Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ntp.c
Go to the documentation of this file.
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 
19 #include "tick-internal.h"
20 
21 /*
22  * NTP timekeeping variables:
23  */
24 
25 DEFINE_SPINLOCK(ntp_lock);
26 
27 
28 /* USER_HZ period (usecs): */
29 unsigned long tick_usec = TICK_USEC;
30 
31 /* SHIFTED_HZ period (nsecs): */
32 unsigned long tick_nsec;
33 
34 static u64 tick_length;
35 static u64 tick_length_base;
36 
37 #define MAX_TICKADJ 500LL /* usecs */
38 #define MAX_TICKADJ_SCALED \
39  (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
40 
41 /*
42  * phase-lock loop variables
43  */
44 
45 /*
46  * clock synchronization status
47  *
48  * (TIME_ERROR prevents overwriting the CMOS clock)
49  */
50 static int time_state = TIME_OK;
51 
52 /* clock status bits: */
53 static int time_status = STA_UNSYNC;
54 
55 /* TAI offset (secs): */
56 static long time_tai;
57 
58 /* time adjustment (nsecs): */
59 static s64 time_offset;
60 
61 /* pll time constant: */
62 static long time_constant = 2;
63 
64 /* maximum error (usecs): */
65 static long time_maxerror = NTP_PHASE_LIMIT;
66 
67 /* estimated error (usecs): */
68 static long time_esterror = NTP_PHASE_LIMIT;
69 
70 /* frequency offset (scaled nsecs/secs): */
71 static s64 time_freq;
72 
73 /* time at last adjustment (secs): */
74 static long time_reftime;
75 
76 static long time_adjust;
77 
78 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
79 static s64 ntp_tick_adj;
80 
81 #ifdef CONFIG_NTP_PPS
82 
83 /*
84  * The following variables are used when a pulse-per-second (PPS) signal
85  * is available. They establish the engineering parameters of the clock
86  * discipline loop when controlled by the PPS signal.
87  */
88 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
89 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
90 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
91 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
92 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
93  increase pps_shift or consecutive bad
94  intervals to decrease it */
95 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
96 
97 static int pps_valid; /* signal watchdog counter */
98 static long pps_tf[3]; /* phase median filter */
99 static long pps_jitter; /* current jitter (ns) */
100 static struct timespec pps_fbase; /* beginning of the last freq interval */
101 static int pps_shift; /* current interval duration (s) (shift) */
102 static int pps_intcnt; /* interval counter */
103 static s64 pps_freq; /* frequency offset (scaled ns/s) */
104 static long pps_stabil; /* current stability (scaled ns/s) */
105 
106 /*
107  * PPS signal quality monitors
108  */
109 static long pps_calcnt; /* calibration intervals */
110 static long pps_jitcnt; /* jitter limit exceeded */
111 static long pps_stbcnt; /* stability limit exceeded */
112 static long pps_errcnt; /* calibration errors */
113 
114 
115 /* PPS kernel consumer compensates the whole phase error immediately.
116  * Otherwise, reduce the offset by a fixed factor times the time constant.
117  */
118 static inline s64 ntp_offset_chunk(s64 offset)
119 {
120  if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
121  return offset;
122  else
123  return shift_right(offset, SHIFT_PLL + time_constant);
124 }
125 
126 static inline void pps_reset_freq_interval(void)
127 {
128  /* the PPS calibration interval may end
129  surprisingly early */
130  pps_shift = PPS_INTMIN;
131  pps_intcnt = 0;
132 }
133 
139 static inline void pps_clear(void)
140 {
141  pps_reset_freq_interval();
142  pps_tf[0] = 0;
143  pps_tf[1] = 0;
144  pps_tf[2] = 0;
145  pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146  pps_freq = 0;
147 }
148 
149 /* Decrease pps_valid to indicate that another second has passed since
150  * the last PPS signal. When it reaches 0, indicate that PPS signal is
151  * missing.
