_association **app,
486  struct sctp_transport **tpp)
487 {
488  union sctp_addr saddr;
489  union sctp_addr daddr;
490  struct sctp_af *af;
491  struct sock *sk = NULL;
492  struct sctp_association *asoc;
493  struct sctp_transport *transport = NULL;
494  struct sctp_init_chunk *chunkhdr;
495  __u32 vtag = ntohl(sctphdr->vtag);
496  int len = skb->len - ((void *)sctphdr - (void *)skb->data);
497 
498  *app = NULL; *tpp = NULL;
499 
500  af = sctp_get_af_specific(family);
501  if (unlikely(!af)) {
502  return NULL;
503  }
504 
505  /* Initialize local addresses for lookups. */
506  af->from_skb(&saddr, skb, 1);
507  af->from_skb(&daddr, skb, 0);
508 
509  /* Look for an association that matches the incoming ICMP error
510  * packet.
511  */
512  asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
513  if (!asoc)
514  return NULL;
515 
516  sk = asoc->base.sk;
517 
518  /* RFC 4960, Appendix C. ICMP Handling
519  *
520  * ICMP6) An implementation MUST validate that the Verification Tag
521  * contained in the ICMP message matches the Verification Tag of
522  * the peer. If the Verification Tag is not 0 and does NOT
523  * match, discard the ICMP message. If it is 0 and the ICMP
524  * message contains enough bytes to verify that the chunk type is
525  * an INIT chunk and that the Initiate Tag matches the tag of the
526  * peer, continue with ICMP7. If the ICMP message is too short
527  * or the chunk type or the Initiate Tag does not match, silently
528  * discard the packet.
529  */
530  if (vtag == 0) {
531  chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
532  if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
533  + sizeof(__be32) ||
534  chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
535  ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
536  goto out;
537  }
538  } else if (vtag != asoc->c.peer_vtag) {
539  goto out;
540  }
541 
542  sctp_bh_lock_sock(sk);
543 
544  /* If too many ICMPs get dropped on busy
545  * servers this needs to be solved differently.
546  */
547  if (sock_owned_by_user(sk))
549 
550  *app = asoc;
551  *tpp = transport;
552  return sk;
553 
554 out:
555  if (asoc)
556  sctp_association_put(asoc);
557  return NULL;
558 }
559 
560 /* Common cleanup code for icmp/icmpv6 error handler. */
561 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
562 {
564  if (asoc)
565  sctp_association_put(asoc);
566 }
567 
568 /*
569  * This routine is called by the ICMP module when it gets some
570  * sort of error condition. If err < 0 then the socket should
571  * be closed and the error returned to the user. If err > 0
572  * it's just the icmp type << 8 | icmp code. After adjustment
573  * header points to the first 8 bytes of the sctp header. We need
574  * to find the appropriate port.
575  *
576  * The locking strategy used here is very "optimistic". When
577  * someone else accesses the socket the ICMP is just dropped
578  * and for some paths there is no check at all.
579  * A more general error queue to queue errors for later handling
580  * is probably better.
581  *
582  */
583 void sctp_v4_err(struct sk_buff *skb, __u32 info)
584 {
585  const struct iphdr *iph = (const struct iphdr *)skb->data;
586  const int ihlen = iph->ihl * 4;
587  const int type = icmp_hdr(skb)->type;
588  const int code = icmp_hdr(skb)->code;
589  struct sock *sk;
590  struct sctp_association *asoc = NULL;
591  struct sctp_transport *transport;
592  struct inet_sock *inet;
593  sk_buff_data_t saveip, savesctp;
594  int err;
595  struct net *net = dev_net(skb->dev);
596 
597  if (skb->len < ihlen + 8) {
599  return;
600  }
601 
602  /* Fix up skb to look at the embedded net header. */
603  saveip = skb->network_header;
604  savesctp = skb->transport_header;
605  skb_reset_network_header(skb);
606  skb_set_transport_header(skb, ihlen);
607  sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
608  /* Put back, the original values. */
609  skb->network_header = saveip;
610  skb->transport_header = savesctp;
611  if (!sk) {
613  return;
614  }
615  /* Warning: The sock lock is held. Remember to call
616  * sctp_err_finish!
