Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
padata.c
Go to the documentation of this file.
1 /*
2  * padata.c - generic interface to process data streams in parallel
3  *
4  * See Documentation/padata.txt for an api documentation.
5  *
6  * Copyright (C) 2008, 2009 secunet Security Networks AG
7  * Copyright (C) 2008, 2009 Steffen Klassert <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc.,
20  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  */
22 
23 #include <linux/export.h>
24 #include <linux/cpumask.h>
25 #include <linux/err.h>
26 #include <linux/cpu.h>
27 #include <linux/padata.h>
28 #include <linux/mutex.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/sysfs.h>
32 #include <linux/rcupdate.h>
33 
34 #define MAX_OBJ_NUM 1000
35 
36 static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index)
37 {
38  int cpu, target_cpu;
39 
40  target_cpu = cpumask_first(pd->cpumask.pcpu);
41  for (cpu = 0; cpu < cpu_index; cpu++)
42  target_cpu = cpumask_next(target_cpu, pd->cpumask.pcpu);
43 
44  return target_cpu;
45 }
46 
47 static int padata_cpu_hash(struct parallel_data *pd)
48 {
49  int cpu_index;
50 
51  /*
52  * Hash the sequence numbers to the cpus by taking
53  * seq_nr mod. number of cpus in use.
54  */
55 
56  spin_lock(&pd->seq_lock);
57  cpu_index = pd->seq_nr % cpumask_weight(pd->cpumask.pcpu);
58  pd->seq_nr++;
59  spin_unlock(&pd->seq_lock);
60 
61  return padata_index_to_cpu(pd, cpu_index);
62 }
63 
64 static void padata_parallel_worker(struct work_struct *parallel_work)
65 {
66  struct padata_parallel_queue *pqueue;
67  struct parallel_data *pd;
68  struct padata_instance *pinst;
69  LIST_HEAD(local_list);
70 
72  pqueue = container_of(parallel_work,
73  struct padata_parallel_queue, work);
74  pd = pqueue->pd;
75  pinst = pd->pinst;
76 
77  spin_lock(&pqueue->parallel.lock);
78  list_replace_init(&pqueue->parallel.list, &local_list);
79  spin_unlock(&pqueue->parallel.lock);
80 
81  while (!list_empty(&local_list)) {
82  struct padata_priv *padata;
83 
84  padata = list_entry(local_list.next,
85  struct padata_priv, list);
86 
87  list_del_init(&padata->list);
88 
89  padata->parallel(padata);
90  }
91 
93 }
94 
108  struct padata_priv *padata, int cb_cpu)
109 {
110  int target_cpu, err;
112  struct parallel_data *pd;
113 
114  rcu_read_lock_bh();
115 
116  pd = rcu_dereference(pinst->pd);
117 
118  err = -EINVAL;
119  if (!(pinst->flags & PADATA_INIT) || pinst->flags & PADATA_INVALID)
120  goto out;
121 
122  if (!cpumask_test_cpu(cb_cpu, pd->cpumask.cbcpu))
123  goto out;
124 
125  err = -EBUSY;
126  if ((pinst->flags & PADATA_RESET))
127  goto out;
128 
129  if (atomic_read(&pd->refcnt) >= MAX_OBJ_NUM)
130  goto out;
131 
132  err = 0;
133  atomic_inc(&pd->refcnt);
134  padata->pd = pd;
135  padata->cb_cpu = cb_cpu;
136 
137  target_cpu = padata_cpu_hash(pd);
138  queue = per_cpu_ptr(pd->pqueue, target_cpu);
139 
140  spin_lock(&queue->parallel.lock);
141  list_add_tail(&padata->list, &queue->parallel.list);
142  spin_unlock(&queue->parallel.lock);
143 
144  queue_work_on(target_cpu, pinst->wq, &queue->work);
145 
146 out:
147  rcu_read_unlock_bh();
148 
149  return err;
150 }
152 
153 /*
154  * padata_get_next - Get the next object that needs serialization.
155  *
156  * Return values are:
157  *
158  * A pointer to the control struct of the next object that needs
159  * serialization, if present in one of the percpu reorder queues.
