Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
page_tables.c
Go to the documentation of this file.
1 /*P:700
2  * The pagetable code, on the other hand, still shows the scars of
3  * previous encounters. It's functional, and as neat as it can be in the
4  * circumstances, but be wary, for these things are subtle and break easily.
5  * The Guest provides a virtual to physical mapping, but we can neither trust
6  * it nor use it: we verify and convert it here then point the CPU to the
7  * converted Guest pages when running the Guest.
8 :*/
9 
10 /* Copyright (C) Rusty Russell IBM Corporation 2006.
11  * GPL v2 and any later version */
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/types.h>
15 #include <linux/spinlock.h>
16 #include <linux/random.h>
17 #include <linux/percpu.h>
18 #include <asm/tlbflush.h>
19 #include <asm/uaccess.h>
20 #include "lg.h"
21 
22 /*M:008
23  * We hold reference to pages, which prevents them from being swapped.
24  * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
25  * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
26  * could probably consider launching Guests as non-root.
27 :*/
28 
29 /*H:300
30  * The Page Table Code
31  *
32  * We use two-level page tables for the Guest, or three-level with PAE. If
33  * you're not entirely comfortable with virtual addresses, physical addresses
34  * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
35  * Table Handling" (with diagrams!).
36  *
37  * The Guest keeps page tables, but we maintain the actual ones here: these are
38  * called "shadow" page tables. Which is a very Guest-centric name: these are
39  * the real page tables the CPU uses, although we keep them up to date to
40  * reflect the Guest's. (See what I mean about weird naming? Since when do
41  * shadows reflect anything?)
42  *
43  * Anyway, this is the most complicated part of the Host code. There are seven
44  * parts to this:
45  * (i) Looking up a page table entry when the Guest faults,
46  * (ii) Making sure the Guest stack is mapped,
47  * (iii) Setting up a page table entry when the Guest tells us one has changed,
48  * (iv) Switching page tables,
49  * (v) Flushing (throwing away) page tables,
50  * (vi) Mapping the Switcher when the Guest is about to run,
51  * (vii) Setting up the page tables initially.
52 :*/
53 
54 /*
55  * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
56  * or 512 PTE entries with PAE (2MB).
57  */
58 #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
59 
60 /*
61  * For PAE we need the PMD index as well. We use the last 2MB, so we
62  * will need the last pmd entry of the last pmd page.
63  */
64 #ifdef CONFIG_X86_PAE
65 #define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
66 #define RESERVE_MEM 2U
67 #define CHECK_GPGD_MASK _PAGE_PRESENT
68 #else
69 #define RESERVE_MEM 4U
70 #define CHECK_GPGD_MASK _PAGE_TABLE
71 #endif
72 
73 /*
74  * We actually need a separate PTE page for each CPU. Remember that after the
75  * Switcher code itself comes two pages for each CPU, and we don't want this
76  * CPU's guest to see the pages of any other CPU.
77  */
78 static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
79 #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
80 
81 /*H:320
82  * The page table code is curly enough to need helper functions to keep it
83  * clear and clean. The kernel itself provides many of them; one advantage
84  * of insisting that the Guest and Host use the same CONFIG_PAE setting.
85  *
86  * There are two functions which return pointers to the shadow (aka "real")
87  * page tables.
88  *
89  * spgd_addr() takes the virtual address and returns a pointer to the top-level
90  * page directory entry (PGD) for that address. Since we keep track of several
91  * page tables, the "i" argument tells us which one we're interested in (it's
92  * usually the current one).
93  */
94 static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
95 {
96  unsigned int index = pgd_index(vaddr);
97 
98 #ifndef CONFIG_X86_PAE
99  /* We kill any Guest trying to touch the Switcher addresses. */
100  if (index >= SWITCHER_PGD_INDEX) {
101  kill_guest(cpu, "attempt to access switcher pages");
102  index = 0;
103  }
104 #endif
105  /* Return a pointer index'th pgd entry for the i'th page table. */
106  return &cpu->lg->pgdirs[i].pgdir[index];
107 }
108 
109 #ifdef CONFIG_X86_PAE
110 /*
111  * This routine then takes the PGD entry given above, which contains the
112  * address of the PMD page. It then returns a pointer to the PMD entry for the
113  * given address.
114  */
115 static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
116 {
117  unsigned int index = pmd_index(vaddr);
118  pmd_t *page;
119 
120  /* We kill any Guest trying to touch the Switcher addresses. */
121  if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
122  index >= SWITCHER_PMD_INDEX) {
123  kill_guest(cpu, "attempt to access switcher pages");
124  index = 0;
125  }
126 
127  /* You should never call this if the PGD entry wasn't valid */
128  BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
129  page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
130 
131  return &page[index];
132 }
133 #endif
134 
135 /*
136  * This routine then takes the page directory entry returned above, which
137  * contains the address of the page table entry (PTE) page. It then returns a
138  * pointer to the PTE entry for the given address.