617  */
618 
619  switch (type) {
620  case ICMP_PARAMETERPROB:
621  err = EPROTO;
622  break;
623  case ICMP_DEST_UNREACH:
624  if (code > NR_ICMP_UNREACH)
625  goto out_unlock;
626 
627  /* PMTU discovery (RFC1191) */
628  if (ICMP_FRAG_NEEDED == code) {
629  sctp_icmp_frag_needed(sk, asoc, transport, info);
630  goto out_unlock;
631  }
632  else {
633  if (ICMP_PROT_UNREACH == code) {
635  transport);
636  goto out_unlock;
637  }
638  }
639  err = icmp_err_convert[code].errno;
640  break;
641  case ICMP_TIME_EXCEEDED:
642  /* Ignore any time exceeded errors due to fragment reassembly
643  * timeouts.
644  */
645  if (ICMP_EXC_FRAGTIME == code)
646  goto out_unlock;
647 
648  err = EHOSTUNREACH;
649  break;
650  case ICMP_REDIRECT:
651  sctp_icmp_redirect(sk, transport, skb);
652  err = 0;
653  break;
654  default:
655  goto out_unlock;
656  }
657 
658  inet = inet_sk(sk);
659  if (!sock_owned_by_user(sk) && inet->recverr) {
660  sk->sk_err = err;
661  sk->sk_error_report(sk);
662  } else { /* Only an error on timeout */
663  sk->sk_err_soft = err;
664  }
665 
666 out_unlock:
667  sctp_err_finish(sk, asoc);
668 }
669 
670 /*
671  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
672  *
673  * This function scans all the chunks in the OOTB packet to determine if
674  * the packet should be discarded right away. If a response might be needed
675  * for this packet, or, if further processing is possible, the packet will
676  * be queued to a proper inqueue for the next phase of handling.
677  *
678  * Output:
679  * Return 0 - If further processing is needed.
680  * Return 1 - If the packet can be discarded right away.
681  */
682 static int sctp_rcv_ootb(struct sk_buff *skb)
683 {
684  sctp_chunkhdr_t *ch;
685  __u8 *ch_end;
686 
687  ch = (sctp_chunkhdr_t *) skb->data;
688 
689  /* Scan through all the chunks in the packet. */
690  do {
691  /* Break out if chunk length is less then minimal. */
692  if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
693  break;
694 
695  ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
696  if (ch_end > skb_tail_pointer(skb))
697  break;
698 
699  /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
700  * receiver MUST silently discard the OOTB packet and take no
701  * further action.
702  */
703  if (SCTP_CID_ABORT == ch->type)
704  goto discard;
705 
706  /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
707  * chunk, the receiver should silently discard the packet
708  * and take no further action.
709  */
710  if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
711  goto discard;
712 
713  /* RFC 4460, 2.11.2
714  * This will discard packets with INIT chunk bundled as
715  * subsequent chunks in the packet. When INIT is first,
716  * the normal INIT processing will discard the chunk.
