Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
raid1.c
Go to the documentation of this file.
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <[email protected]>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <[email protected]>
13  * Various fixes by Neil Brown <[email protected]>
14  *
15  * Changes by Peter T. Breuer <[email protected]> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  * - bitmap marked during normal i/o
19  * - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error. To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context. So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71 
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74  struct pool_info *pi = data;
75  int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76 
77  /* allocate a r1bio with room for raid_disks entries in the bios array */
78  return kzalloc(size, gfp_flags);
79 }
80 
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83  kfree(r1_bio);
84 }
85 
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91 
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94  struct pool_info *pi = data;
95  struct page *page;
96  struct r1bio *r1_bio;
97  struct bio *bio;
98  int i, j;
99 
100  r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101  if (!r1_bio)
102  return NULL;
103 
104  /*
105  * Allocate bios : 1 for reading, n-1 for writing
106  */
107  for (j = pi->raid_disks ; j-- ; ) {
108  bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109  if (!bio)
110  goto out_free_bio;
111  r1_bio->bios[j] = bio;
112  }
113  /*
114  * Allocate RESYNC_PAGES data pages and attach them to
115  * the first bio.
116  * If this is a user-requested check/repair, allocate
117  * RESYNC_PAGES for each bio.
118  */
119  if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120  j = pi->raid_disks;
121  else
122  j = 1;
123  while(j--) {
124  bio = r1_bio->bios[j];
125  for (i = 0; i < RESYNC_PAGES; i++) {
126  page = alloc_page(gfp_flags);
127  if (unlikely(!page))
128  goto out_free_pages;
129 
130  bio->bi_io_vec[i].bv_page = page;
131  bio->bi_vcnt = i+1;
132  }
133  }
134  /* If not user-requests, copy the page pointers to all bios */
135  if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136  for (i=0; i<RESYNC_PAGES ; i++)
137  for (j=1; j<pi->raid_disks; j++)
138  r1_bio->bios[j]->bi_io_vec[i].bv_page =
139  r1_bio->bios[0]->bi_io_vec[i].bv_page;
140  }
141 
142  r1_bio->master_bio = NULL;
143 
144  return r1_bio;
145 
146 out_free_pages:
147  for (j=0 ; j < pi->raid_disks; j++)
148  for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149  put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150  j = -1;
151 out_free_bio:
152  while (++j < pi->raid_disks)
153  bio_put(r1_bio->bios[j]);
154  r1bio_pool_free(r1_bio, data);
155  return NULL;
156 }
157 
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160  struct pool_info *pi = data;
161  int i,j;
162  struct r1bio *r1bio = __r1_bio;
163 
164  for (i = 0; i < RESYNC_PAGES; i++)
165  for (j = pi->raid_disks; j-- ;) {
166  if (j == 0 ||
167  r1bio->bios[j]->bi_io_vec[i].bv_page !=
168  r1bio->bios[0]->bi_io_vec[i].bv_page)
169  safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170  }
171  for (i=0 ; i < pi->raid_disks; i++)
172  bio_put(r1bio->bios[i]);
173 
174  r1bio_pool_free(r1bio, data);
175 }
176 
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179  int i;
180 
181  for (i = 0; i < conf->raid_disks * 2; i++) {
182  struct bio **bio = r1_bio->bios + i;
183  if (!BIO_SPECIAL(*bio))
184  bio_put(*bio);
185  *bio = NULL;
186  }
187 }
188 
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191  struct r1conf *conf = r1_bio->mddev->private;
192 
193  put_all_bios(conf, r1_bio);
194  mempool_free(r1_bio, conf->r1bio_pool);
195 }
196 
197 static void put_buf(struct r1bio *r1_bio)
198 {
199  struct r1conf *conf = r1_bio->mddev->private;
200  int i;
201 
202  for (i = 0; i < conf->raid_disks * 2; i++) {
203  struct bio *bio = r1_bio->bios[i];
204  if (bio->bi_end_io)
205  rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206  }
207 
208  mempool_free(r1_bio, conf->r1buf_pool);
209 
210  lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215  unsigned long flags;
216  struct mddev *mddev = r1_bio->mddev;
217  struct r1conf *conf = mddev->private;
218 
219  spin_lock_irqsave(&conf->device_lock, flags);
220  list_add(&r1_bio->retry_list, &conf->retry_list);
221  conf->nr_queued ++;
222  spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224  wake_up(&conf->wait_barrier);
225  md_wakeup_thread(mddev->thread);
226 }
227 
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235  struct bio *bio = r1_bio->master_bio;
236  int done;
237  struct r1conf *conf = r1_bio->mddev->private;
238 
239  if (bio->bi_phys_segments) {
240  unsigned long flags;
241  spin_lock_irqsave(&conf->device_lock, flags);
242  bio->bi_phys_segments--;
243  done = (bio->bi_phys_segments == 0);
244  spin_unlock_irqrestore(&conf->device_lock, flags);
245  } else
246  done = 1;
247 
248  if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249  clear_bit(BIO_UPTODATE, &bio->bi_flags);
250  if (done) {
251  bio_endio(bio, 0);
252  /*
253  * Wake up any possible resync thread that waits for the device
254  * to go idle.