152  *
153  * Must be called while holding a write on the ntp_lock
154  */
155 static inline void pps_dec_valid(void)
156 {
157  if (pps_valid > 0)
158  pps_valid--;
159  else {
160  time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162  pps_clear();
163  }
164 }
165 
166 static inline void pps_set_freq(s64 freq)
167 {
168  pps_freq = freq;
169 }
170 
171 static inline int is_error_status(int status)
172 {
173  return (time_status & (STA_UNSYNC|STA_CLOCKERR))
174  /* PPS signal lost when either PPS time or
175  * PPS frequency synchronization requested
176  */
177  || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
178  && !(time_status & STA_PPSSIGNAL))
179  /* PPS jitter exceeded when
180  * PPS time synchronization requested */
181  || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
183  /* PPS wander exceeded or calibration error when
184  * PPS frequency synchronization requested
185  */
186  || ((time_status & STA_PPSFREQ)
187  && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
188 }
189 
190 static inline void pps_fill_timex(struct timex *txc)
191 {
192  txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194  txc->jitter = pps_jitter;
195  if (!(time_status & STA_NANO))
196  txc->jitter /= NSEC_PER_USEC;
197  txc->shift = pps_shift;
198  txc->stabil = pps_stabil;
199  txc->jitcnt = pps_jitcnt;
200  txc->calcnt = pps_calcnt;
201  txc->errcnt = pps_errcnt;
202  txc->stbcnt = pps_stbcnt;
203 }
204 
205 #else /* !CONFIG_NTP_PPS */
206 
207 static inline s64 ntp_offset_chunk(s64 offset)
208 {
209  return shift_right(offset, SHIFT_PLL + time_constant);
210 }
211 
212 static inline void pps_reset_freq_interval(void) {}
213 static inline void pps_clear(void) {}
214 static inline void pps_dec_valid(void) {}
215 static inline void pps_set_freq(s64 freq) {}
216 
217 static inline int is_error_status(int status)
218 {
219  return status & (STA_UNSYNC|STA_CLOCKERR);
220 }
221 
222 static inline void pps_fill_timex(struct timex *txc)
223 {
224  /* PPS is not implemented, so these are zero */
225  txc->ppsfreq = 0;
226  txc->jitter = 0;
227  txc->shift = 0;
228  txc->stabil = 0;
229  txc->jitcnt = 0;
230  txc->calcnt = 0;
231  txc->errcnt = 0;
232  txc->stbcnt = 0;
233 }
234 
235 #endif /* CONFIG_NTP_PPS */
236 
237 
242 static inline int ntp_synced(void)
243 {
244  return !(time_status & STA_UNSYNC);
245 }
246 
247 
248 /*
249  * NTP methods:
250  */
251 
252 /*
253  * Update (tick_length, tick_length_base, tick_nsec), based
254  * on (tick_usec, ntp_tick_adj, time_freq):
255  */
256 static void ntp_update_frequency(void)
257 {
258  u64 second_length;
259  u64 new_base;
260 
261  second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
262  << NTP_SCALE_SHIFT;
263 
264  second_length += ntp_tick_adj;
265  second_length += time_freq;
266 
267  tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
268  new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
269 
270  /*
271  * Don't wait for the next second_overflow, apply
272  * the change to the tick length immediately:
273  */
274  tick_length += new_base - tick_length_base;
275  tick_length_base = new_base;
276 }
277 
278 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
279 {
280  time_status &= ~STA_MODE;
281 
282  if (secs < MINSEC)
283  return 0;
284 
285  if (!(time_status & STA_FLL) && (secs <= MAXSEC))
286  return 0;
287 
288  time_status |= STA_MODE;
289 
290  return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
291 }
292 
293 static void ntp_update_offset(long offset)
294 {
295  s64 freq_adj;
296  s64 offset64;
297  long secs;
298 
299  if (!(time_status & STA_PLL))
300  return;
301 
302  if (!(time_status & STA_NANO))
303  offset *= NSEC_PER_USEC;
304 
305  /*
306  * Scale the phase adjustment and
307  * clamp to the operating range.
