Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fault.c
Go to the documentation of this file.
1 /*
2  * PowerPC version
3  * Copyright (C) 1995-1996 Gary Thomas ([email protected])
4  *
5  * Derived from "arch/i386/mm/fault.c"
6  * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7  *
8  * Modified by Cort Dougan and Paul Mackerras.
9  *
10  * Modified for PPC64 by Dave Engebretsen ([email protected])
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/uaccess.h>
42 #include <asm/tlbflush.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <mm/mmu_decl.h>
46 
47 #include "icswx.h"
48 
49 #ifdef CONFIG_KPROBES
50 static inline int notify_page_fault(struct pt_regs *regs)
51 {
52  int ret = 0;
53 
54  /* kprobe_running() needs smp_processor_id() */
55  if (!user_mode(regs)) {
57  if (kprobe_running() && kprobe_fault_handler(regs, 11))
58  ret = 1;
60  }
61 
62  return ret;
63 }
64 #else
65 static inline int notify_page_fault(struct pt_regs *regs)
66 {
67  return 0;
68 }
69 #endif
70 
71 /*
72  * Check whether the instruction at regs->nip is a store using
73  * an update addressing form which will update r1.
74  */
75 static int store_updates_sp(struct pt_regs *regs)
76 {
77  unsigned int inst;
78 
79  if (get_user(inst, (unsigned int __user *)regs->nip))
80  return 0;
81  /* check for 1 in the rA field */
82  if (((inst >> 16) & 0x1f) != 1)
83  return 0;
84  /* check major opcode */
85  switch (inst >> 26) {
86  case 37: /* stwu */
87  case 39: /* stbu */
88  case 45: /* sthu */
89  case 53: /* stfsu */
90  case 55: /* stfdu */
91  return 1;
92  case 62: /* std or stdu */
93  return (inst & 3) == 1;
94  case 31:
95  /* check minor opcode */
96  switch ((inst >> 1) & 0x3ff) {
97  case 181: /* stdux */
98  case 183: /* stwux */
99  case 247: /* stbux */
100  case 439: /* sthux */
101  case 695: /* stfsux */
102  case 759: /* stfdux */
103  return 1;
104  }
105  }
106  return 0;
107 }
108 /*
109  * do_page_fault error handling helpers
110  */
111 
112 #define MM_FAULT_RETURN 0
113 #define MM_FAULT_CONTINUE -1
114 #define MM_FAULT_ERR(sig) (sig)
115 
116 static int out_of_memory(struct pt_regs *regs)
117 {
118  /*
119  * We ran out of memory, or some other thing happened to us that made
120  * us unable to handle the page fault gracefully.
121  */
122  up_read(&current->mm->mmap_sem);
123  if (!user_mode(regs))
124  return MM_FAULT_ERR(SIGKILL);
126  return MM_FAULT_RETURN;
127 }
128 
129 static int do_sigbus(struct pt_regs *regs, unsigned long address)
130 {
131  siginfo_t info;
132 
133  up_read(&current->mm->mmap_sem);
134 
135  if (user_mode(regs)) {
136  current->thread.trap_nr = BUS_ADRERR;
137  info.si_signo = SIGBUS;
138  info.si_errno = 0;
139  info.si_code = BUS_ADRERR;
140  info.si_addr = (void __user *)address;
141  force_sig_info(SIGBUS, &info, current);
142  return MM_FAULT_RETURN;
143  }
144  return MM_FAULT_ERR(SIGBUS);
145 }
146 
147 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
148 {
149  /*
150  * Pagefault was interrupted by SIGKILL. We have no reason to
151  * continue the pagefault.
152  */
153  if (fatal_signal_pending(current)) {
154  /*
155  * If we have retry set, the mmap semaphore will have
156  * alrady been released in __lock_page_or_retry(). Else
157  * we release it now.