160  *
161  * NULL, if all percpu reorder queues are empty.
162  *
163  * -EINPROGRESS, if the next object that needs serialization will
164  * be parallel processed by another cpu and is not yet present in
165  * the cpu's reorder queue.
166  *
167  * -ENODATA, if this cpu has to do the parallel processing for
168  * the next object.
169  */
170 static struct padata_priv *padata_get_next(struct parallel_data *pd)
171 {
172  int cpu, num_cpus;
173  unsigned int next_nr, next_index;
174  struct padata_parallel_queue *queue, *next_queue;
175  struct padata_priv *padata;
176  struct padata_list *reorder;
177 
178  num_cpus = cpumask_weight(pd->cpumask.pcpu);
179 
180  /*
181  * Calculate the percpu reorder queue and the sequence
182  * number of the next object.
183  */
184  next_nr = pd->processed;
185  next_index = next_nr % num_cpus;
186  cpu = padata_index_to_cpu(pd, next_index);
187  next_queue = per_cpu_ptr(pd->pqueue, cpu);
188 
189  padata = NULL;
190 
191  reorder = &next_queue->reorder;
192 
193  if (!list_empty(&reorder->list)) {
194  padata = list_entry(reorder->list.next,
195  struct padata_priv, list);
196 
197  spin_lock(&reorder->lock);
198  list_del_init(&padata->list);
200  spin_unlock(&reorder->lock);
201 
202  pd->processed++;
203 
204  goto out;
205  }
206 
207  queue = per_cpu_ptr(pd->pqueue, smp_processor_id());
208  if (queue->cpu_index == next_queue->cpu_index) {
209  padata = ERR_PTR(-ENODATA);
210  goto out;
211  }
212 
213  padata = ERR_PTR(-EINPROGRESS);
214 out:
215  return padata;
216 }
217 
218 static void padata_reorder(struct parallel_data *pd)
219 {
220  int cb_cpu;
221  struct padata_priv *padata;
222  struct padata_serial_queue *squeue;
223  struct padata_instance *pinst = pd->pinst;
224 
225  /*
226  * We need to ensure that only one cpu can work on dequeueing of
227  * the reorder queue the time. Calculating in which percpu reorder
228  * queue the next object will arrive takes some time. A spinlock
229  * would be highly contended. Also it is not clear in which order
230  * the objects arrive to the reorder queues. So a cpu could wait to
231  * get the lock just to notice that there is nothing to do at the
232  * moment. Therefore we use a trylock and let the holder of the lock
233  * care for all the objects enqueued during the holdtime of the lock.
234  */
235  if (!spin_trylock_bh(&pd->lock))
236  return;
237 
238  while (1) {
239  padata = padata_get_next(pd);
240 
241  /*
242  * All reorder queues are empty, or the next object that needs
243  * serialization is parallel processed by another cpu and is
244  * still on it's way to the cpu's reorder queue, nothing to
245  * do for now.
246  */
247  if (!padata || PTR_ERR(padata) == -EINPROGRESS)
248  break;
249 
250  /*
251  * This cpu has to do the parallel processing of the next
252  * object. It's waiting in the cpu's parallelization queue,
253  * so exit immediately.
254  */
255  if (PTR_ERR(padata) == -ENODATA) {
256  del_timer(&pd->timer);
257  spin_unlock_bh(&pd->lock);
258  return;
259  }
260 
261  cb_cpu = padata->cb_cpu;
262  squeue = per_cpu_ptr(pd->squeue, cb_cpu);
263 
264  spin_lock(&squeue->serial.lock);
265  list_add_tail(&padata->list, &squeue->serial.list);
266  spin_unlock(&squeue->serial.lock);
267 
268  queue_work_on(cb_cpu, pinst->wq, &squeue->work);
269  }
270 
271  spin_unlock_bh(&pd->lock);
272 
273  /*
274  * The next object that needs serialization might have arrived to
275  * the reorder queues in the meantime, we will be called again
276  * from the timer function if no one else cares for it.
