Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nv50_crtc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2008 Maarten Maathuis.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining
6  * a copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sublicense, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial
15  * portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20  * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
21  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
22  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
23  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29 
30 #include "nouveau_reg.h"
31 #include "nouveau_drm.h"
32 #include "nouveau_dma.h"
33 #include "nouveau_gem.h"
34 #include "nouveau_hw.h"
35 #include "nouveau_encoder.h"
36 #include "nouveau_crtc.h"
37 #include "nouveau_connector.h"
38 #include "nv50_display.h"
39 
40 #include <subdev/clock.h>
41 
42 static void
43 nv50_crtc_lut_load(struct drm_crtc *crtc)
44 {
45  struct nouveau_drm *drm = nouveau_drm(crtc->dev);
46  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
47  void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
48  int i;
49 
50  NV_DEBUG(drm, "\n");
51 
52  for (i = 0; i < 256; i++) {
53  writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
54  writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
55  writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
56  }
57 
58  if (nv_crtc->lut.depth == 30) {
59  writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0);
60  writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2);
61  writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4);
62  }
63 }
64 
65 int
66 nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked)
67 {
68  struct drm_device *dev = nv_crtc->base.dev;
69  struct nouveau_drm *drm = nouveau_drm(dev);
70  struct nouveau_channel *evo = nv50_display(dev)->master;
71  int index = nv_crtc->index, ret;
72 
73  NV_DEBUG(drm, "index %d\n", nv_crtc->index);
74  NV_DEBUG(drm, "%s\n", blanked ? "blanked" : "unblanked");
75 
76  if (blanked) {
77  nv_crtc->cursor.hide(nv_crtc, false);
78 
79  ret = RING_SPACE(evo, nv_device(drm->device)->chipset != 0x50 ? 7 : 5);
80  if (ret) {
81  NV_ERROR(drm, "no space while blanking crtc\n");
82  return ret;
83  }
84  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
86  OUT_RING(evo, 0);
87  if (nv_device(drm->device)->chipset != 0x50) {
88  BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
90  }
91 
92  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
94  } else {
95  if (nv_crtc->cursor.visible)
96  nv_crtc->cursor.show(nv_crtc, false);
97  else
98  nv_crtc->cursor.hide(nv_crtc, false);
99 
100  ret = RING_SPACE(evo, nv_device(drm->device)->chipset != 0x50 ? 10 : 8);
101  if (ret) {
102  NV_ERROR(drm, "no space while unblanking crtc\n");
103  return ret;
104  }
105  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
106  OUT_RING(evo, nv_crtc->lut.depth == 8 ?
109  OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8);
110  if (nv_device(drm->device)->chipset != 0x50) {
111  BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
112  OUT_RING(evo, NvEvoVRAM);
113  }
114 
115  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2);
116  OUT_RING(evo, nv_crtc->fb.offset >> 8);
117  OUT_RING(evo, 0);
118  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
119  if (nv_device(drm->device)->chipset != 0x50)
120  if (nv_crtc->fb.tile_flags == 0x7a00 ||
121  nv_crtc->fb.tile_flags == 0xfe00)
122  OUT_RING(evo, NvEvoFB32);
123  else
124  if (nv_crtc->fb.tile_flags == 0x7000)
125  OUT_RING(evo, NvEvoFB16);
126  else
127  OUT_RING(evo, NvEvoVRAM_LP);
128  else
129  OUT_RING(evo, NvEvoVRAM_LP);
130  }
131 
132  nv_crtc->fb.blanked = blanked;
133  return 0;
134 }
135 
136 static int
137 nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
138 {
139  struct nouveau_channel *evo = nv50_display(nv_crtc->base.dev)->master;