255  */
256  allow_barrier(conf);
257  }
258 }
259 
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262  struct bio *bio = r1_bio->master_bio;
263 
264  /* if nobody has done the final endio yet, do it now */
265  if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266  pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267  (bio_data_dir(bio) == WRITE) ? "write" : "read",
268  (unsigned long long) bio->bi_sector,
269  (unsigned long long) bio->bi_sector +
270  (bio->bi_size >> 9) - 1);
271 
272  call_bio_endio(r1_bio);
273  }
274  free_r1bio(r1_bio);
275 }
276 
277 /*
278  * Update disk head position estimator based on IRQ completion info.
279  */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282  struct r1conf *conf = r1_bio->mddev->private;
283 
284  conf->mirrors[disk].head_position =
285  r1_bio->sector + (r1_bio->sectors);
286 }
287 
288 /*
289  * Find the disk number which triggered given bio
290  */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293  int mirror;
294  struct r1conf *conf = r1_bio->mddev->private;
295  int raid_disks = conf->raid_disks;
296 
297  for (mirror = 0; mirror < raid_disks * 2; mirror++)
298  if (r1_bio->bios[mirror] == bio)
299  break;
300 
301  BUG_ON(mirror == raid_disks * 2);
302  update_head_pos(mirror, r1_bio);
303 
304  return mirror;
305 }
306 
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310  struct r1bio *r1_bio = bio->bi_private;
311  int mirror;
312  struct r1conf *conf = r1_bio->mddev->private;
313 
314  mirror = r1_bio->read_disk;
315  /*
316  * this branch is our 'one mirror IO has finished' event handler:
317  */
318  update_head_pos(mirror, r1_bio);
319 
320  if (uptodate)
321  set_bit(R1BIO_Uptodate, &r1_bio->state);
322  else {
323  /* If all other devices have failed, we want to return
324  * the error upwards rather than fail the last device.
325  * Here we redefine "uptodate" to mean "Don't want to retry"
326  */
327  unsigned long flags;
328  spin_lock_irqsave(&conf->device_lock, flags);
329  if (r1_bio->mddev->degraded == conf->raid_disks ||
330  (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331  !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332  uptodate = 1;
333  spin_unlock_irqrestore(&conf->device_lock, flags);
334  }
335 
336  if (uptodate) {
337  raid_end_bio_io(r1_bio);
338  rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339  } else {
340  /*
341  * oops, read error:
342  */
343  char b[BDEVNAME_SIZE];
345  KERN_ERR "md/raid1:%s: %s: "
346  "rescheduling sector %llu\n",
347  mdname(conf->mddev),
348  bdevname(conf->mirrors[mirror].rdev->bdev,
349  b),
350  (unsigned long long)r1_bio->sector);
351  set_bit(R1BIO_ReadError, &r1_bio->state);
352  reschedule_retry(r1_bio);
353  /* don't drop the reference on read_disk yet */
354  }
355 }
356 
357 static void close_write(struct r1bio *r1_bio)
358 {
359  /* it really is the end of this request */
360  if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361  /* free extra copy of the data pages */
362  int i = r1_bio->behind_page_count;
363  while (i--)
364  safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365  kfree(r1_bio->behind_bvecs);
366  r1_bio->behind_bvecs = NULL;
367  }
368  /* clear the bitmap if all writes complete successfully */
369  bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370  r1_bio->sectors,
371  !test_bit(R1BIO_Degraded, &r1_bio->state),
372  test_bit(R1BIO_BehindIO, &r1_bio->state));
373  md_write_end(r1_bio->mddev);
374 }
375 
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378  if (!atomic_dec_and_test(&r1_bio->remaining))
379  return;
380 
381  if (test_bit(R1BIO_WriteError, &r1_bio->state))
382  reschedule_retry(r1_bio);
383  else {
384  close_write(r1_bio);
385  if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386  reschedule_retry(r1_bio);
387  else
388  raid_end_bio_io(r1_bio);
389  }
390 }
391 
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395  struct r1bio *r1_bio = bio->bi_private;
396  int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397  struct r1conf *conf = r1_bio->mddev->private;
398  struct bio *to_put = NULL;
399 
400  mirror = find_bio_disk(r1_bio, bio);
401 
402  /*
403  * 'one mirror IO has finished' event handler:
404  */
405  if (!uptodate) {
407  &conf->mirrors[mirror].rdev->flags);
409  &conf->mirrors[mirror].rdev->flags))
411  conf->mddev->recovery);
412 
413  set_bit(R1BIO_WriteError, &r1_bio->state);
414  } else {
415  /*
416  * Set R1BIO_Uptodate in our master bio, so that we
417  * will return a good error code for to the higher
418  * levels even if IO on some other mirrored buffer
419  * fails.