139  */
140 static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
141 {
142 #ifdef CONFIG_X86_PAE
143  pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
144  pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
145 
146  /* You should never call this if the PMD entry wasn't valid */
147  BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
148 #else
149  pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
150  /* You should never call this if the PGD entry wasn't valid */
151  BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
152 #endif
153 
154  return &page[pte_index(vaddr)];
155 }
156 
157 /*
158  * These functions are just like the above, except they access the Guest
159  * page tables. Hence they return a Guest address.
160  */
161 static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
162 {
163  unsigned int index = vaddr >> (PGDIR_SHIFT);
164  return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
165 }
166 
167 #ifdef CONFIG_X86_PAE
168 /* Follow the PGD to the PMD. */
169 static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
170 {
171  unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
172  BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
173  return gpage + pmd_index(vaddr) * sizeof(pmd_t);
174 }
175 
176 /* Follow the PMD to the PTE. */
177 static unsigned long gpte_addr(struct lg_cpu *cpu,
178  pmd_t gpmd, unsigned long vaddr)
179 {
180  unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
181 
182  BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
183  return gpage + pte_index(vaddr) * sizeof(pte_t);
184 }
185 #else
186 /* Follow the PGD to the PTE (no mid-level for !PAE). */
187 static unsigned long gpte_addr(struct lg_cpu *cpu,
188  pgd_t gpgd, unsigned long vaddr)
189 {
190  unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
191 
192  BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
193  return gpage + pte_index(vaddr) * sizeof(pte_t);
194 }
195 #endif
196 /*:*/
197 
198 /*M:007
199  * get_pfn is slow: we could probably try to grab batches of pages here as
200  * an optimization (ie. pre-faulting).
201 :*/
202 
203 /*H:350
204  * This routine takes a page number given by the Guest and converts it to
205  * an actual, physical page number. It can fail for several reasons: the
206  * virtual address might not be mapped by the Launcher, the write flag is set
207  * and the page is read-only, or the write flag was set and the page was
208  * shared so had to be copied, but we ran out of memory.
209  *
210  * This holds a reference to the page, so release_pte() is careful to put that
211  * back.
212  */
213 static unsigned long get_pfn(unsigned long virtpfn, int write)
214 {
215  struct page *page;
216 
217  /* gup me one page at this address please! */
218  if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
219  return page_to_pfn(page);
220 
221  /* This value indicates failure. */
222  return -1UL;
223 }
224 
225 /*H:340
226  * Converting a Guest page table entry to a shadow (ie. real) page table
227  * entry can be a little tricky. The flags are (almost) the same, but the
228  * Guest PTE contains a virtual page number: the CPU needs the real page
229  * number.
230  */
231 static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
232 {
233  unsigned long pfn, base, flags;
234 
235  /*
236  * The Guest sets the global flag, because it thinks that it is using
237  * PGE. We only told it to use PGE so it would tell us whether it was
238  * flushing a kernel mapping or a userspace mapping. We don't actually
239  * use the global bit, so throw it away.
240  */
241  flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
242 
243  /* The Guest's pages are offset inside the Launcher. */
244  base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
245 
246  /*
247  * We need a temporary "unsigned long" variable to hold the answer from
248  * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
249  * fit in spte.pfn. get_pfn() finds the real physical number of the
250  * page, given the virtual number.
251  */
252  pfn = get_pfn(base + pte_pfn(gpte), write);
253  if (pfn == -1UL) {
254  kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
255  /*
256  * When we destroy the Guest, we'll go through the shadow page
257  * tables and release_pte() them. Make sure we don't think
258  * this one is valid!
259  */
260  flags = 0;
261  }
262  /* Now we assemble our shadow PTE from the page number and flags. */
263  return pfn_pte(pfn, __pgprot(flags));
264 }
265 
266 /*H:460 And to complete the chain, release_pte() looks like this: */
267 static void release_pte(pte_t pte)
268 {
269  /*
270  * Remember that get_user_pages_fast() took a reference to the page, in
271  * get_pfn()? We have to put it back now.