140  struct nouveau_connector *nv_connector;
141  struct drm_connector *connector;
142  int head = nv_crtc->index, ret;
143  u32 mode = 0x00;
144 
145  nv_connector = nouveau_crtc_connector_get(nv_crtc);
146  connector = &nv_connector->base;
147  if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
148  if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
150  } else {
151  mode = nv_connector->dithering_mode;
152  }
153 
154  if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
155  if (connector->display_info.bpc >= 8)
156  mode |= DITHERING_DEPTH_8BPC;
157  } else {
158  mode |= nv_connector->dithering_depth;
159  }
160 
161  ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
162  if (ret == 0) {
163  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(head, DITHER_CTRL), 1);
164  OUT_RING (evo, mode);
165  if (update) {
166  BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1);
167  OUT_RING (evo, 0);
168  FIRE_RING (evo);
169  }
170  }
171 
172  return ret;
173 }
174 
175 static int
176 nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
177 {
178  struct drm_device *dev = nv_crtc->base.dev;
179  struct nouveau_drm *drm = nouveau_drm(dev);
180  struct nouveau_channel *evo = nv50_display(dev)->master;
181  int ret;
182  int adj;
183  u32 hue, vib;
184 
185  NV_DEBUG(drm, "vibrance = %i, hue = %i\n",
186  nv_crtc->color_vibrance, nv_crtc->vibrant_hue);
187 
188  ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
189  if (ret) {
190  NV_ERROR(drm, "no space while setting color vibrance\n");
191  return ret;
192  }
193 
194  adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
195  vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
196 
197  hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
198 
199  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1);
200  OUT_RING (evo, (hue << 20) | (vib << 8));
201 
202  if (update) {
203  BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1);
204  OUT_RING (evo, 0);
205  FIRE_RING (evo);
206  }
207 
208  return 0;
209 }
210 
211 struct nouveau_connector *
213 {
214  struct drm_device *dev = nv_crtc->base.dev;
215  struct drm_connector *connector;
216  struct drm_crtc *crtc = to_drm_crtc(nv_crtc);
217 
218  /* The safest approach is to find an encoder with the right crtc, that
219  * is also linked to a connector. */
220  list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
221  if (connector->encoder)
222  if (connector->encoder->crtc == crtc)
223  return nouveau_connector(connector);
224  }
225 
226  return NULL;
227 }
228 
229 static int
230 nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
231 {
232  struct nouveau_connector *nv_connector;
233  struct drm_crtc *crtc = &nv_crtc->base;
234  struct drm_device *dev = crtc->dev;
235  struct nouveau_drm *drm = nouveau_drm(dev);
236  struct nouveau_channel *evo = nv50_display(dev)->master;
237  struct drm_display_mode *umode = &crtc->mode;
238  struct drm_display_mode *omode;
239  int scaling_mode, ret;
240  u32 ctrl = 0, oX, oY;
241 
242  NV_DEBUG(drm, "\n");
243 
244  nv_connector = nouveau_crtc_connector_get(nv_crtc);
245  if (!nv_connector || !nv_connector->native_mode) {
246  NV_ERROR(drm, "no native mode, forcing panel scaling\n");
247  scaling_mode = DRM_MODE_SCALE_NONE;
248  } else {
249  scaling_mode = nv_connector->scaling_mode;
250  }
251 
252  /* start off at the resolution we programmed the crtc for, this
253  * effectively handles NONE/FULL scaling
254  */
255  if (scaling_mode != DRM_MODE_SCALE_NONE)
256  omode = nv_connector->native_mode;
257  else
258  omode = umode;
259 
260  oX = omode->hdisplay;
261  oY = omode->vdisplay;
262  if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
263  oY *= 2;
264 
265  /* add overscan compensation if necessary, will keep the aspect
266  * ratio the same as the backend mode unless overridden by the
267  * user setting both hborder and vborder properties.