158  */
159  if (!(fault & VM_FAULT_RETRY))
160  up_read(&current->mm->mmap_sem);
161  /* Coming from kernel, we need to deal with uaccess fixups */
162  if (user_mode(regs))
163  return MM_FAULT_RETURN;
164  return MM_FAULT_ERR(SIGKILL);
165  }
166 
167  /* No fault: be happy */
168  if (!(fault & VM_FAULT_ERROR))
169  return MM_FAULT_CONTINUE;
170 
171  /* Out of memory */
172  if (fault & VM_FAULT_OOM)
173  return out_of_memory(regs);
174 
175  /* Bus error. x86 handles HWPOISON here, we'll add this if/when
176  * we support the feature in HW
177  */
178  if (fault & VM_FAULT_SIGBUS)
179  return do_sigbus(regs, addr);
180 
181  /* We don't understand the fault code, this is fatal */
182  BUG();
183  return MM_FAULT_CONTINUE;
184 }
185 
186 /*
187  * For 600- and 800-family processors, the error_code parameter is DSISR
188  * for a data fault, SRR1 for an instruction fault. For 400-family processors
189  * the error_code parameter is ESR for a data fault, 0 for an instruction
190  * fault.
191  * For 64-bit processors, the error_code parameter is
192  * - DSISR for a non-SLB data access fault,
193  * - SRR1 & 0x08000000 for a non-SLB instruction access fault
194  * - 0 any SLB fault.
195  *
196  * The return value is 0 if the fault was handled, or the signal
197  * number if this is a kernel fault that can't be handled here.
198  */
199 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
200  unsigned long error_code)
201 {
202  struct vm_area_struct * vma;
203  struct mm_struct *mm = current->mm;
204  unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
205  int code = SEGV_MAPERR;
206  int is_write = 0;
207  int trap = TRAP(regs);
208  int is_exec = trap == 0x400;
209  int fault;
210 
211 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
212  /*
213  * Fortunately the bit assignments in SRR1 for an instruction
214  * fault and DSISR for a data fault are mostly the same for the
215  * bits we are interested in. But there are some bits which
216  * indicate errors in DSISR but can validly be set in SRR1.
217  */
218  if (trap == 0x400)
219  error_code &= 0x48200000;
220  else
221  is_write = error_code & DSISR_ISSTORE;
222 #else
223  is_write = error_code & ESR_DST;
224 #endif /* CONFIG_4xx || CONFIG_BOOKE */
225 
226  if (is_write)
227  flags |= FAULT_FLAG_WRITE;
228 
229 #ifdef CONFIG_PPC_ICSWX
230  /*
231  * we need to do this early because this "data storage
232  * interrupt" does not update the DAR/DEAR so we don't want to
233  * look at it
234  */
235  if (error_code & ICSWX_DSI_UCT) {
236  int rc = acop_handle_fault(regs, address, error_code);
237  if (rc)
238  return rc;
239  }
240 #endif /* CONFIG_PPC_ICSWX */
241 
242  if (notify_page_fault(regs))
243  return 0;
244 
245  if (unlikely(debugger_fault_handler(regs)))
246  return 0;
247 
248  /* On a kernel SLB miss we can only check for a valid exception entry */
249  if (!user_mode(regs) && (address >= TASK_SIZE))
250  return SIGSEGV;
251 
252 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
253  defined(CONFIG_PPC_BOOK3S_64))
254  if (error_code & DSISR_DABRMATCH) {
255  /* DABR match */
256  do_dabr(regs, address, error_code);
257  return 0;
258  }
259 #endif
260 
261  /* We restore the interrupt state now */
262  if (!arch_irq_disabled_regs(regs))
264 
265  if (in_atomic() || mm == NULL) {
266  if (!user_mode(regs))
267  return SIGSEGV;
268  /* in_atomic() in user mode is really bad,
269  as is current->mm == NULL. */
270  printk(KERN_EMERG "Page fault in user mode with "
271  "in_atomic() = %d mm = %p\n", in_atomic(), mm);
272  printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
273  regs->nip, regs->msr);
274  die("Weird page fault", regs, SIGSEGV);
275  }
276 
277  perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
278 
279  /* When running in the kernel we expect faults to occur only to
280  * addresses in user space. All other faults represent errors in the
281  * kernel and should generate an OOPS. Unfortunately, in the case of an
282  * erroneous fault occurring in a code path which already holds mmap_sem
283  * we will deadlock attempting to validate the fault against the
284  * address space. Luckily the kernel only validly references user
285  * space from well defined areas of code, which are listed in the
286  * exceptions table.