272  */
273  if (pte_flags(pte) & _PAGE_PRESENT)
274  put_page(pte_page(pte));
275 }
276 /*:*/
277 
278 static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
279 {
280  if ((pte_flags(gpte) & _PAGE_PSE) ||
281  pte_pfn(gpte) >= cpu->lg->pfn_limit)
282  kill_guest(cpu, "bad page table entry");
283 }
284 
285 static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
286 {
287  if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
288  (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
289  kill_guest(cpu, "bad page directory entry");
290 }
291 
292 #ifdef CONFIG_X86_PAE
293 static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
294 {
295  if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
296  (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
297  kill_guest(cpu, "bad page middle directory entry");
298 }
299 #endif
300 
301 /*H:330
302  * (i) Looking up a page table entry when the Guest faults.
303  *
304  * We saw this call in run_guest(): when we see a page fault in the Guest, we
305  * come here. That's because we only set up the shadow page tables lazily as
306  * they're needed, so we get page faults all the time and quietly fix them up
307  * and return to the Guest without it knowing.
308  *
309  * If we fixed up the fault (ie. we mapped the address), this routine returns
310  * true. Otherwise, it was a real fault and we need to tell the Guest.
311  */
312 bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
313 {
314  pgd_t gpgd;
315  pgd_t *spgd;
316  unsigned long gpte_ptr;
317  pte_t gpte;
318  pte_t *spte;
319 
320  /* Mid level for PAE. */
321 #ifdef CONFIG_X86_PAE
322  pmd_t *spmd;
323  pmd_t gpmd;
324 #endif
325 
326  /* First step: get the top-level Guest page table entry. */
327  if (unlikely(cpu->linear_pages)) {
328  /* Faking up a linear mapping. */
329  gpgd = __pgd(CHECK_GPGD_MASK);
330  } else {
331  gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
332  /* Toplevel not present? We can't map it in. */
333  if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
334  return false;
335  }
336 
337  /* Now look at the matching shadow entry. */
338  spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
339  if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
340  /* No shadow entry: allocate a new shadow PTE page. */
341  unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
342  /*
343  * This is not really the Guest's fault, but killing it is
344  * simple for this corner case.
345  */
346  if (!ptepage) {
347  kill_guest(cpu, "out of memory allocating pte page");
348  return false;
349  }
350  /* We check that the Guest pgd is OK. */
351  check_gpgd(cpu, gpgd);
352  /*
353  * And we copy the flags to the shadow PGD entry. The page
354  * number in the shadow PGD is the page we just allocated.
355  */
356  set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
357  }
358 
359 #ifdef CONFIG_X86_PAE
360  if (unlikely(cpu->linear_pages)) {
361  /* Faking up a linear mapping. */
362  gpmd = __pmd(_PAGE_TABLE);
363  } else {
364  gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
365  /* Middle level not present? We can't map it in. */
366  if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
367  return false;
368  }
369 
370  /* Now look at the matching shadow entry. */
371  spmd = spmd_addr(cpu, *spgd, vaddr);
372 
373  if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
374  /* No shadow entry: allocate a new shadow PTE page. */
375  unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
376 
377  /*
378  * This is not really the Guest's fault, but killing it is
379  * simple for this corner case.
380  */
381  if (!ptepage) {
382  kill_guest(cpu, "out of memory allocating pte page");
383  return false;
384  }
385 
386  /* We check that the Guest pmd is OK. */
387  check_gpmd(cpu, gpmd);
388 
389  /*
390  * And we copy the flags to the shadow PMD entry. The page
391  * number in the shadow PMD is the page we just allocated.
392  */
393  set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
394  }
395 
396  /*
397  * OK, now we look at the lower level in the Guest page table: keep its
398  * address, because we might update it later.
399  */
400  gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
401 #else
402  /*
403  * OK, now we look at the lower level in the Guest page table: keep its
404  * address, because we might update it later.
405  */
406  gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
407 #endif
408 
409  if (unlikely(cpu->linear_pages)) {
410  /* Linear? Make up a PTE which points to same page. */
411  gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
412  } else {
413  /* Read the actual PTE value. */
414  gpte = lgread(cpu, gpte_ptr, pte_t);
415  }
416 
417  /* If this page isn't in the Guest page tables, we can't page it in. */
418  if (!(pte_flags(gpte) & _PAGE_PRESENT))
419  return false;
420 
421  /*
422  * Check they're not trying to write to a page the Guest wants
423  * read-only (bit 2 of errcode == write).
424  */
425  if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
426  return false;
427 
428  /* User access to a kernel-only page? (bit 3 == user access) */
429  if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
430  return false;
431 
432  /*
433  * Check that the Guest PTE flags are OK, and the page number is below
434  * the pfn_limit (ie. not mapping the Launcher binary).
