Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
transport.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  *
17  * Redistributions in binary form must reproduce the above
18  * copyright notice, this list of conditions and the following
19  * disclaimer in the documentation and/or other materials provided
20  * with the distribution.
21  *
22  * Neither the name of the Network Appliance, Inc. nor the names of
23  * its contributors may be used to endorse or promote products
24  * derived from this software without specific prior written
25  * permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * transport.c
42  *
43  * This file contains the top-level implementation of an RPC RDMA
44  * transport.
45  *
46  * Naming convention: functions beginning with xprt_ are part of the
47  * transport switch. All others are RPC RDMA internal.
48  */
49 
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/slab.h>
53 #include <linux/seq_file.h>
54 
55 #include "xprt_rdma.h"
56 
57 #ifdef RPC_DEBUG
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60 
61 MODULE_LICENSE("Dual BSD/GPL");
62 
63 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
64 MODULE_AUTHOR("Network Appliance, Inc.");
65 
66 /*
67  * tunables
68  */
69 
70 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
71 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
72 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
73 static unsigned int xprt_rdma_inline_write_padding;
74 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
76 
77 #ifdef RPC_DEBUG
78 
79 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
80 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
81 static unsigned int zero;
82 static unsigned int max_padding = PAGE_SIZE;
83 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
84 static unsigned int max_memreg = RPCRDMA_LAST - 1;
85 
86 static struct ctl_table_header *sunrpc_table_header;
87 
88 static ctl_table xr_tunables_table[] = {
89  {
90  .procname = "rdma_slot_table_entries",
91  .data = &xprt_rdma_slot_table_entries,
92  .maxlen = sizeof(unsigned int),
93  .mode = 0644,
95  .extra1 = &min_slot_table_size,
96  .extra2 = &max_slot_table_size
97  },
98  {
99  .procname = "rdma_max_inline_read",
100  .data = &xprt_rdma_max_inline_read,
101  .maxlen = sizeof(unsigned int),
102  .mode = 0644,
104  },
105  {
106  .procname = "rdma_max_inline_write",
107  .data = &xprt_rdma_max_inline_write,
108  .maxlen = sizeof(unsigned int),
109  .mode = 0644,
111  },
112  {
113  .procname = "rdma_inline_write_padding",
114  .data = &xprt_rdma_inline_write_padding,
115  .maxlen = sizeof(unsigned int),
116  .mode = 0644,
118  .extra1 = &zero,
119  .extra2 = &max_padding,
120  },
121  {
122  .procname = "rdma_memreg_strategy",
123  .data = &xprt_rdma_memreg_strategy,
124  .maxlen = sizeof(unsigned int),
125  .mode = 0644,
127  .extra1 = &min_memreg,
128  .extra2 = &max_memreg,
129  },
130  {
131  .procname = "rdma_pad_optimize",
132  .data = &xprt_rdma_pad_optimize,
133  .maxlen = sizeof(unsigned int),
134  .mode = 0644,
136  },
137  { },
138 };
139 
140 static ctl_table sunrpc_table[] = {
141  {
142  .procname = "sunrpc",
143  .mode = 0555,
144  .child = xr_tunables_table
145  },
146  { },
147 };
148 
149 #endif
150 
151 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
152 
153 static void
154 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
155 {
156  struct sockaddr *sap = (struct sockaddr *)
157  &rpcx_to_rdmad(xprt).addr;
158  struct sockaddr_in *sin = (struct sockaddr_in *)sap;
159  char buf[64];
160 
161  (void)rpc_ntop(sap, buf, sizeof(buf));
162  xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
163 
164  snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
165  xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
166 
167  xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
168 
169  snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
170  xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
171 
172  snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
173  xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
174 
175  /* netid */
176  xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
177 }
178 
179 static void
180 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
181 {
182  unsigned int i;
183 
184  for (i = 0; i < RPC_DISPLAY_MAX; i++)
185  switch (i) {
186  case RPC_DISPLAY_PROTO:
187  case RPC_DISPLAY_NETID:
188  continue;
189  default:
190  kfree(xprt->address_strings[i]);
191  }
192 }
193 
194 static void
195 xprt_rdma_connect_worker(struct work_struct *work)
196 {
197  struct rpcrdma_xprt *r_xprt =
198  container_of(work, struct rpcrdma_xprt, rdma_connect.work);
199  struct rpc_xprt *xprt = &r_xprt->xprt;
200  int rc = 0;
201 
202  current->flags |= PF_FSTRANS;
203  xprt_clear_connected(xprt);
204 
205  dprintk("RPC: %s: %sconnect\n", __func__,
206  r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
207  rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
208  if (rc)
209  xprt_wake_pending_tasks(xprt, rc);
210 
211  dprintk("RPC: %s: exit\n", __func__);
212  xprt_clear_connecting(xprt);
213  current->flags &= ~PF_FSTRANS;
214 }
215 
216 /*
217  * xprt_rdma_destroy
218  *
219  * Destroy the xprt.