268  */
269  if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
270  (nv_connector->underscan == UNDERSCAN_AUTO &&
271  nv_connector->edid &&
272  drm_detect_hdmi_monitor(nv_connector->edid)))) {
273  u32 bX = nv_connector->underscan_hborder;
274  u32 bY = nv_connector->underscan_vborder;
275  u32 aspect = (oY << 19) / oX;
276 
277  if (bX) {
278  oX -= (bX * 2);
279  if (bY) oY -= (bY * 2);
280  else oY = ((oX * aspect) + (aspect / 2)) >> 19;
281  } else {
282  oX -= (oX >> 4) + 32;
283  if (bY) oY -= (bY * 2);
284  else oY = ((oX * aspect) + (aspect / 2)) >> 19;
285  }
286  }
287 
288  /* handle CENTER/ASPECT scaling, taking into account the areas
289  * removed already for overscan compensation
290  */
291  switch (scaling_mode) {
293  oX = min((u32)umode->hdisplay, oX);
294  oY = min((u32)umode->vdisplay, oY);
295  /* fall-through */
297  if (oY < oX) {
298  u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
299  oX = ((oY * aspect) + (aspect / 2)) >> 19;
300  } else {
301  u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
302  oY = ((oX * aspect) + (aspect / 2)) >> 19;
303  }
304  break;
305  default:
306  break;
307  }
308 
309  if (umode->hdisplay != oX || umode->vdisplay != oY ||
310  umode->flags & DRM_MODE_FLAG_INTERLACE ||
311  umode->flags & DRM_MODE_FLAG_DBLSCAN)
313 
314  ret = RING_SPACE(evo, 5);
315  if (ret)
316  return ret;
317 
318  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1);
319  OUT_RING (evo, ctrl);
320  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2);
321  OUT_RING (evo, oY << 16 | oX);
322  OUT_RING (evo, oY << 16 | oX);
323 
324  if (update) {
326  nv50_display_sync(dev);
327  nv50_display_flip_next(crtc, crtc->fb, NULL);
328  }
329 
330  return 0;
331 }
332 
333 int
334 nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk)
335 {
336  struct nouveau_device *device = nouveau_dev(dev);
337  struct nouveau_clock *clk = nouveau_clock(device);
338 
339  return clk->pll_set(clk, PLL_VPLL0 + head, pclk);
340 }
341 
342 static void
343 nv50_crtc_destroy(struct drm_crtc *crtc)
344 {
345  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
346  struct nouveau_drm *drm = nouveau_drm(crtc->dev);
347 
348  NV_DEBUG(drm, "\n");
349 
350  nouveau_bo_unmap(nv_crtc->lut.nvbo);
351  nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
352  nouveau_bo_unmap(nv_crtc->cursor.nvbo);
353  nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
354  drm_crtc_cleanup(&nv_crtc->base);
355  kfree(nv_crtc);
356 }
357 
358 int
359 nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
360  uint32_t buffer_handle, uint32_t width, uint32_t height)
361 {
362  struct drm_device *dev = crtc->dev;
363  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
364  struct nouveau_bo *cursor = NULL;
365  struct drm_gem_object *gem;
366  int ret = 0, i;
367 
368  if (!buffer_handle) {
369  nv_crtc->cursor.hide(nv_crtc, true);
370  return 0;
371  }
372 
373  if (width != 64 || height != 64)
374  return -EINVAL;
375 
376  gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
377  if (!gem)
378  return -ENOENT;
379  cursor = nouveau_gem_object(gem);
380 
381  ret = nouveau_bo_map(cursor);
382  if (ret)
383  goto out;
384 
385  /* The simple will do for now. */
386  for (i = 0; i < 64 * 64; i++)
387  nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i));
388 
389  nouveau_bo_unmap(cursor);
390 
391  nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset);
392  nv_crtc->cursor.show(nv_crtc, true);
393 
394 out:
395  drm_gem_object_unreference_unlocked(gem);
396  return ret;