287  *
288  * As the vast majority of faults will be valid we will only perform
289  * the source reference check when there is a possibility of a deadlock.
290  * Attempt to lock the address space, if we cannot we then validate the
291  * source. If this is invalid we can skip the address space check,
292  * thus avoiding the deadlock.
293  */
294  if (!down_read_trylock(&mm->mmap_sem)) {
295  if (!user_mode(regs) && !search_exception_tables(regs->nip))
296  goto bad_area_nosemaphore;
297 
298 retry:
299  down_read(&mm->mmap_sem);
300  } else {
301  /*
302  * The above down_read_trylock() might have succeeded in
303  * which case we'll have missed the might_sleep() from
304  * down_read():
305  */
306  might_sleep();
307  }
308 
309  vma = find_vma(mm, address);
310  if (!vma)
311  goto bad_area;
312  if (vma->vm_start <= address)
313  goto good_area;
314  if (!(vma->vm_flags & VM_GROWSDOWN))
315  goto bad_area;
316 
317  /*
318  * N.B. The POWER/Open ABI allows programs to access up to
319  * 288 bytes below the stack pointer.
320  * The kernel signal delivery code writes up to about 1.5kB
321  * below the stack pointer (r1) before decrementing it.
322  * The exec code can write slightly over 640kB to the stack
323  * before setting the user r1. Thus we allow the stack to
324  * expand to 1MB without further checks.
325  */
326  if (address + 0x100000 < vma->vm_end) {
327  /* get user regs even if this fault is in kernel mode */
328  struct pt_regs *uregs = current->thread.regs;
329  if (uregs == NULL)
330  goto bad_area;
331 
332  /*
333  * A user-mode access to an address a long way below
334  * the stack pointer is only valid if the instruction
335  * is one which would update the stack pointer to the
336  * address accessed if the instruction completed,
337  * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
338  * (or the byte, halfword, float or double forms).
339  *
340  * If we don't check this then any write to the area
341  * between the last mapped region and the stack will
342  * expand the stack rather than segfaulting.
343  */
344  if (address + 2048 < uregs->gpr[1]
345  && (!user_mode(regs) || !store_updates_sp(regs)))
346  goto bad_area;
347  }
348  if (expand_stack(vma, address))
349  goto bad_area;
350 
351 good_area:
352  code = SEGV_ACCERR;
353 #if defined(CONFIG_6xx)
354  if (error_code & 0x95700000)
355  /* an error such as lwarx to I/O controller space,
356  address matching DABR, eciwx, etc. */
357  goto bad_area;
358 #endif /* CONFIG_6xx */
359 #if defined(CONFIG_8xx)
360  /* 8xx sometimes need to load a invalid/non-present TLBs.
361  * These must be invalidated separately as linux mm don't.
362  */
363  if (error_code & 0x40000000) /* no translation? */
364  _tlbil_va(address, 0, 0, 0);
365 
366  /* The MPC8xx seems to always set 0x80000000, which is
367  * "undefined". Of those that can be set, this is the only
368  * one which seems bad.
369  */
370  if (error_code & 0x10000000)
371  /* Guarded storage error. */
372  goto bad_area;
373 #endif /* CONFIG_8xx */
374 
375  if (is_exec) {
376 #ifdef CONFIG_PPC_STD_MMU
377  /* Protection fault on exec go straight to failure on
378  * Hash based MMUs as they either don't support per-page
379  * execute permission, or if they do, it's handled already
380  * at the hash level. This test would probably have to
381  * be removed if we change the way this works to make hash
382  * processors use the same I/D cache coherency mechanism
383  * as embedded.
384  */
385  if (error_code & DSISR_PROTFAULT)
386  goto bad_area;
387 #endif /* CONFIG_PPC_STD_MMU */
388 
389  /*
390  * Allow execution from readable areas if the MMU does not
391  * provide separate controls over reading and executing.
392  *
393  * Note: That code used to not be enabled for 4xx/BookE.