717  */
718  if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
719  goto discard;
720 
721  ch = (sctp_chunkhdr_t *) ch_end;
722  } while (ch_end < skb_tail_pointer(skb));
723 
724  return 0;
725 
726 discard:
727  return 1;
728 }
729 
730 /* Insert endpoint into the hash table. */
731 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
732 {
733  struct net *net = sock_net(ep->base.sk);
734  struct sctp_ep_common *epb;
735  struct sctp_hashbucket *head;
736 
737  epb = &ep->base;
738 
739  epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
740  head = &sctp_ep_hashtable[epb->hashent];
741 
742  sctp_write_lock(&head->lock);
743  hlist_add_head(&epb->node, &head->chain);
744  sctp_write_unlock(&head->lock);
745 }
746 
747 /* Add an endpoint to the hash. Local BH-safe. */
749 {
751  __sctp_hash_endpoint(ep);
753 }
754 
755 /* Remove endpoint from the hash table. */
756 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
757 {
758  struct net *net = sock_net(ep->base.sk);
759  struct sctp_hashbucket *head;
760  struct sctp_ep_common *epb;
761 
762  epb = &ep->base;
763 
764  epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
765 
766  head = &sctp_ep_hashtable[epb->hashent];
767 
768  sctp_write_lock(&head->lock);
769  hlist_del_init(&epb->node);
770  sctp_write_unlock(&head->lock);
771 }
772 
773 /* Remove endpoint from the hash. Local BH-safe. */
775 {
777  __sctp_unhash_endpoint(ep);
779 }
780 
781 /* Look up an endpoint. */
782 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
783  const union sctp_addr *laddr)
784 {
785  struct sctp_hashbucket *head;
786  struct sctp_ep_common *epb;
787  struct sctp_endpoint *ep;
788  struct hlist_node *node;
789  int hash;
790 
791  hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
792  head = &sctp_ep_hashtable[hash];
793  read_lock(&head->lock);
794  sctp_for_each_hentry(epb, node, &head->chain) {
795  ep = sctp_ep(epb);
796  if (sctp_endpoint_is_match(ep, net, laddr))
797  goto hit;
798  }
799 
800  ep = sctp_sk(net->sctp.ctl_sock)->ep;
801 
802 hit:
803  sctp_endpoint_hold(ep);
804  read_unlock(&head->lock);
805  return ep;
806 }
807 
808 /* Insert association into the hash table. */
809 static void __sctp_hash_established(struct sctp_association *asoc)
810 {
811  struct net *net = sock_net(asoc->base.sk);
812  struct sctp_ep_common *epb;
813  struct sctp_hashbucket *head;
814 
815  epb = &asoc->base;
816 
817  /* Calculate which chain this entry will belong to. */
818  epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
819  asoc->peer.port);
820 
821  head = &sctp_assoc_hashtable[epb->hashent];
822 
823  sctp_write_lock(&head->lock);
824  hlist_add_head(&epb->node, &head->chain);
825  sctp_write_unlock(&head->lock);
826 }
827 
828 /* Add an association to the hash. Local BH-safe. */
830 {
831  if (asoc->temp)
832  return;
833 
835  __sctp_hash_established(asoc);
837 }
838 
839 /* Remove association from the hash table. */
840 static void __sctp_unhash_established(struct sctp_association *asoc)
841 {
842  struct net *net = sock_net(asoc->base.sk);
843  struct sctp_hashbucket *head;
844  struct sctp_ep_common *epb;
845 
846  epb = &asoc->base;
847 
848  epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
849  asoc->peer.port);
850 
851  head = &sctp_assoc_hashtable[epb->hashent];
852 
853  sctp_write_lock(&head->lock);
854  hlist_del_init(&epb->node);
855  sctp_write_unlock(&head->lock);
856 }
857 
858 /* Remove association from the hash table. Local BH-safe. */
860 {
861  if (asoc->temp)
862  return;
863 
865  __sctp_unhash_established(asoc);
867 }
868 
869 /* Look up an association. */
870 static struct sctp_association *__sctp_lookup_association(
871  struct net *net,
872  const union sctp_addr *local,
873  const union sctp_addr *peer,
874  struct sctp_transport **pt)
875 {
876  struct sctp_hashbucket *head;
877  struct sctp_ep_common *epb;
878  struct sctp_association *asoc;
879  struct sctp_transport *transport;
880  struct hlist_node *node;
881  int hash;
882 
883  /* Optimize here for direct hit, only listening connections can
884  * have wildcards anyways.