277  */
278  if (atomic_read(&pd->reorder_objects)
279  && !(pinst->flags & PADATA_RESET))
280  mod_timer(&pd->timer, jiffies + HZ);
281  else
282  del_timer(&pd->timer);
283 
284  return;
285 }
286 
287 static void padata_reorder_timer(unsigned long arg)
288 {
289  struct parallel_data *pd = (struct parallel_data *)arg;
290 
291  padata_reorder(pd);
292 }
293 
294 static void padata_serial_worker(struct work_struct *serial_work)
295 {
296  struct padata_serial_queue *squeue;
297  struct parallel_data *pd;
298  LIST_HEAD(local_list);
299 
301  squeue = container_of(serial_work, struct padata_serial_queue, work);
302  pd = squeue->pd;
303 
304  spin_lock(&squeue->serial.lock);
305  list_replace_init(&squeue->serial.list, &local_list);
306  spin_unlock(&squeue->serial.lock);
307 
308  while (!list_empty(&local_list)) {
309  struct padata_priv *padata;
310 
311  padata = list_entry(local_list.next,
312  struct padata_priv, list);
313 
314  list_del_init(&padata->list);
315 
316  padata->serial(padata);
317  atomic_dec(&pd->refcnt);
318  }
319  local_bh_enable();
320 }
321 
330 void padata_do_serial(struct padata_priv *padata)
331 {
332  int cpu;
333  struct padata_parallel_queue *pqueue;
334  struct parallel_data *pd;
335 
336  pd = padata->pd;
337 
338  cpu = get_cpu();
339  pqueue = per_cpu_ptr(pd->pqueue, cpu);
340 
341  spin_lock(&pqueue->reorder.lock);
343  list_add_tail(&padata->list, &pqueue->reorder.list);
344  spin_unlock(&pqueue->reorder.lock);
345 
346  put_cpu();
347 
348  padata_reorder(pd);
349 }
351 
352 static int padata_setup_cpumasks(struct parallel_data *pd,
353  const struct cpumask *pcpumask,
354  const struct cpumask *cbcpumask)
355 {
356  if (!alloc_cpumask_var(&pd->cpumask.pcpu, GFP_KERNEL))
357  return -ENOMEM;
358 
359  cpumask_and(pd->cpumask.pcpu, pcpumask, cpu_online_mask);
360  if (!alloc_cpumask_var(&pd->cpumask.cbcpu, GFP_KERNEL)) {
361  free_cpumask_var(pd->cpumask.cbcpu);
362  return -ENOMEM;
363  }
364 
365  cpumask_and(pd->cpumask.cbcpu, cbcpumask, cpu_online_mask);
366  return 0;
367 }
368 
369 static void __padata_list_init(struct padata_list *pd_list)
370 {
371  INIT_LIST_HEAD(&pd_list->list);
372  spin_lock_init(&pd_list->lock);
373 }
374 
375 /* Initialize all percpu queues used by serial workers */
376 static void padata_init_squeues(struct parallel_data *pd)
377 {
378  int cpu;
379  struct padata_serial_queue *squeue;
380 
381  for_each_cpu(cpu, pd->cpumask.cbcpu) {
382  squeue = per_cpu_ptr(pd->squeue, cpu);
383  squeue->pd = pd;
384  __padata_list_init(&squeue->serial);
385  INIT_WORK(&squeue->work, padata_serial_worker);
386  }
387 }
388 
389 /* Initialize all percpu queues used by parallel workers */
390 static void padata_init_pqueues(struct parallel_data *pd)
391 {
392  int cpu_index, cpu;
393  struct padata_parallel_queue *pqueue;
394 
395  cpu_index = 0;
396  for_each_cpu(cpu, pd->cpumask.pcpu) {
397  pqueue = per_cpu_ptr(pd->pqueue, cpu);