435  */
436  check_gpte(cpu, gpte);
437 
438  /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
439  gpte = pte_mkyoung(gpte);
440  if (errcode & 2)
441  gpte = pte_mkdirty(gpte);
442 
443  /* Get the pointer to the shadow PTE entry we're going to set. */
444  spte = spte_addr(cpu, *spgd, vaddr);
445 
446  /*
447  * If there was a valid shadow PTE entry here before, we release it.
448  * This can happen with a write to a previously read-only entry.
449  */
450  release_pte(*spte);
451 
452  /*
453  * If this is a write, we insist that the Guest page is writable (the
454  * final arg to gpte_to_spte()).
455  */
456  if (pte_dirty(gpte))
457  *spte = gpte_to_spte(cpu, gpte, 1);
458  else
459  /*
460  * If this is a read, don't set the "writable" bit in the page
461  * table entry, even if the Guest says it's writable. That way
462  * we will come back here when a write does actually occur, so
463  * we can update the Guest's _PAGE_DIRTY flag.
464  */
465  set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
466 
467  /*
468  * Finally, we write the Guest PTE entry back: we've set the
469  * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
470  */
471  if (likely(!cpu->linear_pages))
472  lgwrite(cpu, gpte_ptr, pte_t, gpte);
473 
474  /*
475  * The fault is fixed, the page table is populated, the mapping
476  * manipulated, the result returned and the code complete. A small
477  * delay and a trace of alliteration are the only indications the Guest
478  * has that a page fault occurred at all.
479  */
480  return true;
481 }
482 
483 /*H:360
484  * (ii) Making sure the Guest stack is mapped.
485  *
486  * Remember that direct traps into the Guest need a mapped Guest kernel stack.
487  * pin_stack_pages() calls us here: we could simply call demand_page(), but as
488  * we've seen that logic is quite long, and usually the stack pages are already
489  * mapped, so it's overkill.
490  *
491  * This is a quick version which answers the question: is this virtual address
492  * mapped by the shadow page tables, and is it writable?
493  */
494 static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
495 {
496  pgd_t *spgd;
497  unsigned long flags;
498 
499 #ifdef CONFIG_X86_PAE
500  pmd_t *spmd;
501 #endif
502  /* Look at the current top level entry: is it present? */
503  spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
504  if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
505  return false;
506 
507 #ifdef CONFIG_X86_PAE
508  spmd = spmd_addr(cpu, *spgd, vaddr);
509  if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
510  return false;
511 #endif
512 
513  /*
514  * Check the flags on the pte entry itself: it must be present and
515  * writable.
516  */
517  flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
518 
519  return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
520 }
521 
522 /*
523  * So, when pin_stack_pages() asks us to pin a page, we check if it's already
524  * in the page tables, and if not, we call demand_page() with error code 2
525  * (meaning "write").
526  */
527 void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
528 {
529  if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
530  kill_guest(cpu, "bad stack page %#lx", vaddr);
531 }
532 /*:*/
533 
534 #ifdef CONFIG_X86_PAE
535 static void release_pmd(pmd_t *spmd)
536 {
537  /* If the entry's not present, there's nothing to release. */
538  if (pmd_flags(*spmd) & _PAGE_PRESENT) {
539  unsigned int i;
540  pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
541  /* For each entry in the page, we might need to release it. */
542  for (i = 0; i < PTRS_PER_PTE; i++)
543  release_pte(ptepage[i]);
544  /* Now we can free the page of PTEs */
545  free_page((long)ptepage);
546  /* And zero out the PMD entry so we never release it twice. */
547  set_pmd(spmd, __pmd(0));
548  }
549 }
550 
551 static void release_pgd(pgd_t *spgd)
552 {
553  /* If the entry's not present, there's nothing to release. */
554  if (pgd_flags(*spgd) & _PAGE_PRESENT) {
555  unsigned int i;
556  pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
557 
558  for (i = 0; i < PTRS_PER_PMD; i++)
559  release_pmd(&pmdpage[i]);
560 
561  /* Now we can free the page of PMDs */
562  free_page((long)pmdpage);
563  /* And zero out the PGD entry so we never release it twice. */
564  set_pgd(spgd, __pgd(0));
565  }
566 }
567 
568 #else /* !CONFIG_X86_PAE */
569 /*H:450
570  * If we chase down the release_pgd() code, the non-PAE version looks like
571  * this. The PAE version is almost identical, but instead of calling
572  * release_pte it calls release_pmd(), which looks much like this.
573  */
574 static void release_pgd(pgd_t *spgd)
575 {
576  /* If the entry's not present, there's nothing to release. */
577  if (pgd_flags(*spgd) & _PAGE_PRESENT) {
578  unsigned int i;
579  /*
580  * Converting the pfn to find the actual PTE page is easy: turn
581  * the page number into a physical address, then convert to a
582  * virtual address (easy for kernel pages like this one).