308  */
309  offset = min(offset, MAXPHASE);
310  offset = max(offset, -MAXPHASE);
311 
312  /*
313  * Select how the frequency is to be controlled
314  * and in which mode (PLL or FLL).
315  */
316  secs = get_seconds() - time_reftime;
317  if (unlikely(time_status & STA_FREQHOLD))
318  secs = 0;
319 
320  time_reftime = get_seconds();
321 
322  offset64 = offset;
323  freq_adj = ntp_update_offset_fll(offset64, secs);
324 
325  /*
326  * Clamp update interval to reduce PLL gain with low
327  * sampling rate (e.g. intermittent network connection)
328  * to avoid instability.
329  */
330  if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331  secs = 1 << (SHIFT_PLL + 1 + time_constant);
332 
333  freq_adj += (offset64 * secs) <<
334  (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
335 
336  freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
337 
338  time_freq = max(freq_adj, -MAXFREQ_SCALED);
339 
340  time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
341 }
342 
346 void ntp_clear(void)
347 {
348  unsigned long flags;
349 
350  spin_lock_irqsave(&ntp_lock, flags);
351 
352  time_adjust = 0; /* stop active adjtime() */
353  time_status |= STA_UNSYNC;
354  time_maxerror = NTP_PHASE_LIMIT;
355  time_esterror = NTP_PHASE_LIMIT;
356 
357  ntp_update_frequency();
358 
359  tick_length = tick_length_base;
360  time_offset = 0;
361 
362  /* Clear PPS state variables */
363  pps_clear();
364  spin_unlock_irqrestore(&ntp_lock, flags);
365 
366 }
367 
368 
370 {
371  unsigned long flags;
372  s64 ret;
373 
374  spin_lock_irqsave(&ntp_lock, flags);
375  ret = tick_length;
376  spin_unlock_irqrestore(&ntp_lock, flags);
377  return ret;
378 }
379 
380 
381 /*
382  * this routine handles the overflow of the microsecond field
383  *
384  * The tricky bits of code to handle the accurate clock support
385  * were provided by Dave Mills ([email protected]) of NTP fame.
386  * They were originally developed for SUN and DEC kernels.
387  * All the kudos should go to Dave for this stuff.
388  *
389  * Also handles leap second processing, and returns leap offset
390  */
391 int second_overflow(unsigned long secs)
392 {
393  s64 delta;
394  int leap = 0;
395  unsigned long flags;
396 
397  spin_lock_irqsave(&ntp_lock, flags);
398 
399  /*
400  * Leap second processing. If in leap-insert state at the end of the
401  * day, the system clock is set back one second; if in leap-delete
402  * state, the system clock is set ahead one second.
403  */
404  switch (time_state) {
405  case TIME_OK:
406  if (time_status & STA_INS)
407  time_state = TIME_INS;
408  else if (time_status & STA_DEL)
409  time_state = TIME_DEL;
410  break;
411  case TIME_INS:
412  if (!(time_status & STA_INS))
413  time_state = TIME_OK;
414  else if (secs % 86400 == 0) {
415  leap = -1;
416  time_state = TIME_OOP;
417  time_tai++;
419  "Clock: inserting leap second 23:59:60 UTC\n");
420  }
421  break;
422  case TIME_DEL:
423  if (!(time_status & STA_DEL))
424  time_state = TIME_OK;
425  else if ((secs + 1) % 86400 == 0) {
426  leap = 1;
427  time_tai--;
428  time_state = TIME_WAIT;
430  "Clock: deleting leap second 23:59:59 UTC\n");