398  pqueue->pd = pd;
399  pqueue->cpu_index = cpu_index;
400  cpu_index++;
401 
402  __padata_list_init(&pqueue->reorder);
403  __padata_list_init(&pqueue->parallel);
404  INIT_WORK(&pqueue->work, padata_parallel_worker);
405  atomic_set(&pqueue->num_obj, 0);
406  }
407 }
408 
409 /* Allocate and initialize the internal cpumask dependend resources. */
410 static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst,
411  const struct cpumask *pcpumask,
412  const struct cpumask *cbcpumask)
413 {
414  struct parallel_data *pd;
415 
416  pd = kzalloc(sizeof(struct parallel_data), GFP_KERNEL);
417  if (!pd)
418  goto err;
419 
421  if (!pd->pqueue)
422  goto err_free_pd;
423 
425  if (!pd->squeue)
426  goto err_free_pqueue;
427  if (padata_setup_cpumasks(pd, pcpumask, cbcpumask) < 0)
428  goto err_free_squeue;
429 
430  padata_init_pqueues(pd);
431  padata_init_squeues(pd);
432  setup_timer(&pd->timer, padata_reorder_timer, (unsigned long)pd);
433  pd->seq_nr = 0;
434  atomic_set(&pd->reorder_objects, 0);
435  atomic_set(&pd->refcnt, 0);
436  pd->pinst = pinst;
437  spin_lock_init(&pd->lock);
438 
439  return pd;
440 
441 err_free_squeue:
442  free_percpu(pd->squeue);
443 err_free_pqueue:
444  free_percpu(pd->pqueue);
445 err_free_pd:
446  kfree(pd);
447 err:
448  return NULL;
449 }
450 
451 static void padata_free_pd(struct parallel_data *pd)
452 {
453  free_cpumask_var(pd->cpumask.pcpu);
454  free_cpumask_var(pd->cpumask.cbcpu);
455  free_percpu(pd->pqueue);
456  free_percpu(pd->squeue);
457  kfree(pd);
458 }
459 
460 /* Flush all objects out of the padata queues. */
461 static void padata_flush_queues(struct parallel_data *pd)
462 {
463  int cpu;
464  struct padata_parallel_queue *pqueue;
465  struct padata_serial_queue *squeue;
466 
467  for_each_cpu(cpu, pd->cpumask.pcpu) {
468  pqueue = per_cpu_ptr(pd->pqueue, cpu);
469  flush_work(&pqueue->work);
470  }
471 
472  del_timer_sync(&pd->timer);
473 
474  if (atomic_read(&pd->reorder_objects))
475  padata_reorder(pd);
476 
477  for_each_cpu(cpu, pd->cpumask.cbcpu) {
478  squeue = per_cpu_ptr(pd->squeue, cpu);
479  flush_work(&squeue->work);
480  }
481 
482  BUG_ON(atomic_read(&pd->refcnt) != 0);
483 }
484 
485 static void __padata_start(struct padata_instance *pinst)
486 {
487  pinst->flags |= PADATA_INIT;
488 }
489 
490 static void __padata_stop(struct padata_instance *pinst)
491 {
492  if (!(pinst->flags & PADATA_INIT))
493  return;
494 
495  pinst->flags &= ~PADATA_INIT;
496 
497  synchronize_rcu();
498 
499  get_online_cpus();
500  padata_flush_queues(pinst->pd);
501  put_online_cpus();
502 }
503 
504 /* Replace the internal control structure with a new one. */
505 static void padata_replace(struct padata_instance *pinst,
506  struct parallel_data *pd_new)
507 {
508  struct parallel_data *pd_old = pinst->pd;
509  int notification_mask = 0;
510 
511  pinst->flags |= PADATA_RESET;
512 
513  rcu_assign_pointer(pinst->pd, pd_new);
514 