220  * Free all memory associated with the object, including its own.
221  * NOTE: none of the *destroy methods free memory for their top-level
222  * objects, even though they may have allocated it (they do free
223  * private memory). It's up to the caller to handle it. In this
224  * case (RDMA transport), all structure memory is inlined with the
225  * struct rpcrdma_xprt.
226  */
227 static void
228 xprt_rdma_destroy(struct rpc_xprt *xprt)
229 {
230  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
231  int rc;
232 
233  dprintk("RPC: %s: called\n", __func__);
234 
236 
237  xprt_clear_connected(xprt);
238 
239  rpcrdma_buffer_destroy(&r_xprt->rx_buf);
240  rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
241  if (rc)
242  dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
243  __func__, rc);
244  rpcrdma_ia_close(&r_xprt->rx_ia);
245 
246  xprt_rdma_free_addresses(xprt);
247 
248  xprt_free(xprt);
249 
250  dprintk("RPC: %s: returning\n", __func__);
251 
252  module_put(THIS_MODULE);
253 }
254 
255 static const struct rpc_timeout xprt_rdma_default_timeout = {
256  .to_initval = 60 * HZ,
257  .to_maxval = 60 * HZ,
258 };
259 
265 static struct rpc_xprt *
266 xprt_setup_rdma(struct xprt_create *args)
267 {
268  struct rpcrdma_create_data_internal cdata;
269  struct rpc_xprt *xprt;
270  struct rpcrdma_xprt *new_xprt;
271  struct rpcrdma_ep *new_ep;
272  struct sockaddr_in *sin;
273  int rc;
274 
275  if (args->addrlen > sizeof(xprt->addr)) {
276  dprintk("RPC: %s: address too large\n", __func__);
277  return ERR_PTR(-EBADF);
278  }
279 
280  xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
281  xprt_rdma_slot_table_entries,
282  xprt_rdma_slot_table_entries);
283  if (xprt == NULL) {
284  dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
285  __func__);
286  return ERR_PTR(-ENOMEM);
287  }
288 
289  /* 60 second timeout, no retries */
290  xprt->timeout = &xprt_rdma_default_timeout;
291  xprt->bind_timeout = (60U * HZ);
292  xprt->reestablish_timeout = (5U * HZ);
293  xprt->idle_timeout = (5U * 60 * HZ);
294 
295  xprt->resvport = 0; /* privileged port not needed */
296  xprt->tsh_size = 0; /* RPC-RDMA handles framing */
297  xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
298  xprt->ops = &xprt_rdma_procs;
299 
300  /*
301  * Set up RDMA-specific connect data.
302  */
303 
304  /* Put server RDMA address in local cdata */
305  memcpy(&cdata.addr, args->dstaddr, args->addrlen);
306 
307  /* Ensure xprt->addr holds valid server TCP (not RDMA)
308  * address, for any side protocols which peek at it */
309  xprt->prot = IPPROTO_TCP;
310  xprt->addrlen = args->addrlen;
311  memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
312 
313  sin = (struct sockaddr_in *)&cdata.addr;
314  if (ntohs(sin->sin_port) != 0)
315  xprt_set_bound(xprt);
316 
317  dprintk("RPC: %s: %pI4:%u\n",
318  __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
319 
320  /* Set max requests */
321  cdata.max_requests = xprt->max_reqs;
322 
323  /* Set some length limits */
324  cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
325  cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
326 
327  cdata.inline_wsize = xprt_rdma_max_inline_write;
328  if (cdata.inline_wsize > cdata.wsize)
329  cdata.inline_wsize = cdata.wsize;
330 
331  cdata.inline_rsize = xprt_rdma_max_inline_read;
332  if (cdata.inline_rsize > cdata.rsize)
333  cdata.inline_rsize = cdata.rsize;
334 
335  cdata.padding = xprt_rdma_inline_write_padding;
336 
337  /*
338  * Create new transport instance, which includes initialized
339  * o ia
340  * o endpoint
341  * o buffers
342  */
343 
344  new_xprt = rpcx_to_rdmax(xprt);
345 
346  rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
347  xprt_rdma_memreg_strategy);
348  if (rc)
349  goto out1;
350 
351  /*
352  * initialize and create ep
353  */
354  new_xprt->rx_data = cdata;
355  new_ep = &new_xprt->rx_ep;
356  new_ep->rep_remote_addr = cdata.addr;
357 
358  rc = rpcrdma_ep_create(&new_xprt->rx_ep,
359  &new_xprt->rx_ia, &new_xprt->rx_data);
360  if (rc)
361  goto out2;
362 
363  /*
364  * Allocate pre-registered send and receive buffers for headers and
365  * any inline data. Also specify any padding which will be provided
366  * from a preregistered zero buffer.