431  }
432  break;
433  case TIME_OOP:
434  time_state = TIME_WAIT;
435  break;
436 
437  case TIME_WAIT:
438  if (!(time_status & (STA_INS | STA_DEL)))
439  time_state = TIME_OK;
440  break;
441  }
442 
443 
444  /* Bump the maxerror field */
445  time_maxerror += MAXFREQ / NSEC_PER_USEC;
446  if (time_maxerror > NTP_PHASE_LIMIT) {
447  time_maxerror = NTP_PHASE_LIMIT;
448  time_status |= STA_UNSYNC;
449  }
450 
451  /* Compute the phase adjustment for the next second */
452  tick_length = tick_length_base;
453 
454  delta = ntp_offset_chunk(time_offset);
455  time_offset -= delta;
456  tick_length += delta;
457 
458  /* Check PPS signal */
459  pps_dec_valid();
460 
461  if (!time_adjust)
462  goto out;
463 
464  if (time_adjust > MAX_TICKADJ) {
465  time_adjust -= MAX_TICKADJ;
466  tick_length += MAX_TICKADJ_SCALED;
467  goto out;
468  }
469 
470  if (time_adjust < -MAX_TICKADJ) {
471  time_adjust += MAX_TICKADJ;
472  tick_length -= MAX_TICKADJ_SCALED;
473  goto out;
474  }
475 
476  tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
477  << NTP_SCALE_SHIFT;
478  time_adjust = 0;
479 
480 out:
481  spin_unlock_irqrestore(&ntp_lock, flags);
482 
483  return leap;
484 }
485 
486 #ifdef CONFIG_GENERIC_CMOS_UPDATE
487 
488 static void sync_cmos_clock(struct work_struct *work);
489 
490 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
491 
492 static void sync_cmos_clock(struct work_struct *work)
493 {
494  struct timespec now, next;
495  int fail = 1;
496 
497  /*
498  * If we have an externally synchronized Linux clock, then update
499  * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
500  * called as close as possible to 500 ms before the new second starts.
501  * This code is run on a timer. If the clock is set, that timer
502  * may not expire at the correct time. Thus, we adjust...
503  */
504  if (!ntp_synced()) {
505  /*
506  * Not synced, exit, do not restart a timer (if one is
507  * running, let it run out).
508  */
509  return;
510  }
511 
512  getnstimeofday(&now);
513  if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
514  fail = update_persistent_clock(now);
515 
516  next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
517  if (next.tv_nsec <= 0)
518  next.tv_nsec += NSEC_PER_SEC;
519 
520  if (!fail)
521  next.tv_sec = 659;
522  else
523  next.tv_sec = 0;
524 
525  if (next.tv_nsec >= NSEC_PER_SEC) {
526  next.tv_sec++;
527  next.tv_nsec -= NSEC_PER_SEC;
528  }
529  schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
530 }
531 
532 static void notify_cmos_timer(void)
533 {
534  schedule_delayed_work(&sync_cmos_work, 0);
535 }
536 
537 #else
538 static inline void notify_cmos_timer(void) { }
539 #endif
540 
541 
542 /*
543  * Propagate a new txc->status value into the NTP state:
544  */
545 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
546 {
547  if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
548  time_state = TIME_OK;
549  time_status = STA_UNSYNC;
550  /* restart PPS frequency calibration */
551  pps_reset_freq_interval();
552  }
553 
554  /*
555  * If we turn on PLL adjustments then reset the
556  * reference time to current time.