515  synchronize_rcu();
516 
517  if (!cpumask_equal(pd_old->cpumask.pcpu, pd_new->cpumask.pcpu))
518  notification_mask |= PADATA_CPU_PARALLEL;
519  if (!cpumask_equal(pd_old->cpumask.cbcpu, pd_new->cpumask.cbcpu))
520  notification_mask |= PADATA_CPU_SERIAL;
521 
522  padata_flush_queues(pd_old);
523  padata_free_pd(pd_old);
524 
525  if (notification_mask)
527  notification_mask,
528  &pd_new->cpumask);
529 
530  pinst->flags &= ~PADATA_RESET;
531 }
532 
541  struct notifier_block *nblock)
542 {
544  nblock);
545 }
547 
556  struct notifier_block *nblock)
557 {
559  &pinst->cpumask_change_notifier,
560  nblock);
561 }
563 
564 
565 /* If cpumask contains no active cpu, we mark the instance as invalid. */
566 static bool padata_validate_cpumask(struct padata_instance *pinst,
567  const struct cpumask *cpumask)
568 {
569  if (!cpumask_intersects(cpumask, cpu_online_mask)) {
570  pinst->flags |= PADATA_INVALID;
571  return false;
572  }
573 
574  pinst->flags &= ~PADATA_INVALID;
575  return true;
576 }
577 
578 static int __padata_set_cpumasks(struct padata_instance *pinst,
579  cpumask_var_t pcpumask,
580  cpumask_var_t cbcpumask)
581 {
582  int valid;
583  struct parallel_data *pd;
584 
585  valid = padata_validate_cpumask(pinst, pcpumask);
586  if (!valid) {
587  __padata_stop(pinst);
588  goto out_replace;
589  }
590 
591  valid = padata_validate_cpumask(pinst, cbcpumask);
592  if (!valid)
593  __padata_stop(pinst);
594 
595 out_replace:
596  pd = padata_alloc_pd(pinst, pcpumask, cbcpumask);
597  if (!pd)
598  return -ENOMEM;
599 
600  cpumask_copy(pinst->cpumask.pcpu, pcpumask);
601  cpumask_copy(pinst->cpumask.cbcpu, cbcpumask);
602 
603  padata_replace(pinst, pd);
604 
605  if (valid)
606  __padata_start(pinst);
607 
608  return 0;
609 }
610 
621  cpumask_var_t cbcpumask)
622 {
623  int err;
624 
625  mutex_lock(&pinst->lock);
626  get_online_cpus();
627 
628  err = __padata_set_cpumasks(pinst, pcpumask, cbcpumask);
629 
630  put_online_cpus();
631  mutex_unlock(&pinst->lock);
632 
633  return err;
634 
635 }
637 
647 int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type,
648  cpumask_var_t cpumask)
649 {
650  struct cpumask *serial_mask, *parallel_mask;
651  int err = -EINVAL;
652 
653  mutex_lock(&pinst->lock);
654  get_online_cpus();
655 
656  switch (cpumask_type) {
657  case PADATA_CPU_PARALLEL:
658  serial_mask = pinst->cpumask.cbcpu;
659  parallel_mask = cpumask;
660  break;
661  case PADATA_CPU_SERIAL:
662  parallel_mask = pinst->cpumask.pcpu;
663  serial_mask = cpumask;
664  break;
665  default:
666  goto out;
667  }
668 
669  err = __padata_set_cpumasks(pinst, parallel_mask, serial_mask);
670 
671 out:
672  put_online_cpus();
673  mutex_unlock(&pinst->lock);
674 
675  return err;
676 }
678 
679 static int __padata_add_cpu(struct padata_instance *pinst, int cpu)
680 {
681  struct parallel_data *pd;
682 
683  if (cpumask_test_cpu(cpu, cpu_online_mask)) {