367  */
368  rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
369  &new_xprt->rx_data);
370  if (rc)
371  goto out3;
372 
373  /*
374  * Register a callback for connection events. This is necessary because
375  * connection loss notification is async. We also catch connection loss
376  * when reaping receives.
377  */
378  INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
379  new_ep->rep_func = rpcrdma_conn_func;
380  new_ep->rep_xprt = xprt;
381 
382  xprt_rdma_format_addresses(xprt);
383 
384  if (!try_module_get(THIS_MODULE))
385  goto out4;
386 
387  return xprt;
388 
389 out4:
390  xprt_rdma_free_addresses(xprt);
391  rc = -EINVAL;
392 out3:
393  (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
394 out2:
395  rpcrdma_ia_close(&new_xprt->rx_ia);
396 out1:
397  xprt_free(xprt);
398  return ERR_PTR(rc);
399 }
400 
401 /*
402  * Close a connection, during shutdown or timeout/reconnect
403  */
404 static void
405 xprt_rdma_close(struct rpc_xprt *xprt)
406 {
407  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
408 
409  dprintk("RPC: %s: closing\n", __func__);
410  if (r_xprt->rx_ep.rep_connected > 0)
411  xprt->reestablish_timeout = 0;
412  xprt_disconnect_done(xprt);
413  (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
414 }
415 
416 static void
417 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
418 {
419  struct sockaddr_in *sap;
420 
421  sap = (struct sockaddr_in *)&xprt->addr;
422  sap->sin_port = htons(port);
423  sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
424  sap->sin_port = htons(port);
425  dprintk("RPC: %s: %u\n", __func__, port);
426 }
427 
428 static void
429 xprt_rdma_connect(struct rpc_task *task)
430 {
431  struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
432  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
433 
434  if (r_xprt->rx_ep.rep_connected != 0) {
435  /* Reconnect */
436  schedule_delayed_work(&r_xprt->rdma_connect,
437  xprt->reestablish_timeout);
438  xprt->reestablish_timeout <<= 1;
439  if (xprt->reestablish_timeout > (30 * HZ))
440  xprt->reestablish_timeout = (30 * HZ);
441  else if (xprt->reestablish_timeout < (5 * HZ))
442  xprt->reestablish_timeout = (5 * HZ);
443  } else {
444  schedule_delayed_work(&r_xprt->rdma_connect, 0);
445  if (!RPC_IS_ASYNC(task))
446  flush_delayed_work(&r_xprt->rdma_connect);
447  }
448 }
449 
450 static int
451 xprt_rdma_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
452 {
453  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
454  int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
455 
456  /* == RPC_CWNDSCALE @ init, but *after* setup */
457  if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
458  r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
459  dprintk("RPC: %s: cwndscale %lu\n", __func__,
460  r_xprt->rx_buf.rb_cwndscale);
461  BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
462  }
463  xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
464  return xprt_reserve_xprt_cong(xprt, task);
465 }
466 
467 /*
468  * The RDMA allocate/free functions need the task structure as a place
469  * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
470  * sequence. For this reason, the recv buffers are attached to send
471  * buffers for portions of the RPC. Note that the RPC layer allocates
472  * both send and receive buffers in the same call. We may register
473  * the receive buffer portion when using reply chunks.
474  */
475 static void *
476 xprt_rdma_allocate(struct rpc_task *task, size_t size)
477 {
478  struct rpc_xprt *xprt = task->tk_xprt;
479  struct rpcrdma_req *req, *nreq;
480 
481  req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
482  BUG_ON(NULL == req);
483 
484  if (size > req->rl_size) {
485  dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
486  "prog %d vers %d proc %d\n",
487  __func__, size, req->rl_size,
488  task->tk_client->cl_prog, task->tk_client->cl_vers,
489  task->tk_msg.rpc_proc->p_proc);
490  /*
491  * Outgoing length shortage. Our inline write max must have
492  * been configured to perform direct i/o.