394  * It is now as I/D cache coherency for these is done at
395  * set_pte_at() time and I see no reason why the test
396  * below wouldn't be valid on those processors. This -may-
397  * break programs compiled with a really old ABI though.
398  */
399  if (!(vma->vm_flags & VM_EXEC) &&
401  !(vma->vm_flags & (VM_READ | VM_WRITE))))
402  goto bad_area;
403  /* a write */
404  } else if (is_write) {
405  if (!(vma->vm_flags & VM_WRITE))
406  goto bad_area;
407  /* a read */
408  } else {
409  /* protection fault */
410  if (error_code & 0x08000000)
411  goto bad_area;
412  if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
413  goto bad_area;
414  }
415 
416  /*
417  * If for any reason at all we couldn't handle the fault,
418  * make sure we exit gracefully rather than endlessly redo
419  * the fault.
420  */
421  fault = handle_mm_fault(mm, vma, address, flags);
422  if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
423  int rc = mm_fault_error(regs, address, fault);
424  if (rc >= MM_FAULT_RETURN)
425  return rc;
426  }
427 
428  /*
429  * Major/minor page fault accounting is only done on the
430  * initial attempt. If we go through a retry, it is extremely
431  * likely that the page will be found in page cache at that point.
432  */
433  if (flags & FAULT_FLAG_ALLOW_RETRY) {
434  if (fault & VM_FAULT_MAJOR) {
435  current->maj_flt++;
436  perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
437  regs, address);
438 #ifdef CONFIG_PPC_SMLPAR
439  if (firmware_has_feature(FW_FEATURE_CMO)) {
440  preempt_disable();
441  get_lppaca()->page_ins += (1 << PAGE_FACTOR);
442  preempt_enable();
443  }
444 #endif /* CONFIG_PPC_SMLPAR */
445  } else {
446  current->min_flt++;
447  perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
448  regs, address);
449  }
450  if (fault & VM_FAULT_RETRY) {
451  /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
452  * of starvation. */
453  flags &= ~FAULT_FLAG_ALLOW_RETRY;
454  flags |= FAULT_FLAG_TRIED;
455  goto retry;
456  }
457  }
458 
459  up_read(&mm->mmap_sem);
460  return 0;
461 
462 bad_area:
463  up_read(&mm->mmap_sem);
464 
465 bad_area_nosemaphore:
466  /* User mode accesses cause a SIGSEGV */
467  if (user_mode(regs)) {
468  _exception(SIGSEGV, regs, code, address);
469  return 0;
470  }
471 
472  if (is_exec && (error_code & DSISR_PROTFAULT))
473  printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
474  " page (%lx) - exploit attempt? (uid: %d)\n",
475  address, from_kuid(&init_user_ns, current_uid()));
476 
477  return SIGSEGV;
478 
479 }
480 
481 /*
482  * bad_page_fault is called when we have a bad access from the kernel.
483  * It is called from the DSI and ISI handlers in head.S and from some
484  * of the procedures in traps.c.
485  */
486 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
487 {
488  const struct exception_table_entry *entry;
489  unsigned long *stackend;
490 
491  /* Are we prepared to handle this fault? */
492  if ((entry = search_exception_tables(regs->nip)) != NULL) {
493  regs->nip = entry->fixup;
494  return;
495  }
496 
497  /* kernel has accessed a bad area */
498 
499  switch (regs->trap) {
500  case 0x300:
501  case 0x380:
502  printk(KERN_ALERT "Unable to handle kernel paging request for "
503  "data at address 0x%08lx\n", regs->dar);
504  break;
505  case 0x400:
506  case 0x480:
507  printk(KERN_ALERT "Unable to handle kernel paging request for "
508  "instruction fetch\n");
509  break;
510  default:
511  printk(KERN_ALERT "Unable to handle kernel paging request for "
512  "unknown fault\n");
513  break;
514  }
515  printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
516  regs->nip);
517 
518  stackend = end_of_stack(current);
519  if (current != &init_task && *stackend != STACK_END_MAGIC)
520  printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
521 
522  die("Kernel access of bad area", regs, sig);
523 }