583  */
584  pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
585  /* For each entry in the page, we might need to release it. */
586  for (i = 0; i < PTRS_PER_PTE; i++)
587  release_pte(ptepage[i]);
588  /* Now we can free the page of PTEs */
589  free_page((long)ptepage);
590  /* And zero out the PGD entry so we never release it twice. */
591  *spgd = __pgd(0);
592  }
593 }
594 #endif
595 
596 /*H:445
597  * We saw flush_user_mappings() twice: once from the flush_user_mappings()
598  * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
599  * It simply releases every PTE page from 0 up to the Guest's kernel address.
600  */
601 static void flush_user_mappings(struct lguest *lg, int idx)
602 {
603  unsigned int i;
604  /* Release every pgd entry up to the kernel's address. */
605  for (i = 0; i < pgd_index(lg->kernel_address); i++)
606  release_pgd(lg->pgdirs[idx].pgdir + i);
607 }
608 
609 /*H:440
610  * (v) Flushing (throwing away) page tables,
611  *
612  * The Guest has a hypercall to throw away the page tables: it's used when a
613  * large number of mappings have been changed.
614  */
616 {
617  /* Drop the userspace part of the current page table. */
618  flush_user_mappings(cpu->lg, cpu->cpu_pgd);
619 }
620 /*:*/
621 
622 /* We walk down the guest page tables to get a guest-physical address */
623 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
624 {
625  pgd_t gpgd;
626  pte_t gpte;
627 #ifdef CONFIG_X86_PAE
628  pmd_t gpmd;
629 #endif
630 
631  /* Still not set up? Just map 1:1. */
632  if (unlikely(cpu->linear_pages))
633  return vaddr;
634 
635  /* First step: get the top-level Guest page table entry. */
636  gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
637  /* Toplevel not present? We can't map it in. */
638  if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
639  kill_guest(cpu, "Bad address %#lx", vaddr);
640  return -1UL;
641  }
642 
643 #ifdef CONFIG_X86_PAE
644  gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
645  if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
646  kill_guest(cpu, "Bad address %#lx", vaddr);
647  gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
648 #else
649  gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
650 #endif
651  if (!(pte_flags(gpte) & _PAGE_PRESENT))
652  kill_guest(cpu, "Bad address %#lx", vaddr);
653 
654  return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
655 }
656 
657 /*
658  * We keep several page tables. This is a simple routine to find the page
659  * table (if any) corresponding to this top-level address the Guest has given
660  * us.
661  */
662 static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
663 {
664  unsigned int i;
665  for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
666  if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
667  break;
668  return i;
669 }
670 
671 /*H:435
672  * And this is us, creating the new page directory. If we really do
673  * allocate a new one (and so the kernel parts are not there), we set
674  * blank_pgdir.
675  */
676 static unsigned int new_pgdir(struct lg_cpu *cpu,
677  unsigned long gpgdir,
678  int *blank_pgdir)
679 {
680  unsigned int next;
681 #ifdef CONFIG_X86_PAE
682  pmd_t *pmd_table;
683 #endif
684 
685  /*
686  * We pick one entry at random to throw out. Choosing the Least
687  * Recently Used might be better, but this is easy.
688  */
689  next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
690  /* If it's never been allocated at all before, try now. */
691  if (!cpu->lg->pgdirs[next].pgdir) {
692  cpu->lg->pgdirs[next].pgdir =
694  /* If the allocation fails, just keep using the one we have */
695  if (!cpu->lg->pgdirs[next].pgdir)
696  next = cpu->cpu_pgd;
697  else {
698 #ifdef CONFIG_X86_PAE
699  /*
700  * In PAE mode, allocate a pmd page and populate the
701  * last pgd entry.
702  */
703  pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
704  if (!pmd_table) {
705  free_page((long)cpu->lg->pgdirs[next].pgdir);
706  set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
707  next = cpu->cpu_pgd;
708  } else {
709  set_pgd(cpu->lg->pgdirs[next].pgdir +
711  __pgd(__pa(pmd_table) | _PAGE_PRESENT));
712  /*
713  * This is a blank page, so there are no kernel
714  * mappings: caller must map the stack!
715  */
716  *blank_pgdir = 1;
717  }
718 #else
719  *blank_pgdir = 1;
720 #endif
721  }
722  }
723  /* Record which Guest toplevel this shadows. */
724  cpu->lg->pgdirs[next].gpgdir = gpgdir;
725  /* Release all the non-kernel mappings. */
726  flush_user_mappings(cpu->lg, next);
727 
728  return next;
729 }
730 
731 /*H:470
732  * Finally, a routine which throws away everything: all PGD entries in all
733  * the shadow page tables, including the Guest's kernel mappings. This is used
734  * when we destroy the Guest.