493  *
494  * This is therefore a large metadata operation, and the
495  * allocate call was made on the maximum possible message,
496  * e.g. containing long filename(s) or symlink data. In
497  * fact, while these metadata operations *might* carry
498  * large outgoing payloads, they rarely *do*. However, we
499  * have to commit to the request here, so reallocate and
500  * register it now. The data path will never require this
501  * reallocation.
502  *
503  * If the allocation or registration fails, the RPC framework
504  * will (doggedly) retry.
505  */
506  if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
508  /* forced to "pure inline" */
509  dprintk("RPC: %s: too much data (%zd) for inline "
510  "(r/w max %d/%d)\n", __func__, size,
511  rpcx_to_rdmad(xprt).inline_rsize,
512  rpcx_to_rdmad(xprt).inline_wsize);
513  size = req->rl_size;
514  rpc_exit(task, -EIO); /* fail the operation */
515  rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
516  goto out;
517  }
518  if (task->tk_flags & RPC_TASK_SWAPPER)
519  nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
520  else
521  nreq = kmalloc(sizeof *req + size, GFP_NOFS);
522  if (nreq == NULL)
523  goto outfail;
524 
525  if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
526  nreq->rl_base, size + sizeof(struct rpcrdma_req)
527  - offsetof(struct rpcrdma_req, rl_base),
528  &nreq->rl_handle, &nreq->rl_iov)) {
529  kfree(nreq);
530  goto outfail;
531  }
532  rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
533  nreq->rl_size = size;
534  nreq->rl_niovs = 0;
535  nreq->rl_nchunks = 0;
536  nreq->rl_buffer = (struct rpcrdma_buffer *)req;
537  nreq->rl_reply = req->rl_reply;
538  memcpy(nreq->rl_segments,
539  req->rl_segments, sizeof nreq->rl_segments);
540  /* flag the swap with an unused field */
541  nreq->rl_iov.length = 0;
542  req->rl_reply = NULL;
543  req = nreq;
544  }
545  dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
546 out:
547  req->rl_connect_cookie = 0; /* our reserved value */
548  return req->rl_xdr_buf;
549 
550 outfail:
551  rpcrdma_buffer_put(req);
552  rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
553  return NULL;
554 }
555 
556 /*
557  * This function returns all RDMA resources to the pool.
558  */
559 static void
560 xprt_rdma_free(void *buffer)
561 {
562  struct rpcrdma_req *req;
563  struct rpcrdma_xprt *r_xprt;
564  struct rpcrdma_rep *rep;
565  int i;
566 
567  if (buffer == NULL)
568  return;
569 
570  req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
571  if (req->rl_iov.length == 0) { /* see allocate above */
572  r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
573  struct rpcrdma_xprt, rx_buf);
574  } else
575  r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
576  rep = req->rl_reply;
577 
578  dprintk("RPC: %s: called on 0x%p%s\n",
579  __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
580 
581  /*
582  * Finish the deregistration. When using mw bind, this was
583  * begun in rpcrdma_reply_handler(). In all other modes, we
584  * do it here, in thread context. The process is considered
585  * complete when the rr_func vector becomes NULL - this
586  * was put in place during rpcrdma_reply_handler() - the wait
587  * call below will not block if the dereg is "done". If
588  * interrupted, our framework will clean up.
589  */
590  for (i = 0; req->rl_nchunks;) {
591  --req->rl_nchunks;
593  &req->rl_segments[i], r_xprt, NULL);
594  }
595 
596  if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
597  rep->rr_func = NULL; /* abandon the callback */
598  req->rl_reply = NULL;
599  }
600 
601  if (req->rl_iov.length == 0) { /* see allocate above */
602  struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
603  oreq->rl_reply = req->rl_reply;
604  (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
605  req->rl_handle,
606  &req->rl_iov);
607  kfree(req);
608  req = oreq;
609  }
610 
611  /* Put back request+reply buffers */
612  rpcrdma_buffer_put(req);
613 }
614 
615 /*
616  * send_request invokes the meat of RPC RDMA. It must do the following:
617  * 1. Marshal the RPC request into an RPC RDMA request, which means
618  * putting a header in front of data, and creating IOVs for RDMA
619  * from those in the request.
620  * 2. In marshaling, detect opportunities for RDMA, and use them.
621  * 3. Post a recv message to set up asynch completion, then send
622  * the request (rpcrdma_ep_post).