397 }
398 
399 int
400 nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
401 {
402  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
403 
404  nv_crtc->cursor.set_pos(nv_crtc, x, y);
405  return 0;
406 }
407 
408 static void
409 nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
411 {
412  int end = (start + size > 256) ? 256 : start + size, i;
413  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
414 
415  for (i = start; i < end; i++) {
416  nv_crtc->lut.r[i] = r[i];
417  nv_crtc->lut.g[i] = g[i];
418  nv_crtc->lut.b[i] = b[i];
419  }
420 
421  /* We need to know the depth before we upload, but it's possible to
422  * get called before a framebuffer is bound. If this is the case,
423  * mark the lut values as dirty by setting depth==0, and it'll be
424  * uploaded on the first mode_set_base()
425  */
426  if (!nv_crtc->base.fb) {
427  nv_crtc->lut.depth = 0;
428  return;
429  }
430 
431  nv50_crtc_lut_load(crtc);
432 }
433 
434 static void
435 nv50_crtc_save(struct drm_crtc *crtc)
436 {
437  struct nouveau_drm *drm = nouveau_drm(crtc->dev);
438  NV_ERROR(drm, "!!\n");
439 }
440 
441 static void
442 nv50_crtc_restore(struct drm_crtc *crtc)
443 {
444  struct nouveau_drm *drm = nouveau_drm(crtc->dev);
445  NV_ERROR(drm, "!!\n");
446 }
447 
448 static const struct drm_crtc_funcs nv50_crtc_funcs = {
449  .save = nv50_crtc_save,
450  .restore = nv50_crtc_restore,
451  .cursor_set = nv50_crtc_cursor_set,
452  .cursor_move = nv50_crtc_cursor_move,
453  .gamma_set = nv50_crtc_gamma_set,
454  .set_config = drm_crtc_helper_set_config,
455  .page_flip = nouveau_crtc_page_flip,
456  .destroy = nv50_crtc_destroy,
457 };
458 
459 static void
460 nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
461 {
462 }
463 
464 static void
465 nv50_crtc_prepare(struct drm_crtc *crtc)
466 {
467  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
468  struct drm_device *dev = crtc->dev;
469  struct nouveau_drm *drm = nouveau_drm(dev);
470 
471  NV_DEBUG(drm, "index %d\n", nv_crtc->index);
472 
474  drm_vblank_pre_modeset(dev, nv_crtc->index);
475  nv50_crtc_blank(nv_crtc, true);
476 }
477 
478 static void
479 nv50_crtc_commit(struct drm_crtc *crtc)
480 {
481  struct drm_device *dev = crtc->dev;
482  struct nouveau_drm *drm = nouveau_drm(dev);
483  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
484 
485  NV_DEBUG(drm, "index %d\n", nv_crtc->index);
486 
487  nv50_crtc_blank(nv_crtc, false);
488  drm_vblank_post_modeset(dev, nv_crtc->index);
489  nv50_display_sync(dev);
490  nv50_display_flip_next(crtc, crtc->fb, NULL);
491 }
492 
493 static bool
494 nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
495  struct drm_display_mode *adjusted_mode)
496 {
497  return true;
498 }
499 
500 static int
501 nv50_crtc_do_mode_set_base(struct drm_crtc *crtc,
502  struct drm_framebuffer *passed_fb,
503  int x, int y, bool atomic)
504 {
505  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
506  struct drm_device *dev = nv_crtc->base.dev;
507  struct nouveau_drm *drm = nouveau_drm(dev);
508  struct nouveau_channel *evo = nv50_display(dev)->master;
509  struct drm_framebuffer *drm_fb;
510  struct nouveau_framebuffer *fb;
511  int ret;
512 
513  NV_DEBUG(drm, "index %d\n", nv_crtc->index);
514 
515  /* no fb bound */
516  if (!atomic && !crtc->fb) {
517  NV_DEBUG(drm, "No FB bound\n");
518  return 0;
519  }
520 
521  /* If atomic, we want to switch to the fb we were passed, so
522  * now we update pointers to do that. (We don't pin; just
523  * assume we're already pinned and update the base address.)
