Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pgtable.c
Go to the documentation of this file.
1 /*
2  * This file contains common routines for dealing with free of page tables
3  * Along with common page table handling code
4  *
5  * Derived from arch/powerpc/mm/tlb_64.c:
6  * Copyright (C) 1995-1996 Gary Thomas ([email protected])
7  *
8  * Modifications by Paul Mackerras (PowerMac) ([email protected])
9  * and Cort Dougan (PReP) ([email protected])
10  * Copyright (C) 1996 Paul Mackerras
11  *
12  * Derived from "arch/i386/mm/init.c"
13  * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14  *
15  * Dave Engebretsen <[email protected]>
16  * Rework for PPC64 port.
17  *
18  * This program is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU General Public License
20  * as published by the Free Software Foundation; either version
21  * 2 of the License, or (at your option) any later version.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/init.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/hugetlb.h>
31 #include <asm/pgalloc.h>
32 #include <asm/tlbflush.h>
33 #include <asm/tlb.h>
34 
35 #include "mmu_decl.h"
36 
37 static inline int is_exec_fault(void)
38 {
39  return current->thread.regs && TRAP(current->thread.regs) == 0x400;
40 }
41 
42 /* We only try to do i/d cache coherency on stuff that looks like
43  * reasonably "normal" PTEs. We currently require a PTE to be present
44  * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that
45  * on userspace PTEs
46  */
47 static inline int pte_looks_normal(pte_t pte)
48 {
49  return (pte_val(pte) &
52 }
53 
55 {
56  unsigned long pfn = pte_pfn(pte);
57  struct page *page;
58 
59  if (unlikely(!pfn_valid(pfn)))
60  return NULL;
61  page = pfn_to_page(pfn);
62  if (PageReserved(page))
63  return NULL;
64  return page;
65 }
66 
67 #if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
68 
69 /* Server-style MMU handles coherency when hashing if HW exec permission
70  * is supposed per page (currently 64-bit only). If not, then, we always
71  * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
72  * support falls into the same category.
73  */
74 
75 static pte_t set_pte_filter(pte_t pte, unsigned long addr)
76 {
77  pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
78  if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
80  struct page *pg = maybe_pte_to_page(pte);
81  if (!pg)
82  return pte;
83  if (!test_bit(PG_arch_1, &pg->flags)) {
84 #ifdef CONFIG_8xx
85  /* On 8xx, cache control instructions (particularly
86  * "dcbst" from flush_dcache_icache) fault as write
87  * operation if there is an unpopulated TLB entry
88  * for the address in question. To workaround that,
89  * we invalidate the TLB here, thus avoiding dcbst
90  * misbehaviour.
91  */
92  /* 8xx doesn't care about PID, size or ind args */
93  _tlbil_va(addr, 0, 0, 0);
94 #endif /* CONFIG_8xx */
96  set_bit(PG_arch_1, &pg->flags);
97  }
98  }
99  return pte;
100 }
101 
102 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
103  int dirty)
104 {
105  return pte;
106 }
107 
108 #else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
109 
110 /* Embedded type MMU with HW exec support. This is a bit more complicated
111  * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
112  * instead we "filter out" the exec permission for non clean pages.
113  */
114 static pte_t set_pte_filter(pte_t pte, unsigned long addr)
115 {
116  struct page *pg;
117 
118  /* No exec permission in the first place, move on */
119  if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
120  return pte;
121 
122  /* If you set _PAGE_EXEC on weird pages you're on your own */
123  pg = maybe_pte_to_page(pte);
124  if (unlikely(!pg))
125  return pte;
126 
127  /* If the page clean, we move on */
128  if (test_bit(PG_arch_1, &pg->flags))
129  return pte;
130 
131  /* If it's an exec fault, we flush the cache and make it clean */
132  if (is_exec_fault()) {
134  set_bit(PG_arch_1, &pg->flags);
135  return pte;
136  }
137 
138  /* Else, we filter out _PAGE_EXEC */
139  return __pte(pte_val(pte) & ~_PAGE_EXEC);
140 }
141 
142 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
143  int dirty)
144 {
145  struct page *pg;
146 
147  /* So here, we only care about exec faults, as we use them
148  * to recover lost _PAGE_EXEC and perform I$/D$ coherency
149  * if necessary. Also if _PAGE_EXEC is already set, same deal,
150  * we just bail out
151  */
152  if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
153  return pte;
154 
155 #ifdef CONFIG_DEBUG_VM
156  /* So this is an exec fault, _PAGE_EXEC is not set. If it was
157  * an error we would have bailed out earlier in do_page_fault()
158  * but let's make sure of it
159  */
160  if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
161  return pte;
162 #endif /* CONFIG_DEBUG_VM */
163 
164  /* If you set _PAGE_EXEC on weird pages you're on your own */
165  pg = maybe_pte_to_page(pte);
166  if (unlikely(!pg))
167  goto bail;
168 
169  /* If the page is already clean, we move on */
170  if (test_bit(PG_arch_1, &pg->flags))
171  goto bail;
172 
173  /* Clean the page and set PG_arch_1 */
175  set_bit(PG_arch_1, &pg->flags);
176 
177  bail:
178  return __pte(pte_val(pte) | _PAGE_EXEC);
179 }
180 
181 #endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
182 
183 /*
184  * set_pte stores a linux PTE into the linux page table.
185  */
186 void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
187  pte_t pte)
188 {
189 #ifdef CONFIG_DEBUG_VM
190  WARN_ON(pte_present(*ptep));
191 #endif
192  /* Note: mm->context.id might not yet have been assigned as
193  * this context might not have been activated yet when this
194  * is called.
195  */
196  pte = set_pte_filter(pte, addr);
197 
198  /* Perform the setting of the PTE */
199  __set_pte_at(mm, addr, ptep, pte, 0);
200 }
201 
202 /*
203  * This is called when relaxing access to a PTE. It's also called in the page
204  * fault path when we don't hit any of the major fault cases, ie, a minor
205  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
206  * handled those two for us, we additionally deal with missing execute
207  * permission here on some processors
208  */
209 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
210  pte_t *ptep, pte_t entry, int dirty)
211 {
212  int changed;
213  entry = set_access_flags_filter(entry, vma, dirty);
214  changed = !pte_same(*(ptep), entry);
215  if (changed) {
216  if (!is_vm_hugetlb_page(vma))
217  assert_pte_locked(vma->vm_mm, address);
218  __ptep_set_access_flags(ptep, entry);
219  flush_tlb_page_nohash(vma, address);
220  }
221  return changed;
222 }
223 
224 #ifdef CONFIG_DEBUG_VM
225 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
226 {
227  pgd_t *pgd;
228  pud_t *pud;
229  pmd_t *pmd;
230 
231  if (mm == &init_mm)
232  return;
233  pgd = mm->pgd + pgd_index(addr);
234  BUG_ON(pgd_none(*pgd));
235  pud = pud_offset(pgd, addr);
236  BUG_ON(pud_none(*pud));
237  pmd = pmd_offset(pud, addr);
238  BUG_ON(!pmd_present(*pmd));
239  assert_spin_locked(pte_lockptr(mm, pmd));
240 }
241 #endif /* CONFIG_DEBUG_VM */
242