Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
page-io.c
Go to the documentation of this file.
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/jbd2.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "ext4_extents.h"
31 
32 static struct kmem_cache *io_page_cachep, *io_end_cachep;
33 
35 {
36  io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
37  if (io_page_cachep == NULL)
38  return -ENOMEM;
40  if (io_end_cachep == NULL) {
41  kmem_cache_destroy(io_page_cachep);
42  return -ENOMEM;
43  }
44  return 0;
45 }
46 
47 void ext4_exit_pageio(void)
48 {
49  kmem_cache_destroy(io_end_cachep);
50  kmem_cache_destroy(io_page_cachep);
51 }
52 
54 {
55  wait_queue_head_t *wq = ext4_ioend_wq(inode);
56 
57  wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
58 }
59 
60 static void put_io_page(struct ext4_io_page *io_page)
61 {
62  if (atomic_dec_and_test(&io_page->p_count)) {
63  end_page_writeback(io_page->p_page);
64  put_page(io_page->p_page);
65  kmem_cache_free(io_page_cachep, io_page);
66  }
67 }
68 
70 {
71  int i;
72 
73  BUG_ON(!io);
74  BUG_ON(!list_empty(&io->list));
76 
77  if (io->page)
78  put_page(io->page);
79  for (i = 0; i < io->num_io_pages; i++)
80  put_io_page(io->pages[i]);
81  io->num_io_pages = 0;
82  if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
83  wake_up_all(ext4_ioend_wq(io->inode));
84  kmem_cache_free(io_end_cachep, io);
85 }
86 
87 /* check a range of space and convert unwritten extents to written. */
88 static int ext4_end_io(ext4_io_end_t *io)
89 {
90  struct inode *inode = io->inode;
91  loff_t offset = io->offset;
92  ssize_t size = io->size;
93  int ret = 0;
94 
95  ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
96  "list->prev 0x%p\n",
97  io, inode->i_ino, io->list.next, io->list.prev);
98 
99  ret = ext4_convert_unwritten_extents(inode, offset, size);
100  if (ret < 0) {
101  ext4_msg(inode->i_sb, KERN_EMERG,
102  "failed to convert unwritten extents to written "
103  "extents -- potential data loss! "
104  "(inode %lu, offset %llu, size %zd, error %d)",
105  inode->i_ino, offset, size, ret);
106  }
107  if (io->iocb)
108  aio_complete(io->iocb, io->result, 0);
109 
110  if (io->flag & EXT4_IO_END_DIRECT)
111  inode_dio_done(inode);
112  /* Wake up anyone waiting on unwritten extent conversion */
113  if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
114  wake_up_all(ext4_ioend_wq(io->inode));
115  return ret;
116 }
117 
118 static void dump_completed_IO(struct inode *inode)
119 {
120 #ifdef EXT4FS_DEBUG
121  struct list_head *cur, *before, *after;
122  ext4_io_end_t *io, *io0, *io1;
123  unsigned long flags;
124 
125  if (list_empty(&EXT4_I(inode)->i_completed_io_list)) {
126  ext4_debug("inode %lu completed_io list is empty\n",
127  inode->i_ino);
128  return;
129  }
130 
131  ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino);
132  list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) {
133  cur = &io->list;
134  before = cur->prev;
135  io0 = container_of(before, ext4_io_end_t, list);
136  after = cur->next;
137  io1 = container_of(after, ext4_io_end_t, list);
138 
139  ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
140  io, inode->i_ino, io0, io1);
141  }
142 #endif
143 }
144 
145 /* Add the io_end to per-inode completed end_io list. */
147 {
148  struct ext4_inode_info *ei = EXT4_I(io_end->inode);
149  struct workqueue_struct *wq;
150  unsigned long flags;
151 
152  BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
153  wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
154 
156  if (list_empty(&ei->i_completed_io_list)) {
157  io_end->flag |= EXT4_IO_END_QUEUED;
158  queue_work(wq, &io_end->work);
159  }
160  list_add_tail(&io_end->list, &ei->i_completed_io_list);
161  spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
162 }
163 
164 static int ext4_do_flush_completed_IO(struct inode *inode,
165  ext4_io_end_t *work_io)
166 {
167  ext4_io_end_t *io;
168  struct list_head unwritten, complete, to_free;
169  unsigned long flags;
170  struct ext4_inode_info *ei = EXT4_I(inode);
171  int err, ret = 0;
172 
173  INIT_LIST_HEAD(&complete);
174  INIT_LIST_HEAD(&to_free);
175 
177  dump_completed_IO(inode);
178  list_replace_init(&ei->i_completed_io_list, &unwritten);
179  spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
180 
181  while (!list_empty(&unwritten)) {
182  io = list_entry(unwritten.next, ext4_io_end_t, list);
184  list_del_init(&io->list);
185 
186  err = ext4_end_io(io);
187  if (unlikely(!ret && err))