524  */
525  if (atomic) {
526  drm_fb = passed_fb;
527  fb = nouveau_framebuffer(passed_fb);
528  } else {
529  drm_fb = crtc->fb;
530  fb = nouveau_framebuffer(crtc->fb);
531  /* If not atomic, we can go ahead and pin, and unpin the
532  * old fb we were passed.
533  */
535  if (ret)
536  return ret;
537 
538  if (passed_fb) {
539  struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb);
540  nouveau_bo_unpin(ofb->nvbo);
541  }
542  }
543 
544  nv_crtc->fb.offset = fb->nvbo->bo.offset;
545  nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo);
546  nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8;
547  if (!nv_crtc->fb.blanked && nv_device(drm->device)->chipset != 0x50) {
548  ret = RING_SPACE(evo, 2);
549  if (ret)
550  return ret;
551 
552  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1);
553  OUT_RING (evo, fb->r_dma);
554  }
555 
556  ret = RING_SPACE(evo, 12);
557  if (ret)
558  return ret;
559 
560  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5);
561  OUT_RING (evo, nv_crtc->fb.offset >> 8);
562  OUT_RING (evo, 0);
563  OUT_RING (evo, (drm_fb->height << 16) | drm_fb->width);
564  OUT_RING (evo, fb->r_pitch);
565  OUT_RING (evo, fb->r_format);
566 
567  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1);
568  OUT_RING (evo, fb->base.depth == 8 ?
570 
571  BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1);
572  OUT_RING (evo, (y << 16) | x);
573 
574  if (nv_crtc->lut.depth != fb->base.depth) {
575  nv_crtc->lut.depth = fb->base.depth;
576  nv50_crtc_lut_load(crtc);
577  }
578 
579  return 0;
580 }
581 
582 static int
583 nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
584  struct drm_display_mode *mode, int x, int y,
585  struct drm_framebuffer *old_fb)
586 {
587  struct drm_device *dev = crtc->dev;
588  struct nouveau_channel *evo = nv50_display(dev)->master;
589  struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
590  u32 head = nv_crtc->index * 0x400;
591  u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
592  u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
593  u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
594  u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
595  u32 vblan2e = 0, vblan2s = 1;
596  int ret;
597 
598  /* hw timing description looks like this:
599  *
600  * <sync> <back porch> <---------display---------> <front porch>
601  * ______
602  * |____________|---------------------------|____________|
603  *
604  * ^ synce ^ blanke ^ blanks ^ active
605  *
606  * interlaced modes also have 2 additional values pointing at the end
607  * and start of the next field's blanking period.
608  */
609 
610  hactive = mode->htotal;
611  hsynce = mode->hsync_end - mode->hsync_start - 1;
612  hbackp = mode->htotal - mode->hsync_end;
613  hblanke = hsynce + hbackp;
614  hfrontp = mode->hsync_start - mode->hdisplay;
615  hblanks = mode->htotal - hfrontp - 1;
616 
617  vactive = mode->vtotal * vscan / ilace;
618  vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
619  vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
620  vblanke = vsynce + vbackp;
621  vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
622  vblanks = vactive - vfrontp - 1;
623  if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
624  vblan2e = vactive + vsynce + vbackp;
625  vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
626  vactive = (vactive * 2) + 1;
627  }
628 
629  ret = RING_SPACE(evo, 18);
630  if (ret == 0) {
631  BEGIN_NV04(evo, 0, 0x0804 + head, 2);
632  OUT_RING (evo, 0x00800000 | mode->clock);
633  OUT_RING (evo, (ilace == 2) ? 2 : 0);
634  BEGIN_NV04(evo, 0, 0x0810 + head, 6);
635  OUT_RING (evo, 0x00000000); /* border colour */
