Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ptp_clock.c
Go to the documentation of this file.
1 /*
2  * PTP 1588 clock support
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/bitops.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 
32 #include "ptp_private.h"
33 
34 #define PTP_MAX_ALARMS 4
35 #define PTP_MAX_CLOCKS 8
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39 
40 /* private globals */
41 
42 static dev_t ptp_devt;
43 static struct class *ptp_class;
44 
45 static DECLARE_BITMAP(ptp_clocks_map, PTP_MAX_CLOCKS);
46 static DEFINE_MUTEX(ptp_clocks_mutex); /* protects 'ptp_clocks_map' */
47 
48 /* time stamp event queue operations */
49 
50 static inline int queue_free(struct timestamp_event_queue *q)
51 {
52  return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
53 }
54 
55 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
56  struct ptp_clock_event *src)
57 {
58  struct ptp_extts_event *dst;
59  unsigned long flags;
60  s64 seconds;
61  u32 remainder;
62 
63  seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
64 
65  spin_lock_irqsave(&queue->lock, flags);
66 
67  dst = &queue->buf[queue->tail];
68  dst->index = src->index;
69  dst->t.sec = seconds;
70  dst->t.nsec = remainder;
71 
72  if (!queue_free(queue))
73  queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
74 
75  queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
76 
77  spin_unlock_irqrestore(&queue->lock, flags);
78 }
79 
80 static s32 scaled_ppm_to_ppb(long ppm)
81 {
82  /*
83  * The 'freq' field in the 'struct timex' is in parts per
84  * million, but with a 16 bit binary fractional field.
85  *
86  * We want to calculate
87  *
88  * ppb = scaled_ppm * 1000 / 2^16
89  *
90  * which simplifies to
91  *
92  * ppb = scaled_ppm * 125 / 2^13
93  */
94  s64 ppb = 1 + ppm;
95  ppb *= 125;
96  ppb >>= 13;
97  return (s32) ppb;
98 }
99 
100 /* posix clock implementation */
101 
102 static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
103 {
104  tp->tv_sec = 0;
105  tp->tv_nsec = 1;
106  return 0;
107 }
108 
109 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
110 {
111  struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
112  return ptp->info->settime(ptp->info, tp);
113 }
114 
115 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
116 {
117  struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118  return ptp->info->gettime(ptp->info, tp);
119 }
120 
121 static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
122 {
123  struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
124  struct ptp_clock_info *ops;
125  int err = -EOPNOTSUPP;
126 
127  ops = ptp->info;
128 
129  if (tx->modes & ADJ_SETOFFSET) {
130  struct timespec ts;
131  ktime_t kt;
132  s64 delta;
133 
134  ts.tv_sec = tx->time.tv_sec;
135  ts.tv_nsec = tx->time.tv_usec;
136 
137  if (!(tx->modes & ADJ_NANO))
138  ts.tv_nsec *= 1000;
139 
140  if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
141  return -EINVAL;
142 
143  kt = timespec_to_ktime(ts);
144  delta = ktime_to_ns(kt);
145  err = ops->adjtime(ops, delta);
146  } else if (tx->modes & ADJ_FREQUENCY) {
147  err = ops->adjfreq(ops, scaled_ppm_to_ppb(tx->freq));
148  ptp->dialed_frequency = tx->freq;
149  } else if (tx->modes == 0) {
150  tx->freq = ptp->dialed_frequency;
151  err = 0;
152  }
153 
154  return err;
155 }
156 
157 static struct posix_clock_operations ptp_clock_ops = {
158  .owner = THIS_MODULE,
159  .clock_adjtime = ptp_clock_adjtime,
160  .clock_gettime = ptp_clock_gettime,
161  .clock_getres = ptp_clock_getres,
162  .clock_settime = ptp_clock_settime,
163  .ioctl = ptp_ioctl,
164  .open = ptp_open,
165  .poll = ptp_poll,
166  .read = ptp_read,
167 };
168 
169 static void delete_ptp_clock(struct posix_clock *pc)
170 {
171  struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
172 
173  mutex_destroy(&ptp->tsevq_mux);
174 
175  /* Remove the clock from the bit map. */
176  mutex_lock(&ptp_clocks_mutex);