188  ret = err;
189 
190  list_add_tail(&io->list, &complete);
191  }
193  while (!list_empty(&complete)) {
194  io = list_entry(complete.next, ext4_io_end_t, list);
195  io->flag &= ~EXT4_IO_END_UNWRITTEN;
196  /* end_io context can not be destroyed now because it still
197  * used by queued worker. Worker thread will destroy it later */
198  if (io->flag & EXT4_IO_END_QUEUED)
199  list_del_init(&io->list);
200  else
201  list_move(&io->list, &to_free);
202  }
203  /* If we are called from worker context, it is time to clear queued
204  * flag, and destroy it's end_io if it was converted already */
205  if (work_io) {
206  work_io->flag &= ~EXT4_IO_END_QUEUED;
207  if (!(work_io->flag & EXT4_IO_END_UNWRITTEN))
208  list_add_tail(&work_io->list, &to_free);
209  }
210  spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
211 
212  while (!list_empty(&to_free)) {
213  io = list_entry(to_free.next, ext4_io_end_t, list);
214  list_del_init(&io->list);
215  ext4_free_io_end(io);
216  }
217  return ret;
218 }
219 
220 /*
221  * work on completed aio dio IO, to convert unwritten extents to extents
222  */
223 static void ext4_end_io_work(struct work_struct *work)
224 {
225  ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
226  ext4_do_flush_completed_IO(io->inode, io);
227 }
228 
229 int ext4_flush_unwritten_io(struct inode *inode)
230 {
231  int ret;
232  WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) &&
233  !(inode->i_state & I_FREEING));
234  ret = ext4_do_flush_completed_IO(inode, NULL);
235  ext4_unwritten_wait(inode);
236  return ret;
237 }
238 
239 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
240 {
241  ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
242  if (io) {
243  atomic_inc(&EXT4_I(inode)->i_ioend_count);
244  io->inode = inode;
245  INIT_WORK(&io->work, ext4_end_io_work);
246  INIT_LIST_HEAD(&io->list);
247  }
248  return io;
249 }
250 
251 /*
252  * Print an buffer I/O error compatible with the fs/buffer.c. This
253  * provides compatibility with dmesg scrapers that look for a specific
254  * buffer I/O error message. We really need a unified error reporting
255  * structure to userspace ala Digital Unix's uerf system, but it's
256  * probably not going to happen in my lifetime, due to LKML politics...
257  */
258 static void buffer_io_error(struct buffer_head *bh)
259 {
260  char b[BDEVNAME_SIZE];
261  printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
262  bdevname(bh->b_bdev, b),
263  (unsigned long long)bh->b_blocknr);
264 }
265 
266 static void ext4_end_bio(struct bio *bio, int error)
267 {
268  ext4_io_end_t *io_end = bio->bi_private;
269  struct inode *inode;
270  int i;
271  sector_t bi_sector = bio->bi_sector;
272 
273  BUG_ON(!io_end);
274  bio->bi_private = NULL;
275  bio->bi_end_io = NULL;
276  if (test_bit(BIO_UPTODATE, &bio->bi_flags))
277  error = 0;
278  bio_put(bio);
279 
280  for (i = 0; i < io_end->num_io_pages; i++) {
281  struct page *page = io_end->pages[i]->p_page;
282  struct buffer_head *bh, *head;
283  loff_t offset;
284  loff_t io_end_offset;
285 
286  if (error) {
287  SetPageError(page);
288  set_bit(AS_EIO, &page->mapping->flags);
289  head = page_buffers(page);
290  BUG_ON(!head);
291 
292  io_end_offset = io_end->offset + io_end->size;
293 
294  offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
295  bh = head;
296  do {
297  if ((offset >= io_end->offset) &&
298  (offset+bh->b_size <= io_end_offset))
299  buffer_io_error(bh);
300 
301  offset += bh->b_size;
302  bh = bh->b_this_page;
303  } while (bh != head);
304  }
305 
306  put_io_page(io_end->pages[i]);
307  }
308  io_end->num_io_pages = 0;
309  inode = io_end->inode;
310 
311  if (error) {
312  io_end->flag |= EXT4_IO_END_ERROR;
313  ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
314  "(offset %llu size %ld starting block %llu)",
315  inode->i_ino,
316  (unsigned long long) io_end->offset,
317  (long) io_end->size,
318  (unsigned long long)
319  bi_sector >> (inode->i_blkbits - 9));
320  }
321 
322  if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
323  ext4_free_io_end(io_end);
324  return;
325  }
326 
327  ext4_add_complete_io(io_end);
328 }
329 
331 {
332  struct bio *bio = io->io_bio;
333 
334  if (bio) {
335  bio_get(io->io_bio);
336  submit_bio(io->io_op, io->io_bio);
337  BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
338  bio_put(io->io_bio);
339  }
340  io->io_bio = NULL;
341  io->io_op = 0;
342  io->io_end = NULL;
343 }
344 