684  pd = padata_alloc_pd(pinst, pinst->cpumask.pcpu,
685  pinst->cpumask.cbcpu);
686  if (!pd)
687  return -ENOMEM;
688 
689  padata_replace(pinst, pd);
690 
691  if (padata_validate_cpumask(pinst, pinst->cpumask.pcpu) &&
692  padata_validate_cpumask(pinst, pinst->cpumask.cbcpu))
693  __padata_start(pinst);
694  }
695 
696  return 0;
697 }
698 
711 int padata_add_cpu(struct padata_instance *pinst, int cpu, int mask)
712 {
713  int err;
714 
715  if (!(mask & (PADATA_CPU_SERIAL | PADATA_CPU_PARALLEL)))
716  return -EINVAL;
717 
718  mutex_lock(&pinst->lock);
719 
720  get_online_cpus();
721  if (mask & PADATA_CPU_SERIAL)
722  cpumask_set_cpu(cpu, pinst->cpumask.cbcpu);
723  if (mask & PADATA_CPU_PARALLEL)
724  cpumask_set_cpu(cpu, pinst->cpumask.pcpu);
725 
726  err = __padata_add_cpu(pinst, cpu);
727  put_online_cpus();
728 
729  mutex_unlock(&pinst->lock);
730 
731  return err;
732 }
734 
735 static int __padata_remove_cpu(struct padata_instance *pinst, int cpu)
736 {
737  struct parallel_data *pd = NULL;
738 
739  if (cpumask_test_cpu(cpu, cpu_online_mask)) {
740 
741  if (!padata_validate_cpumask(pinst, pinst->cpumask.pcpu) ||
742  !padata_validate_cpumask(pinst, pinst->cpumask.cbcpu))
743  __padata_stop(pinst);
744 
745  pd = padata_alloc_pd(pinst, pinst->cpumask.pcpu,
746  pinst->cpumask.cbcpu);
747  if (!pd)
748  return -ENOMEM;
749 
750  padata_replace(pinst, pd);
751 
752  cpumask_clear_cpu(cpu, pd->cpumask.cbcpu);
753  cpumask_clear_cpu(cpu, pd->cpumask.pcpu);
754  }
755 
756  return 0;
757 }
758 
770 int padata_remove_cpu(struct padata_instance *pinst, int cpu, int mask)
771 {
772  int err;
773 
774  if (!(mask & (PADATA_CPU_SERIAL | PADATA_CPU_PARALLEL)))
775  return -EINVAL;
776 
777  mutex_lock(&pinst->lock);
778 
779  get_online_cpus();
780  if (mask & PADATA_CPU_SERIAL)
781  cpumask_clear_cpu(cpu, pinst->cpumask.cbcpu);
782  if (mask & PADATA_CPU_PARALLEL)
783  cpumask_clear_cpu(cpu, pinst->cpumask.pcpu);
784 
785  err = __padata_remove_cpu(pinst, cpu);
786  put_online_cpus();
787 
788  mutex_unlock(&pinst->lock);
789 
790  return err;
791 }
793 
799 int padata_start(struct padata_instance *pinst)
800 {
801  int err = 0;
802 
803  mutex_lock(&pinst->lock);
804 
805  if (pinst->flags & PADATA_INVALID)
806  err =-EINVAL;
807 
808  __padata_start(pinst);
809 
810  mutex_unlock(&pinst->lock);
811 
812  return err;
813 }
815 
821 void padata_stop(struct padata_instance *pinst)
822 {
823  mutex_lock(&pinst->lock);
824  __padata_stop(pinst);
825  mutex_unlock(&pinst->lock);
826 }
828 
829 #ifdef CONFIG_HOTPLUG_CPU
830 
831 static inline int pinst_has_cpu(struct padata_instance *pinst, int cpu)
832 {
833  return cpumask_test_cpu(cpu, pinst->cpumask.pcpu) ||
834  cpumask_test_cpu(cpu, pinst->cpumask.cbcpu);
835 }
836 
837 
838 static int padata_cpu_callback(struct notifier_block *nfb,
839  unsigned long action, void *hcpu)
840 {
841  int err;
842  struct padata_instance *pinst;