735  */
736 static void release_all_pagetables(struct lguest *lg)
737 {
738  unsigned int i, j;
739 
740  /* Every shadow pagetable this Guest has */
741  for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
742  if (lg->pgdirs[i].pgdir) {
743 #ifdef CONFIG_X86_PAE
744  pgd_t *spgd;
745  pmd_t *pmdpage;
746  unsigned int k;
747 
748  /* Get the last pmd page. */
749  spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
750  pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
751 
752  /*
753  * And release the pmd entries of that pmd page,
754  * except for the switcher pmd.
755  */
756  for (k = 0; k < SWITCHER_PMD_INDEX; k++)
757  release_pmd(&pmdpage[k]);
758 #endif
759  /* Every PGD entry except the Switcher at the top */
760  for (j = 0; j < SWITCHER_PGD_INDEX; j++)
761  release_pgd(lg->pgdirs[i].pgdir + j);
762  }
763 }
764 
765 /*
766  * We also throw away everything when a Guest tells us it's changed a kernel
767  * mapping. Since kernel mappings are in every page table, it's easiest to
768  * throw them all away. This traps the Guest in amber for a while as
769  * everything faults back in, but it's rare.
770  */
772 {
773  release_all_pagetables(cpu->lg);
774  /* We need the Guest kernel stack mapped again. */
775  pin_stack_pages(cpu);
776 }
777 
778 /*H:430
779  * (iv) Switching page tables
780  *
781  * Now we've seen all the page table setting and manipulation, let's see
782  * what happens when the Guest changes page tables (ie. changes the top-level
783  * pgdir). This occurs on almost every context switch.
784  */
785 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
786 {
787  int newpgdir, repin = 0;
788 
789  /*
790  * The very first time they call this, we're actually running without
791  * any page tables; we've been making it up. Throw them away now.
792  */
793  if (unlikely(cpu->linear_pages)) {
794  release_all_pagetables(cpu->lg);
795  cpu->linear_pages = false;
796  /* Force allocation of a new pgdir. */
797  newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
798  } else {
799  /* Look to see if we have this one already. */
800  newpgdir = find_pgdir(cpu->lg, pgtable);
801  }
802 
803  /*
804  * If not, we allocate or mug an existing one: if it's a fresh one,
805  * repin gets set to 1.
806  */
807  if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
808  newpgdir = new_pgdir(cpu, pgtable, &repin);
809  /* Change the current pgd index to the new one. */
810  cpu->cpu_pgd = newpgdir;
811  /* If it was completely blank, we map in the Guest kernel stack */
812  if (repin)
813  pin_stack_pages(cpu);
814 }
815 /*:*/
816 
817 /*M:009
818  * Since we throw away all mappings when a kernel mapping changes, our
819  * performance sucks for guests using highmem. In fact, a guest with
820  * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
821  * usually slower than a Guest with less memory.
822  *
823  * This, of course, cannot be fixed. It would take some kind of... well, I
824  * don't know, but the term "puissant code-fu" comes to mind.
825 :*/
826 
827 /*H:420
828  * This is the routine which actually sets the page table entry for then
829  * "idx"'th shadow page table.
830  *
831  * Normally, we can just throw out the old entry and replace it with 0: if they
832  * use it demand_page() will put the new entry in. We need to do this anyway:
833  * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
834  * is read from, and _PAGE_DIRTY when it's written to.
835  *
836  * But Avi Kivity pointed out that most Operating Systems (Linux included) set
837  * these bits on PTEs immediately anyway. This is done to save the CPU from
838  * having to update them, but it helps us the same way: if they set
839  * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
840  * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
841  */
842 static void do_set_pte(struct lg_cpu *cpu, int idx,
843  unsigned long vaddr, pte_t gpte)
844 {
845  /* Look up the matching shadow page directory entry. */
846  pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
847 #ifdef CONFIG_X86_PAE
848  pmd_t *spmd;
849 #endif
850 
851  /* If the top level isn't present, there's no entry to update. */
852  if (pgd_flags(*spgd) & _PAGE_PRESENT) {
853 #ifdef CONFIG_X86_PAE
854  spmd = spmd_addr(cpu, *spgd, vaddr);
855  if (pmd_flags(*spmd) & _PAGE_PRESENT) {
856 #endif
857  /* Otherwise, start by releasing the existing entry. */
858  pte_t *spte = spte_addr(cpu, *spgd, vaddr);
859  release_pte(*spte);
860 
861  /*
862  * If they're setting this entry as dirty or accessed,
863  * we might as well put that entry they've given us in
864  * now. This shaves 10% off a copy-on-write
865  * micro-benchmark.