885  */
886  hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port),
887  ntohs(peer->v4.sin_port));
888  head = &sctp_assoc_hashtable[hash];
889  read_lock(&head->lock);
890  sctp_for_each_hentry(epb, node, &head->chain) {
891  asoc = sctp_assoc(epb);
892  transport = sctp_assoc_is_match(asoc, net, local, peer);
893  if (transport)
894  goto hit;
895  }
896 
897  read_unlock(&head->lock);
898 
899  return NULL;
900 
901 hit:
902  *pt = transport;
903  sctp_association_hold(asoc);
904  read_unlock(&head->lock);
905  return asoc;
906 }
907 
908 /* Look up an association. BH-safe. */
911  const union sctp_addr *laddr,
912  const union sctp_addr *paddr,
913  struct sctp_transport **transportp)
914 {
915  struct sctp_association *asoc;
916 
918  asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
920 
921  return asoc;
922 }
923 
924 /* Is there an association matching the given local and peer addresses? */
925 int sctp_has_association(struct net *net,
926  const union sctp_addr *laddr,
927  const union sctp_addr *paddr)
928 {
929  struct sctp_association *asoc;
930  struct sctp_transport *transport;
931 
932  if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
933  sctp_association_put(asoc);
934  return 1;
935  }
936 
937  return 0;
938 }
939 
940 /*
941  * SCTP Implementors Guide, 2.18 Handling of address
942  * parameters within the INIT or INIT-ACK.
943  *
944  * D) When searching for a matching TCB upon reception of an INIT
945  * or INIT-ACK chunk the receiver SHOULD use not only the
946  * source address of the packet (containing the INIT or
947  * INIT-ACK) but the receiver SHOULD also use all valid
948  * address parameters contained within the chunk.
949  *
950  * 2.18.3 Solution description
951  *
952  * This new text clearly specifies to an implementor the need
953  * to look within the INIT or INIT-ACK. Any implementation that
954  * does not do this, may not be able to establish associations
955  * in certain circumstances.
956  *
957  */
958 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
959  struct sk_buff *skb,
960  const union sctp_addr *laddr, struct sctp_transport **transportp)
961 {
962  struct sctp_association *asoc;
963  union sctp_addr addr;
964  union sctp_addr *paddr = &addr;
965  struct sctphdr *sh = sctp_hdr(skb);
966  union sctp_params params;
968  struct sctp_transport *transport;
969  struct sctp_af *af;
970 
971  /*
972  * This code will NOT touch anything inside the chunk--it is
973  * strictly READ-ONLY.
974  *
975  * RFC 2960 3 SCTP packet Format
976  *
977  * Multiple chunks can be bundled into one SCTP packet up to
978  * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
979  * COMPLETE chunks. These chunks MUST NOT be bundled with any
980  * other chunk in a packet. See Section 6.10 for more details
981  * on chunk bundling.
982  */
983 
984  /* Find the start of the TLVs and the end of the chunk. This is
985  * the region we search for address parameters.
986  */
987  init = (sctp_init_chunk_t *)skb->data;
988 
989  /* Walk the parameters looking for embedded addresses. */
990  sctp_walk_params(params, init, init_hdr.params) {
991 
992  /* Note: Ignoring hostname addresses. */
993  af = sctp_get_af_specific(param_type2af(params.p->type));
994  if (!af)
995  continue;
996 
997  af->from_addr_param(paddr, params.addr, sh->source, 0);
998 
999  asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
1000  if (asoc)
1001  return asoc;
1002  }
1003 
1004  return NULL;
1005 }
1006 
1007 /* ADD-IP, Section 5.2
1008  * When an endpoint receives an ASCONF Chunk from the remote peer
1009  * special procedures may be needed to identify the association the
1010  * ASCONF Chunk is associated with. To properly find the association
1011  * the following procedures SHOULD be followed:
1012  *
1013  * D2) If the association is not found, use the address found in the
1014  * Address Parameter TLV combined with the port number found in the
1015  * SCTP common header. If found proceed to rule D4.
1016  *
1017  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1018  * address found in the ASCONF Address Parameter TLV of each of the
1019  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1020  */
1021 static struct sctp_association *__sctp_rcv_asconf_lookup(
1022  struct net *net,
1023  sctp_chunkhdr_t *ch,
1024  const union sctp_addr *laddr,
1025  __be16 peer_port,
1026  struct sctp_transport **transportp)
1027 {
1028  sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1029  struct sctp_af *af;
1030  union sctp_addr_param *param;
1031  union sctp_addr paddr;
1032 
1033  /* Skip over the ADDIP header and find the Address parameter */
1034  param = (union sctp_addr_param *)(asconf + 1);
1035 
1036  af = sctp_get_af_specific(param_type2af(param->p.type));
1037  if (unlikely(!af))
1038  return NULL;
1039 
1040  af->from_addr_param(&paddr, param, peer_port, 0);
1041 
1042  return __sctp_lookup_association(net, laddr, &paddr, transportp);
1043 }
1044 
1045 
1046 /* SCTP-AUTH, Section 6.3:
1047 * If the receiver does not find a STCB for a packet containing an AUTH
1048 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1049 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1050 * association.