843  int cpu = (unsigned long)hcpu;
844 
845  pinst = container_of(nfb, struct padata_instance, cpu_notifier);
846 
847  switch (action) {
848  case CPU_ONLINE:
849  case CPU_ONLINE_FROZEN:
850  if (!pinst_has_cpu(pinst, cpu))
851  break;
852  mutex_lock(&pinst->lock);
853  err = __padata_add_cpu(pinst, cpu);
854  mutex_unlock(&pinst->lock);
855  if (err)
856  return notifier_from_errno(err);
857  break;
858 
859  case CPU_DOWN_PREPARE:
861  if (!pinst_has_cpu(pinst, cpu))
862  break;
863  mutex_lock(&pinst->lock);
864  err = __padata_remove_cpu(pinst, cpu);
865  mutex_unlock(&pinst->lock);
866  if (err)
867  return notifier_from_errno(err);
868  break;
869 
870  case CPU_UP_CANCELED:
872  if (!pinst_has_cpu(pinst, cpu))
873  break;
874  mutex_lock(&pinst->lock);
875  __padata_remove_cpu(pinst, cpu);
876  mutex_unlock(&pinst->lock);
877 
878  case CPU_DOWN_FAILED:
880  if (!pinst_has_cpu(pinst, cpu))
881  break;
882  mutex_lock(&pinst->lock);
883  __padata_add_cpu(pinst, cpu);
884  mutex_unlock(&pinst->lock);
885  }
886 
887  return NOTIFY_OK;
888 }
889 #endif
890 
891 static void __padata_free(struct padata_instance *pinst)
892 {
893 #ifdef CONFIG_HOTPLUG_CPU
895 #endif
896 
897  padata_stop(pinst);
898  padata_free_pd(pinst->pd);
899  free_cpumask_var(pinst->cpumask.pcpu);
900  free_cpumask_var(pinst->cpumask.cbcpu);
901  kfree(pinst);
902 }
903 
904 #define kobj2pinst(_kobj) \
905  container_of(_kobj, struct padata_instance, kobj)
906 #define attr2pentry(_attr) \
907  container_of(_attr, struct padata_sysfs_entry, attr)
908 
909 static void padata_sysfs_release(struct kobject *kobj)
910 {
911  struct padata_instance *pinst = kobj2pinst(kobj);
912  __padata_free(pinst);
913 }
914 
916  struct attribute attr;
917  ssize_t (*show)(struct padata_instance *, struct attribute *, char *);
918  ssize_t (*store)(struct padata_instance *, struct attribute *,
919  const char *, size_t);
920 };
921 
922 static ssize_t show_cpumask(struct padata_instance *pinst,
923  struct attribute *attr, char *buf)
924 {
925  struct cpumask *cpumask;
926  ssize_t len;
927 
928  mutex_lock(&pinst->lock);
929  if (!strcmp(attr->name, "serial_cpumask"))
930  cpumask = pinst->cpumask.cbcpu;
931  else
932  cpumask = pinst->cpumask.pcpu;
933 
934  len = bitmap_scnprintf(buf, PAGE_SIZE, cpumask_bits(cpumask),
935  nr_cpu_ids);
936  if (PAGE_SIZE - len < 2)
937  len = -EINVAL;
938  else
939  len += sprintf(buf + len, "\n");
940 
941  mutex_unlock(&pinst->lock);
942  return len;
943 }
944 
945 static ssize_t store_cpumask(struct padata_instance *pinst,
946  struct attribute *attr,
947  const char *buf, size_t count)
948 {
949  cpumask_var_t new_cpumask;
950  ssize_t ret;
951  int mask_type;
952 
953  if (!alloc_cpumask_var(&new_cpumask, GFP_KERNEL))
954  return -ENOMEM;
955 
956  ret = bitmap_parse(buf, count, cpumask_bits(new_cpumask),
958  if (ret < 0)
959  goto out;
960 
961  mask_type = !strcmp(attr->name, "serial_cpumask") ?