636  OUT_RING (evo, (vactive << 16) | hactive);
637  OUT_RING (evo, ( vsynce << 16) | hsynce);
638  OUT_RING (evo, (vblanke << 16) | hblanke);
639  OUT_RING (evo, (vblanks << 16) | hblanks);
640  OUT_RING (evo, (vblan2e << 16) | vblan2s);
641  BEGIN_NV04(evo, 0, 0x082c + head, 1);
642  OUT_RING (evo, 0x00000000);
643  BEGIN_NV04(evo, 0, 0x0900 + head, 1);
644  OUT_RING (evo, 0x00000311); /* makes sync channel work */
645  BEGIN_NV04(evo, 0, 0x08c8 + head, 1);
646  OUT_RING (evo, (umode->vdisplay << 16) | umode->hdisplay);
647  BEGIN_NV04(evo, 0, 0x08d4 + head, 1);
648  OUT_RING (evo, 0x00000000); /* screen position */
649  }
650 
651  nv_crtc->set_dither(nv_crtc, false);
652  nv_crtc->set_scale(nv_crtc, false);
653  nv_crtc->set_color_vibrance(nv_crtc, false);
654 
655  return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
656 }
657 
658 static int
659 nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
660  struct drm_framebuffer *old_fb)
661 {
662  int ret;
663 
665  ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
666  if (ret)
667  return ret;
668 
669  ret = nv50_display_sync(crtc->dev);
670  if (ret)
671  return ret;
672 
673  return nv50_display_flip_next(crtc, crtc->fb, NULL);
674 }
675 
676 static int
677 nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
678  struct drm_framebuffer *fb,
679  int x, int y, enum mode_set_atomic state)
680 {
681  int ret;
682 
684  ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true);
685  if (ret)
686  return ret;
687 
688  return nv50_display_sync(crtc->dev);
689 }
690 
691 static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = {
692  .dpms = nv50_crtc_dpms,
693  .prepare = nv50_crtc_prepare,
694  .commit = nv50_crtc_commit,
695  .mode_fixup = nv50_crtc_mode_fixup,
696  .mode_set = nv50_crtc_mode_set,
697  .mode_set_base = nv50_crtc_mode_set_base,
698  .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
699  .load_lut = nv50_crtc_lut_load,
700 };
701 
702 int
704 {
705  struct nouveau_drm *drm = nouveau_drm(dev);
706  struct nouveau_crtc *nv_crtc = NULL;
707  int ret, i;
708 
709  NV_DEBUG(drm, "\n");
710 
711  nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
712  if (!nv_crtc)
713  return -ENOMEM;
714 
715  nv_crtc->index = index;
716  nv_crtc->set_dither = nv50_crtc_set_dither;
717  nv_crtc->set_scale = nv50_crtc_set_scale;
718  nv_crtc->set_color_vibrance = nv50_crtc_set_color_vibrance;
719  nv_crtc->color_vibrance = 50;
720  nv_crtc->vibrant_hue = 0;
721  nv_crtc->lut.depth = 0;
722  for (i = 0; i < 256; i++) {
723  nv_crtc->lut.r[i] = i << 8;
724  nv_crtc->lut.g[i] = i << 8;
725  nv_crtc->lut.b[i] = i << 8;
726  }
727 
728  drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs);
729  drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs);
730  drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
731 
732  ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM,
733  0, 0x0000, NULL, &nv_crtc->lut.nvbo);
734  if (!ret) {
735  ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
736  if (!ret)
737  ret = nouveau_bo_map(nv_crtc->lut.nvbo);
738  if (ret)
739  nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
740  }
741 
742  if (ret)
743  goto out;
744 
745 
746  ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
747  0, 0x0000, NULL, &nv_crtc->cursor.nvbo);
748  if (!ret) {
749  ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
750  if (!ret)
751  ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
752  if (ret)
753  nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
754  }
755 
756  if (ret)
757  goto out;
758 
759  nv50_cursor_init(nv_crtc);
760 out:
761  if (ret)
762  nv50_crtc_destroy(&nv_crtc->base);
763  return ret;
764 }