866  */
867  if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
868  check_gpte(cpu, gpte);
869  set_pte(spte,
870  gpte_to_spte(cpu, gpte,
871  pte_flags(gpte) & _PAGE_DIRTY));
872  } else {
873  /*
874  * Otherwise kill it and we can demand_page()
875  * it in later.
876  */
877  set_pte(spte, __pte(0));
878  }
879 #ifdef CONFIG_X86_PAE
880  }
881 #endif
882  }
883 }
884 
885 /*H:410
886  * Updating a PTE entry is a little trickier.
887  *
888  * We keep track of several different page tables (the Guest uses one for each
889  * process, so it makes sense to cache at least a few). Each of these have
890  * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
891  * all processes. So when the page table above that address changes, we update
892  * all the page tables, not just the current one. This is rare.
893  *
894  * The benefit is that when we have to track a new page table, we can keep all
895  * the kernel mappings. This speeds up context switch immensely.
896  */
897 void guest_set_pte(struct lg_cpu *cpu,
898  unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
899 {
900  /*
901  * Kernel mappings must be changed on all top levels. Slow, but doesn't
902  * happen often.
903  */
904  if (vaddr >= cpu->lg->kernel_address) {
905  unsigned int i;
906  for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
907  if (cpu->lg->pgdirs[i].pgdir)
908  do_set_pte(cpu, i, vaddr, gpte);
909  } else {
910  /* Is this page table one we have a shadow for? */
911  int pgdir = find_pgdir(cpu->lg, gpgdir);
912  if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
913  /* If so, do the update. */
914  do_set_pte(cpu, pgdir, vaddr, gpte);
915  }
916 }
917 
918 /*H:400
919  * (iii) Setting up a page table entry when the Guest tells us one has changed.
920  *
921  * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
922  * with the other side of page tables while we're here: what happens when the
923  * Guest asks for a page table to be updated?
924  *
925  * We already saw that demand_page() will fill in the shadow page tables when
926  * needed, so we can simply remove shadow page table entries whenever the Guest
927  * tells us they've changed. When the Guest tries to use the new entry it will
928  * fault and demand_page() will fix it up.
929  *
930  * So with that in mind here's our code to update a (top-level) PGD entry:
931  */
932 void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
933 {
934  int pgdir;
935 
936  if (idx >= SWITCHER_PGD_INDEX)
937  return;
938 
939  /* If they're talking about a page table we have a shadow for... */
940  pgdir = find_pgdir(lg, gpgdir);
941  if (pgdir < ARRAY_SIZE(lg->pgdirs))
942  /* ... throw it away. */
943  release_pgd(lg->pgdirs[pgdir].pgdir + idx);
944 }
945 
946 #ifdef CONFIG_X86_PAE
947 /* For setting a mid-level, we just throw everything away. It's easy. */
948 void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
949 {
951 }
952 #endif
953 
954 /*H:500
955  * (vii) Setting up the page tables initially.
956  *
957  * When a Guest is first created, set initialize a shadow page table which
958  * we will populate on future faults. The Guest doesn't have any actual
959  * pagetables yet, so we set linear_pages to tell demand_page() to fake it
960  * for the moment.
961  */
963 {
964  struct lg_cpu *cpu = &lg->cpus[0];
965  int allocated = 0;
966 
967  /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
968  cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
969  if (!allocated)
970  return -ENOMEM;
971 
972  /* We start with a linear mapping until the initialize. */
973  cpu->linear_pages = true;
974  return 0;
975 }
976 
977 /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
979 {
980  /* We get the kernel address: above this is all kernel memory. */
981  if (get_user(cpu->lg->kernel_address,
982  &cpu->lg->lguest_data->kernel_address)
983  /*
984  * We tell the Guest that it can't use the top 2 or 4 MB
985  * of virtual addresses used by the Switcher.
986  */
987  || put_user(RESERVE_MEM * 1024 * 1024,
988  &cpu->lg->lguest_data->reserve_mem)) {
989  kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
990  return;
991  }
992 
993  /*
994  * In flush_user_mappings() we loop from 0 to
995  * "pgd_index(lg->kernel_address)". This assumes it won't hit the
996  * Switcher mappings, so check that now.