177  clear_bit(ptp->index, ptp_clocks_map);
178  mutex_unlock(&ptp_clocks_mutex);
179 
180  kfree(ptp);
181 }
182 
183 /* public interface */
184 
186  struct device *parent)
187 {
188  struct ptp_clock *ptp;
189  int err = 0, index, major = MAJOR(ptp_devt);
190 
191  if (info->n_alarm > PTP_MAX_ALARMS)
192  return ERR_PTR(-EINVAL);
193 
194  /* Find a free clock slot and reserve it. */
195  err = -EBUSY;
196  mutex_lock(&ptp_clocks_mutex);
197  index = find_first_zero_bit(ptp_clocks_map, PTP_MAX_CLOCKS);
198  if (index < PTP_MAX_CLOCKS)
199  set_bit(index, ptp_clocks_map);
200  else
201  goto no_slot;
202 
203  /* Initialize a clock structure. */
204  err = -ENOMEM;
205  ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
206  if (ptp == NULL)
207  goto no_memory;
208 
209  ptp->clock.ops = ptp_clock_ops;
210  ptp->clock.release = delete_ptp_clock;
211  ptp->info = info;
212  ptp->devid = MKDEV(major, index);
213  ptp->index = index;
214  spin_lock_init(&ptp->tsevq.lock);
215  mutex_init(&ptp->tsevq_mux);
217 
218  /* Create a new device in our class. */
219  ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
220  "ptp%d", ptp->index);
221  if (IS_ERR(ptp->dev))
222  goto no_device;
223 
224  dev_set_drvdata(ptp->dev, ptp);
225 
226  err = ptp_populate_sysfs(ptp);
227  if (err)
228  goto no_sysfs;
229 
230  /* Register a new PPS source. */
231  if (info->pps) {
232  struct pps_source_info pps;
233  memset(&pps, 0, sizeof(pps));
234  snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
235  pps.mode = PTP_PPS_MODE;
236  pps.owner = info->owner;
238  if (!ptp->pps_source) {
239  pr_err("failed to register pps source\n");
240  goto no_pps;
241  }
242  }
243 
244  /* Create a posix clock. */
245  err = posix_clock_register(&ptp->clock, ptp->devid);
246  if (err) {
247  pr_err("failed to create posix clock\n");
248  goto no_clock;
249  }
250 
251  mutex_unlock(&ptp_clocks_mutex);
252  return ptp;
253 
254 no_clock:
255  if (ptp->pps_source)
257 no_pps:
258  ptp_cleanup_sysfs(ptp);
259 no_sysfs:
260  device_destroy(ptp_class, ptp->devid);
261 no_device:
262  mutex_destroy(&ptp->tsevq_mux);
263  kfree(ptp);
264 no_memory:
265  clear_bit(index, ptp_clocks_map);
266 no_slot:
267  mutex_unlock(&ptp_clocks_mutex);
268  return ERR_PTR(err);
269 }
271 
273 {
274  ptp->defunct = 1;
276 
277  /* Release the clock's resources. */
278  if (ptp->pps_source)
280  ptp_cleanup_sysfs(ptp);
281  device_destroy(ptp_class, ptp->devid);
282 
284  return 0;
285 }
287 
288 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
289 {
290  struct pps_event_time evt;
291 
292  switch (event->type) {
293 
294  case PTP_CLOCK_ALARM:
295  break;
296 
297  case PTP_CLOCK_EXTTS:
298  enqueue_external_timestamp(&ptp->tsevq, event);
300  break;
301 
302  case PTP_CLOCK_PPS:
303  pps_get_ts(&evt);
304  pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
305  break;
306 
307  case PTP_CLOCK_PPSUSR:
308  pps_event(ptp->pps_source, &event->pps_times,
310  break;
311  }
312 }
314 
315 int ptp_clock_index(struct ptp_clock *ptp)
316 {
317  return ptp->index;
318 }
320 
321 /* module operations */
322 
323 static void __exit ptp_exit(void)
324 {
325  class_destroy(ptp_class);
327 }
328 
329 static int __init ptp_init(void)
330 {
331  int err;
332 
333  ptp_class = class_create(THIS_MODULE, "ptp");
334  if (IS_ERR(ptp_class)) {
335  pr_err("ptp: failed to allocate class\n");
336  return PTR_ERR(ptp_class);
337  }
338 
339  err = alloc_chrdev_region(&ptp_devt, 0, PTP_MAX_CLOCKS, "ptp");
340  if (err < 0) {
341  pr_err("ptp: failed to allocate device region\n");
342  goto no_region;
343  }
344 
345  ptp_class->dev_attrs = ptp_dev_attrs;
346  pr_info("PTP clock support registered\n");
347  return 0;
348 
349 no_region:
350  class_destroy(ptp_class);
351  return err;
352 }
353 
354 subsys_initcall(ptp_init);
355 module_exit(ptp_exit);
356 
357 MODULE_AUTHOR("Richard Cochran <[email protected]>");
358 MODULE_DESCRIPTION("PTP clocks support");
359 MODULE_LICENSE("GPL");