1051 *
1052 * This means that any chunks that can help us identify the association need
1053 * to be looked at to find this association.
1054 */
1055 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1056  struct sk_buff *skb,
1057  const union sctp_addr *laddr,
1058  struct sctp_transport **transportp)
1059 {
1060  struct sctp_association *asoc = NULL;
1061  sctp_chunkhdr_t *ch;
1062  int have_auth = 0;
1063  unsigned int chunk_num = 1;
1064  __u8 *ch_end;
1065 
1066  /* Walk through the chunks looking for AUTH or ASCONF chunks
1067  * to help us find the association.
1068  */
1069  ch = (sctp_chunkhdr_t *) skb->data;
1070  do {
1071  /* Break out if chunk length is less then minimal. */
1072  if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1073  break;
1074 
1075  ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1076  if (ch_end > skb_tail_pointer(skb))
1077  break;
1078 
1079  switch(ch->type) {
1080  case SCTP_CID_AUTH:
1081  have_auth = chunk_num;
1082  break;
1083 
1084  case SCTP_CID_COOKIE_ECHO:
1085  /* If a packet arrives containing an AUTH chunk as
1086  * a first chunk, a COOKIE-ECHO chunk as the second
1087  * chunk, and possibly more chunks after them, and
1088  * the receiver does not have an STCB for that
1089  * packet, then authentication is based on
1090  * the contents of the COOKIE- ECHO chunk.
1091  */
1092  if (have_auth == 1 && chunk_num == 2)
1093  return NULL;
1094  break;
1095 
1096  case SCTP_CID_ASCONF:
1097  if (have_auth || net->sctp.addip_noauth)
1098  asoc = __sctp_rcv_asconf_lookup(
1099  net, ch, laddr,
1100  sctp_hdr(skb)->source,
1101  transportp);
1102  default:
1103  break;
1104  }
1105 
1106  if (asoc)
1107  break;
1108 
1109  ch = (sctp_chunkhdr_t *) ch_end;
1110  chunk_num++;
1111  } while (ch_end < skb_tail_pointer(skb));
1112 
1113  return asoc;
1114 }
1115 
1116 /*
1117  * There are circumstances when we need to look inside the SCTP packet
1118  * for information to help us find the association. Examples
1119  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1120  * chunks.
1121  */
1122 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1123  struct sk_buff *skb,
1124  const union sctp_addr *laddr,
1125  struct sctp_transport **transportp)
1126 {
1127  sctp_chunkhdr_t *ch;
1128 
1129  ch = (sctp_chunkhdr_t *) skb->data;
1130 
1131  /* The code below will attempt to walk the chunk and extract
1132  * parameter information. Before we do that, we need to verify
1133  * that the chunk length doesn't cause overflow. Otherwise, we'll
1134  * walk off the end.
1135  */
1136  if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1137  return NULL;
1138 
1139  /* If this is INIT/INIT-ACK look inside the chunk too. */
1140  switch (ch->type) {
1141  case SCTP_CID_INIT:
1142  case SCTP_CID_INIT_ACK:
1143  return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1144  break;
1145 
1146  default:
1147  return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1148  break;
1149  }
1150 
1151 
1152  return NULL;
1153 }
1154 
1155 /* Lookup an association for an inbound skb. */
1156 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1157  struct sk_buff *skb,
1158  const union sctp_addr *paddr,
1159  const union sctp_addr *laddr,
1160  struct sctp_transport **transportp)
1161 {
1162  struct sctp_association *asoc;
1163 
1164  asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1165 
1166  /* Further lookup for INIT/INIT-ACK packets.
1167  * SCTP Implementors Guide, 2.18 Handling of address
1168  * parameters within the INIT or INIT-ACK.
1169  */
1170  if (!asoc)
1171  asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1172 
1173  return asoc;
1174 }