345 static int io_submit_init(struct ext4_io_submit *io,
346  struct inode *inode,
347  struct writeback_control *wbc,
348  struct buffer_head *bh)
349 {
350  ext4_io_end_t *io_end;
351  struct page *page = bh->b_page;
352  int nvecs = bio_get_nr_vecs(bh->b_bdev);
353  struct bio *bio;
354 
355  io_end = ext4_init_io_end(inode, GFP_NOFS);
356  if (!io_end)
357  return -ENOMEM;
358  bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
359  bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
360  bio->bi_bdev = bh->b_bdev;
361  bio->bi_private = io->io_end = io_end;
362  bio->bi_end_io = ext4_end_bio;
363 
364  io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
365 
366  io->io_bio = bio;
367  io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
368  io->io_next_block = bh->b_blocknr;
369  return 0;
370 }
371 
372 static int io_submit_add_bh(struct ext4_io_submit *io,
373  struct ext4_io_page *io_page,
374  struct inode *inode,
375  struct writeback_control *wbc,
376  struct buffer_head *bh)
377 {
378  ext4_io_end_t *io_end;
379  int ret;
380 
381  if (buffer_new(bh)) {
382  clear_buffer_new(bh);
383  unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
384  }
385 
386  if (!buffer_mapped(bh) || buffer_delay(bh)) {
387  if (!buffer_mapped(bh))
388  clear_buffer_dirty(bh);
389  if (io->io_bio)
390  ext4_io_submit(io);
391  return 0;
392  }
393 
394  if (io->io_bio && bh->b_blocknr != io->io_next_block) {
395 submit_and_retry:
396  ext4_io_submit(io);
397  }
398  if (io->io_bio == NULL) {
399  ret = io_submit_init(io, inode, wbc, bh);
400  if (ret)
401  return ret;
402  }
403  io_end = io->io_end;
404  if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
405  (io_end->pages[io_end->num_io_pages-1] != io_page))
406  goto submit_and_retry;
407  if (buffer_uninit(bh))
408  ext4_set_io_unwritten_flag(inode, io_end);
409  io->io_end->size += bh->b_size;
410  io->io_next_block++;
411  ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
412  if (ret != bh->b_size)
413  goto submit_and_retry;
414  if ((io_end->num_io_pages == 0) ||
415  (io_end->pages[io_end->num_io_pages-1] != io_page)) {
416  io_end->pages[io_end->num_io_pages++] = io_page;
417  atomic_inc(&io_page->p_count);
418  }
419  return 0;
420 }
421 
423  struct page *page,
424  int len,
425  struct writeback_control *wbc)
426 {
427  struct inode *inode = page->mapping->host;
428  unsigned block_start, block_end, blocksize;
429  struct ext4_io_page *io_page;
430  struct buffer_head *bh, *head;
431  int ret = 0;
432 
433  blocksize = 1 << inode->i_blkbits;
434 
435  BUG_ON(!PageLocked(page));
436  BUG_ON(PageWriteback(page));
437 
438  io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
439  if (!io_page) {
440  set_page_dirty(page);
441  unlock_page(page);
442  return -ENOMEM;
443  }
444  io_page->p_page = page;
445  atomic_set(&io_page->p_count, 1);
446  get_page(page);
447  set_page_writeback(page);
448  ClearPageError(page);
449 
450  for (bh = head = page_buffers(page), block_start = 0;
451  bh != head || !block_start;
452  block_start = block_end, bh = bh->b_this_page) {
453 
454  block_end = block_start + blocksize;
455  if (block_start >= len) {
456  /*
457  * Comments copied from block_write_full_page_endio:
458  *
459  * The page straddles i_size. It must be zeroed out on
460  * each and every writepage invocation because it may
461  * be mmapped. "A file is mapped in multiples of the
462  * page size. For a file that is not a multiple of
463  * the page size, the remaining memory is zeroed when
464  * mapped, and writes to that region are not written
465  * out to the file."
466  */
467  zero_user_segment(page, block_start, block_end);
468  clear_buffer_dirty(bh);
469  set_buffer_uptodate(bh);
470  continue;
471  }
472  clear_buffer_dirty(bh);
473  ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
474  if (ret) {
475  /*
476  * We only get here on ENOMEM. Not much else
477  * we can do but mark the page as dirty, and
478  * better luck next time.
479  */
480  set_page_dirty(page);
481  break;
482  }
483  }
484  unlock_page(page);
485  /*
486  * If the page was truncated before we could do the writeback,
487  * or we had a memory allocation error while trying to write
488  * the first buffer head, we won't have submitted any pages for
489  * I/O. In that case we need to make sure we've cleared the
490  * PageWriteback bit from the page to prevent the system from
491  * wedging later on.
492  */
493  put_io_page(io_page);
494  return ret;
495 }