963  ret = padata_set_cpumask(pinst, mask_type, new_cpumask);
964  if (!ret)
965  ret = count;
966 
967 out:
968  free_cpumask_var(new_cpumask);
969  return ret;
970 }
971 
972 #define PADATA_ATTR_RW(_name, _show_name, _store_name) \
973  static struct padata_sysfs_entry _name##_attr = \
974  __ATTR(_name, 0644, _show_name, _store_name)
975 #define PADATA_ATTR_RO(_name, _show_name) \
976  static struct padata_sysfs_entry _name##_attr = \
977  __ATTR(_name, 0400, _show_name, NULL)
978 
979 PADATA_ATTR_RW(serial_cpumask, show_cpumask, store_cpumask);
980 PADATA_ATTR_RW(parallel_cpumask, show_cpumask, store_cpumask);
981 
982 /*
983  * Padata sysfs provides the following objects:
984  * serial_cpumask [RW] - cpumask for serial workers
985  * parallel_cpumask [RW] - cpumask for parallel workers
986  */
987 static struct attribute *padata_default_attrs[] = {
988  &serial_cpumask_attr.attr,
989  &parallel_cpumask_attr.attr,
990  NULL,
991 };
992 
993 static ssize_t padata_sysfs_show(struct kobject *kobj,
994  struct attribute *attr, char *buf)
995 {
996  struct padata_instance *pinst;
997  struct padata_sysfs_entry *pentry;
998  ssize_t ret = -EIO;
999 
1000  pinst = kobj2pinst(kobj);
1001  pentry = attr2pentry(attr);
1002  if (pentry->show)
1003  ret = pentry->show(pinst, attr, buf);
1004 
1005  return ret;
1006 }
1007 
1008 static ssize_t padata_sysfs_store(struct kobject *kobj, struct attribute *attr,
1009  const char *buf, size_t count)
1010 {
1011  struct padata_instance *pinst;
1012  struct padata_sysfs_entry *pentry;
1013  ssize_t ret = -EIO;
1014 
1015  pinst = kobj2pinst(kobj);
1016  pentry = attr2pentry(attr);
1017  if (pentry->show)
1018  ret = pentry->store(pinst, attr, buf, count);
1019 
1020  return ret;
1021 }
1022 
1023 static const struct sysfs_ops padata_sysfs_ops = {
1024  .show = padata_sysfs_show,
1025  .store = padata_sysfs_store,
1026 };
1027 
1028 static struct kobj_type padata_attr_type = {
1029  .sysfs_ops = &padata_sysfs_ops,
1030  .default_attrs = padata_default_attrs,
1031  .release = padata_sysfs_release,
1032 };
1033 
1042 {
1044 }
1046 
1056  const struct cpumask *pcpumask,
1057  const struct cpumask *cbcpumask)
1058 {
1059  struct padata_instance *pinst;
1060  struct parallel_data *pd = NULL;
1061 
1062  pinst = kzalloc(sizeof(struct padata_instance), GFP_KERNEL);
1063  if (!pinst)
1064  goto err;
1065 
1066  get_online_cpus();
1067  if (!alloc_cpumask_var(&pinst->cpumask.pcpu, GFP_KERNEL))
1068  goto err_free_inst;
1069  if (!alloc_cpumask_var(&pinst->cpumask.cbcpu, GFP_KERNEL)) {
1070  free_cpumask_var(pinst->cpumask.pcpu);
1071  goto err_free_inst;
1072  }
1073  if (!padata_validate_cpumask(pinst, pcpumask) ||
1074  !padata_validate_cpumask(pinst, cbcpumask))
1075  goto err_free_masks;
1076 
1077  pd = padata_alloc_pd(pinst, pcpumask, cbcpumask);
1078  if (!pd)
1079  goto err_free_masks;
1080 
1081  rcu_assign_pointer(pinst->pd, pd);
1082 
1083  pinst->wq = wq;
1084 
1085  cpumask_copy(pinst->cpumask.pcpu, pcpumask);
1086  cpumask_copy(pinst->cpumask.cbcpu, cbcpumask);
1087 
1088  pinst->flags = 0;
1089 
1090 #ifdef CONFIG_HOTPLUG_CPU
1091  pinst->cpu_notifier.notifier_call = padata_cpu_callback;
1092  pinst->cpu_notifier.priority = 0;
1094 #endif
1095 
1096  put_online_cpus();
1097 
1099  kobject_init(&pinst->kobj, &padata_attr_type);
1100  mutex_init(&pinst->lock);
1101 
1102  return pinst;
1103 
1104 err_free_masks:
1105  free_cpumask_var(pinst->cpumask.pcpu);
1106  free_cpumask_var(pinst->cpumask.cbcpu);
1107 err_free_inst:
1108  kfree(pinst);
1109  put_online_cpus();
1110 err:
1111  return NULL;
1112 }
1114 
1120 void padata_free(struct padata_instance *pinst)
1121 {
1122  kobject_put(&pinst->kobj);
1123 }