557  */
558  if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
559  time_reftime = get_seconds();
560 
561  /* only set allowed bits */
562  time_status &= STA_RONLY;
563  time_status |= txc->status & ~STA_RONLY;
564 }
565 
566 /*
567  * Called with ntp_lock held, so we can access and modify
568  * all the global NTP state:
569  */
570 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
571 {
572  if (txc->modes & ADJ_STATUS)
573  process_adj_status(txc, ts);
574 
575  if (txc->modes & ADJ_NANO)
576  time_status |= STA_NANO;
577 
578  if (txc->modes & ADJ_MICRO)
579  time_status &= ~STA_NANO;
580 
581  if (txc->modes & ADJ_FREQUENCY) {
582  time_freq = txc->freq * PPM_SCALE;
583  time_freq = min(time_freq, MAXFREQ_SCALED);
584  time_freq = max(time_freq, -MAXFREQ_SCALED);
585  /* update pps_freq */
586  pps_set_freq(time_freq);
587  }
588 
589  if (txc->modes & ADJ_MAXERROR)
590  time_maxerror = txc->maxerror;
591 
592  if (txc->modes & ADJ_ESTERROR)
593  time_esterror = txc->esterror;
594 
595  if (txc->modes & ADJ_TIMECONST) {
596  time_constant = txc->constant;
597  if (!(time_status & STA_NANO))
598  time_constant += 4;
599  time_constant = min(time_constant, (long)MAXTC);
600  time_constant = max(time_constant, 0l);
601  }
602 
603  if (txc->modes & ADJ_TAI && txc->constant > 0)
604  time_tai = txc->constant;
605 
606  if (txc->modes & ADJ_OFFSET)
607  ntp_update_offset(txc->offset);
608 
609  if (txc->modes & ADJ_TICK)
610  tick_usec = txc->tick;
611 
612  if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613  ntp_update_frequency();
614 }
615 
616 /*
617  * adjtimex mainly allows reading (and writing, if superuser) of
618  * kernel time-keeping variables. used by xntpd.
619  */
620 int do_adjtimex(struct timex *txc)
621 {
622  struct timespec ts;
623  int result;
624 
625  /* Validate the data before disabling interrupts */
626  if (txc->modes & ADJ_ADJTIME) {
627  /* singleshot must not be used with any other mode bits */
628  if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629  return -EINVAL;
630  if (!(txc->modes & ADJ_OFFSET_READONLY) &&
632  return -EPERM;
633  } else {
634  /* In order to modify anything, you gotta be super-user! */
635  if (txc->modes && !capable(CAP_SYS_TIME))
636  return -EPERM;
637 
638  /*
639  * if the quartz is off by more than 10% then
640  * something is VERY wrong!
641  */
642  if (txc->modes & ADJ_TICK &&
643  (txc->tick < 900000/USER_HZ ||
644  txc->tick > 1100000/USER_HZ))
645  return -EINVAL;
646  }
647 
648  if (txc->modes & ADJ_SETOFFSET) {
649  struct timespec delta;
650  delta.tv_sec = txc->time.tv_sec;
651  delta.tv_nsec = txc->time.tv_usec;
652  if (!capable(CAP_SYS_TIME))
653  return -EPERM;
654  if (!(txc->modes & ADJ_NANO))
655  delta.tv_nsec *= 1000;
656  result = timekeeping_inject_offset(&delta);
657  if (result)
658  return result;
659  }
660 
661  getnstimeofday(&ts);
662 
663  spin_lock_irq(&ntp_lock);
664 
665  if (txc->modes & ADJ_ADJTIME) {
666  long save_adjust = time_adjust;
667 
668  if (!(txc->modes & ADJ_OFFSET_READONLY)) {
669  /* adjtime() is independent from ntp_adjtime() */
670  time_adjust = txc->offset;
671  ntp_update_frequency();
672  }
673  txc->offset = save_adjust;
674  } else {
675 
676  /* If there are input parameters, then process them: */
677  if (txc->modes)
678  process_adjtimex_modes(txc, &ts);
679 
680  txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
682  if (!(time_status & STA_NANO))
683  txc->offset /= NSEC_PER_USEC;
684  }
685 
686  result = time_state; /* mostly `TIME_OK' */
687  /* check for errors */
688  if (is_error_status(time_status))
689  result = TIME_ERROR;