623  * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
624  */
625 
626 static int
627 xprt_rdma_send_request(struct rpc_task *task)
628 {
629  struct rpc_rqst *rqst = task->tk_rqstp;
630  struct rpc_xprt *xprt = task->tk_xprt;
631  struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
632  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
633 
634  /* marshal the send itself */
635  if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
636  r_xprt->rx_stats.failed_marshal_count++;
637  dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
638  __func__);
639  return -EIO;
640  }
641 
642  if (req->rl_reply == NULL) /* e.g. reconnection */
644 
645  if (req->rl_reply) {
646  req->rl_reply->rr_func = rpcrdma_reply_handler;
647  /* this need only be done once, but... */
648  req->rl_reply->rr_xprt = xprt;
649  }
650 
651  /* Must suppress retransmit to maintain credits */
652  if (req->rl_connect_cookie == xprt->connect_cookie)
653  goto drop_connection;
654  req->rl_connect_cookie = xprt->connect_cookie;
655 
656  if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
657  goto drop_connection;
658 
659  rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
660  rqst->rq_bytes_sent = 0;
661  return 0;
662 
663 drop_connection:
664  xprt_disconnect_done(xprt);
665  return -ENOTCONN; /* implies disconnect */
666 }
667 
668 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
669 {
670  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
671  long idle_time = 0;
672 
673  if (xprt_connected(xprt))
674  idle_time = (long)(jiffies - xprt->last_used) / HZ;
675 
676  seq_printf(seq,
677  "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
678  "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
679 
680  0, /* need a local port? */
681  xprt->stat.bind_count,
682  xprt->stat.connect_count,
683  xprt->stat.connect_time,
684  idle_time,
685  xprt->stat.sends,
686  xprt->stat.recvs,
687  xprt->stat.bad_xids,
688  xprt->stat.req_u,
689  xprt->stat.bklog_u,
690 
691  r_xprt->rx_stats.read_chunk_count,
692  r_xprt->rx_stats.write_chunk_count,
693  r_xprt->rx_stats.reply_chunk_count,
694  r_xprt->rx_stats.total_rdma_request,
695  r_xprt->rx_stats.total_rdma_reply,
696  r_xprt->rx_stats.pullup_copy_count,
697  r_xprt->rx_stats.fixup_copy_count,
698  r_xprt->rx_stats.hardway_register_count,
699  r_xprt->rx_stats.failed_marshal_count,
700  r_xprt->rx_stats.bad_reply_count);
701 }
702 
703 /*
704  * Plumbing for rpc transport switch and kernel module
705  */
706 
707 static struct rpc_xprt_ops xprt_rdma_procs = {
708  .reserve_xprt = xprt_rdma_reserve_xprt,
709  .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
710  .alloc_slot = xprt_alloc_slot,
711  .release_request = xprt_release_rqst_cong, /* ditto */
712  .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
713  .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
714  .set_port = xprt_rdma_set_port,
715  .connect = xprt_rdma_connect,
716  .buf_alloc = xprt_rdma_allocate,
717  .buf_free = xprt_rdma_free,
718  .send_request = xprt_rdma_send_request,
719  .close = xprt_rdma_close,
720  .destroy = xprt_rdma_destroy,
721  .print_stats = xprt_rdma_print_stats
722 };
723 
724 static struct xprt_class xprt_rdma = {
725  .list = LIST_HEAD_INIT(xprt_rdma.list),
726  .name = "rdma",
727  .owner = THIS_MODULE,
728  .ident = XPRT_TRANSPORT_RDMA,
729  .setup = xprt_setup_rdma,
730 };
731 
732 static void __exit xprt_rdma_cleanup(void)
733 {
734  int rc;
735 
736  dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
737 #ifdef RPC_DEBUG
738  if (sunrpc_table_header) {
739  unregister_sysctl_table(sunrpc_table_header);
740  sunrpc_table_header = NULL;
741  }
742 #endif
743  rc = xprt_unregister_transport(&xprt_rdma);
744  if (rc)
745  dprintk("RPC: %s: xprt_unregister returned %i\n",
746  __func__, rc);
747 }
748 
749 static int __init xprt_rdma_init(void)
750 {
751  int rc;
752 
753  rc = xprt_register_transport(&xprt_rdma);
754 
755  if (rc)
756  return rc;
757 
758  dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
759 
760  dprintk(KERN_INFO "Defaults:\n");
761  dprintk(KERN_INFO "\tSlots %d\n"
762  "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
763  xprt_rdma_slot_table_entries,
764  xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
765  dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
766  xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
767 
768 #ifdef RPC_DEBUG
769  if (!sunrpc_table_header)
770  sunrpc_table_header = register_sysctl_table(sunrpc_table);
771 #endif
772  return 0;
773 }
774 
775 module_init(xprt_rdma_init);
776 module_exit(xprt_rdma_cleanup);