997  */
998 #ifdef CONFIG_X86_PAE
999  if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1000  pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1001 #else
1002  if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
1003 #endif
1004  kill_guest(cpu, "bad kernel address %#lx",
1005  cpu->lg->kernel_address);
1006 }
1007 
1008 /* When a Guest dies, our cleanup is fairly simple. */
1010 {
1011  unsigned int i;
1012 
1013  /* Throw away all page table pages. */
1014  release_all_pagetables(lg);
1015  /* Now free the top levels: free_page() can handle 0 just fine. */
1016  for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1017  free_page((long)lg->pgdirs[i].pgdir);
1018 }
1019 
1020 /*H:480
1021  * (vi) Mapping the Switcher when the Guest is about to run.
1022  *
1023  * The Switcher and the two pages for this CPU need to be visible in the
1024  * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
1025  * for each CPU already set up, we just need to hook them in now we know which
1026  * Guest is about to run on this CPU.
1027  */
1029 {
1030  pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
1031  pte_t regs_pte;
1032 
1033 #ifdef CONFIG_X86_PAE
1034  pmd_t switcher_pmd;
1035  pmd_t *pmd_table;
1036 
1037  switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1039 
1040  /* Figure out where the pmd page is, by reading the PGD, and converting
1041  * it to a virtual address. */
1042  pmd_table = __va(pgd_pfn(cpu->lg->
1043  pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1044  << PAGE_SHIFT);
1045  /* Now write it into the shadow page table. */
1046  set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1047 #else
1048  pgd_t switcher_pgd;
1049 
1050  /*
1051  * Make the last PGD entry for this Guest point to the Switcher's PTE
1052  * page for this CPU (with appropriate flags).
1053  */
1054  switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1055 
1056  cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1057 
1058 #endif
1059  /*
1060  * We also change the Switcher PTE page. When we're running the Guest,
1061  * we want the Guest's "regs" page to appear where the first Switcher
1062  * page for this CPU is. This is an optimization: when the Switcher
1063  * saves the Guest registers, it saves them into the first page of this
1064  * CPU's "struct lguest_pages": if we make sure the Guest's register
1065  * page is already mapped there, we don't have to copy them out
1066  * again.
1067  */
1068  regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1069  set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1070 }
1071 /*:*/
1072 
1073 static void free_switcher_pte_pages(void)
1074 {
1075  unsigned int i;
1076 
1078  free_page((long)switcher_pte_page(i));
1079 }
1080 
1081 /*H:520
1082  * Setting up the Switcher PTE page for given CPU is fairly easy, given
1083  * the CPU number and the "struct page"s for the Switcher code itself.
1084  *
1085  * Currently the Switcher is less than a page long, so "pages" is always 1.
1086  */
1087 static __init void populate_switcher_pte_page(unsigned int cpu,
1088  struct page *switcher_page[],
1089  unsigned int pages)
1090 {
1091  unsigned int i;
1092  pte_t *pte = switcher_pte_page(cpu);
1093 
1094  /* The first entries are easy: they map the Switcher code. */
1095  for (i = 0; i < pages; i++) {
1096  set_pte(&pte[i], mk_pte(switcher_page[i],
1097  __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1098  }
1099 
1100  /* The only other thing we map is this CPU's pair of pages. */
1101  i = pages + cpu*2;
1102 
1103  /* First page (Guest registers) is writable from the Guest */
1104  set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1105  __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1106 
1107  /*
1108  * The second page contains the "struct lguest_ro_state", and is
1109  * read-only.
1110  */
1111  set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1112  __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1113 }
1114 
1115 /*
1116  * We've made it through the page table code. Perhaps our tired brains are
1117  * still processing the details, or perhaps we're simply glad it's over.
1118  *
1119  * If nothing else, note that all this complexity in juggling shadow page tables
1120  * in sync with the Guest's page tables is for one reason: for most Guests this
1121  * page table dance determines how bad performance will be. This is why Xen
1122  * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1123  * have implemented shadow page table support directly into hardware.
1124  *
1125  * There is just one file remaining in the Host.
1126  */
1127 
1128 /*H:510
1129  * At boot or module load time, init_pagetables() allocates and populates
1130  * the Switcher PTE page for each CPU.
1131  */
1132 __init int init_pagetables(struct page **switcher_page, unsigned int pages)
1133 {
1134  unsigned int i;
1135 
1138  if (!switcher_pte_page(i)) {
1139  free_switcher_pte_pages();
1140  return -ENOMEM;
1141  }
1142  populate_switcher_pte_page(i, switcher_page, pages);
1143  }
1144  return 0;
1145 }
1146 /*:*/
1147 
1148 /* Cleaning up simply involves freeing the PTE page for each CPU. */
1150 {
1151  free_switcher_pte_pages();
1152 }