690 
691  txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
693  txc->maxerror = time_maxerror;
694  txc->esterror = time_esterror;
695  txc->status = time_status;
696  txc->constant = time_constant;
697  txc->precision = 1;
699  txc->tick = tick_usec;
700  txc->tai = time_tai;
701 
702  /* fill PPS status fields */
703  pps_fill_timex(txc);
704 
705  spin_unlock_irq(&ntp_lock);
706 
707  txc->time.tv_sec = ts.tv_sec;
708  txc->time.tv_usec = ts.tv_nsec;
709  if (!(time_status & STA_NANO))
710  txc->time.tv_usec /= NSEC_PER_USEC;
711 
712  notify_cmos_timer();
713 
714  return result;
715 }
716 
717 #ifdef CONFIG_NTP_PPS
718 
719 /* actually struct pps_normtime is good old struct timespec, but it is
720  * semantically different (and it is the reason why it was invented):
721  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
722  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
723 struct pps_normtime {
724  __kernel_time_t sec; /* seconds */
725  long nsec; /* nanoseconds */
726 };
727 
728 /* normalize the timestamp so that nsec is in the
729  ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
730 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
731 {
732  struct pps_normtime norm = {
733  .sec = ts.tv_sec,
734  .nsec = ts.tv_nsec
735  };
736 
737  if (norm.nsec > (NSEC_PER_SEC >> 1)) {
738  norm.nsec -= NSEC_PER_SEC;
739  norm.sec++;
740  }
741 
742  return norm;
743 }
744 
745 /* get current phase correction and jitter */
746 static inline long pps_phase_filter_get(long *jitter)
747 {
748  *jitter = pps_tf[0] - pps_tf[1];
749  if (*jitter < 0)
750  *jitter = -*jitter;
751 
752  /* TODO: test various filters */
753  return pps_tf[0];
754 }
755 
756 /* add the sample to the phase filter */
757 static inline void pps_phase_filter_add(long err)
758 {
759  pps_tf[2] = pps_tf[1];
760  pps_tf[1] = pps_tf[0];
761  pps_tf[0] = err;
762 }
763 
764 /* decrease frequency calibration interval length.
765  * It is halved after four consecutive unstable intervals.
766  */
767 static inline void pps_dec_freq_interval(void)
768 {
769  if (--pps_intcnt <= -PPS_INTCOUNT) {
770  pps_intcnt = -PPS_INTCOUNT;
771  if (pps_shift > PPS_INTMIN) {
772  pps_shift--;
773  pps_intcnt = 0;
774  }
775  }
776 }
777 
778 /* increase frequency calibration interval length.
779  * It is doubled after four consecutive stable intervals.
780  */
781 static inline void pps_inc_freq_interval(void)
782 {
783  if (++pps_intcnt >= PPS_INTCOUNT) {
784  pps_intcnt = PPS_INTCOUNT;
785  if (pps_shift < PPS_INTMAX) {
786  pps_shift++;
787  pps_intcnt = 0;
788  }
789  }
790 }
791 
792 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
793  * timestamps
794  *
795  * At the end of the calibration interval the difference between the
796  * first and last MONOTONIC_RAW clock timestamps divided by the length
797  * of the interval becomes the frequency update. If the interval was
798  * too long, the data are discarded.
799  * Returns the difference between old and new frequency values.
800  */
801 static long hardpps_update_freq(struct pps_normtime freq_norm)
802 {
803  long delta, delta_mod;
804  s64 ftemp;
805 
806  /* check if the frequency interval was too long */
807  if (freq_norm.sec > (2 << pps_shift)) {
808  time_status |= STA_PPSERROR;
809  pps_errcnt++;
810  pps_dec_freq_interval();
811  pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
812  freq_norm.sec);
813  return 0;
814  }
815 
816  /* here the raw frequency offset and wander (stability) is
817  * calculated. If the wander is less than the wander threshold
818  * the interval is increased; otherwise it is decreased.
819  */
820  ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
821  freq_norm.sec);
822  delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
823  pps_freq = ftemp;
824  if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
825  pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
826  time_status |= STA_PPSWANDER;
827  pps_stbcnt++;
828  pps_dec_freq_interval();
829  } else { /* good sample */
830  pps_inc_freq_interval();
831  }
832 
833  /* the stability metric is calculated as the average of recent
834  * frequency changes, but is used only for performance
835  * monitoring
836  */
837  delta_mod = delta;
838  if (delta_mod < 0)
839  delta_mod = -delta_mod;
840  pps_stabil += (div_s64(((s64)delta_mod) <<
842  NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
843 
844  /* if enabled, the system clock frequency is updated */
845  if ((time_status & STA_PPSFREQ) != 0 &&
846  (time_status & STA_FREQHOLD) == 0) {
847  time_freq = pps_freq;
848  ntp_update_frequency();
849  }
850 
851  return delta;
852 }
853 
854 /* correct REALTIME clock phase error against PPS signal */
855 static void hardpps_update_phase(long error)
856 {
857  long correction = -error;
858  long jitter;
859 
860  /* add the sample to the median filter */
861  pps_phase_filter_add(correction);
862  correction = pps_phase_filter_get(&jitter);
863 
864  /* Nominal jitter is due to PPS signal noise. If it exceeds the
865  * threshold, the sample is discarded; otherwise, if so enabled,
866  * the time offset is updated.
867  */
868  if (jitter > (pps_jitter << PPS_POPCORN)) {
869  pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
870  jitter, (pps_jitter << PPS_POPCORN));
871  time_status |= STA_PPSJITTER;
872  pps_jitcnt++;
873  } else if (time_status & STA_PPSTIME) {
874  /* correct the time using the phase offset */
875  time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
877  /* cancel running adjtime() */
878  time_adjust = 0;
879  }
880  /* update jitter */
881  pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
882 }
883 
884 /*
885  * hardpps() - discipline CPU clock oscillator to external PPS signal
886  *
887  * This routine is called at each PPS signal arrival in order to
888  * discipline the CPU clock oscillator to the PPS signal. It takes two
889  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
890  * is used to correct clock phase error and the latter is used to
891  * correct the frequency.
892  *
893  * This code is based on David Mills's reference nanokernel
894  * implementation. It was mostly rewritten but keeps the same idea.
895  */
896 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
897 {
898  struct pps_normtime pts_norm, freq_norm;
899  unsigned long flags;
900 
901  pts_norm = pps_normalize_ts(*phase_ts);
902 
903  spin_lock_irqsave(&ntp_lock, flags);
904 
905  /* clear the error bits, they will be set again if needed */
906  time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
907 
908  /* indicate signal presence */
909  time_status |= STA_PPSSIGNAL;
910  pps_valid = PPS_VALID;
911 
912  /* when called for the first time,
913  * just start the frequency interval */
914  if (unlikely(pps_fbase.tv_sec == 0)) {
915  pps_fbase = *raw_ts;
916  spin_unlock_irqrestore(&ntp_lock, flags);
917  return;
918  }
919 
920  /* ok, now we have a base for frequency calculation */
921  freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
922 
923  /* check that the signal is in the range
924  * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
925  if ((freq_norm.sec == 0) ||
926  (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
927  (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
928  time_status |= STA_PPSJITTER;
929  /* restart the frequency calibration interval */
930  pps_fbase = *raw_ts;
931  spin_unlock_irqrestore(&ntp_lock, flags);
932  pr_err("hardpps: PPSJITTER: bad pulse\n");
933  return;
934  }
935 
936  /* signal is ok */
937 
938  /* check if the current frequency interval is finished */
939  if (freq_norm.sec >= (1 << pps_shift)) {
940  pps_calcnt++;
941  /* restart the frequency calibration interval */
942  pps_fbase = *raw_ts;
943  hardpps_update_freq(freq_norm);
944  }
945 
946  hardpps_update_phase(pts_norm.nsec);
947 
948  spin_unlock_irqrestore(&ntp_lock, flags);
949 }
951 
952 #endif /* CONFIG_NTP_PPS */
953 
954 static int __init ntp_tick_adj_setup(char *str)
955 {
956  ntp_tick_adj = simple_strtol(str, NULL, 0);
957  ntp_tick_adj <<= NTP_SCALE_SHIFT;
958 
959  return 1;
960 }
961 
962 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
963 
964 void __init ntp_init(void)
965 {
966  ntp_clear();
967 }