420  *
421  * The 'master' represents the composite IO operation
422  * to user-side. So if something waits for IO, then it
423  * will wait for the 'master' bio.
424  */
425  sector_t first_bad;
426  int bad_sectors;
427 
428  r1_bio->bios[mirror] = NULL;
429  to_put = bio;
430  set_bit(R1BIO_Uptodate, &r1_bio->state);
431 
432  /* Maybe we can clear some bad blocks. */
433  if (is_badblock(conf->mirrors[mirror].rdev,
434  r1_bio->sector, r1_bio->sectors,
435  &first_bad, &bad_sectors)) {
436  r1_bio->bios[mirror] = IO_MADE_GOOD;
437  set_bit(R1BIO_MadeGood, &r1_bio->state);
438  }
439  }
440 
441  if (behind) {
442  if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443  atomic_dec(&r1_bio->behind_remaining);
444 
445  /*
446  * In behind mode, we ACK the master bio once the I/O
447  * has safely reached all non-writemostly
448  * disks. Setting the Returned bit ensures that this
449  * gets done only once -- we don't ever want to return
450  * -EIO here, instead we'll wait
451  */
452  if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453  test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454  /* Maybe we can return now */
455  if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456  struct bio *mbio = r1_bio->master_bio;
457  pr_debug("raid1: behind end write sectors"
458  " %llu-%llu\n",
459  (unsigned long long) mbio->bi_sector,
460  (unsigned long long) mbio->bi_sector +
461  (mbio->bi_size >> 9) - 1);
462  call_bio_endio(r1_bio);
463  }
464  }
465  }
466  if (r1_bio->bios[mirror] == NULL)
467  rdev_dec_pending(conf->mirrors[mirror].rdev,
468  conf->mddev);
469 
470  /*
471  * Let's see if all mirrored write operations have finished
472  * already.
473  */
474  r1_bio_write_done(r1_bio);
475 
476  if (to_put)
477  bio_put(to_put);
478 }
479 
480 
481 /*
482  * This routine returns the disk from which the requested read should
483  * be done. There is a per-array 'next expected sequential IO' sector
484  * number - if this matches on the next IO then we use the last disk.
485  * There is also a per-disk 'last know head position' sector that is
486  * maintained from IRQ contexts, both the normal and the resync IO
487  * completion handlers update this position correctly. If there is no
488  * perfect sequential match then we pick the disk whose head is closest.
489  *
490  * If there are 2 mirrors in the same 2 devices, performance degrades
491  * because position is mirror, not device based.
492  *
493  * The rdev for the device selected will have nr_pending incremented.
494  */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497  const sector_t this_sector = r1_bio->sector;
498  int sectors;
499  int best_good_sectors;
500  int best_disk, best_dist_disk, best_pending_disk;
501  int has_nonrot_disk;
502  int disk;
503  sector_t best_dist;
504  unsigned int min_pending;
505  struct md_rdev *rdev;
506  int choose_first;
507  int choose_next_idle;
508 
509  rcu_read_lock();
510  /*
511  * Check if we can balance. We can balance on the whole
512  * device if no resync is going on, or below the resync window.
513  * We take the first readable disk when above the resync window.
514  */
515  retry:
516  sectors = r1_bio->sectors;
517  best_disk = -1;
518  best_dist_disk = -1;
519  best_dist = MaxSector;
520  best_pending_disk = -1;
521  min_pending = UINT_MAX;
522  best_good_sectors = 0;
523  has_nonrot_disk = 0;
524  choose_next_idle = 0;
525 
526  if (conf->mddev->recovery_cp < MaxSector &&
527  (this_sector + sectors >= conf->next_resync))
528  choose_first = 1;
529  else
530  choose_first = 0;
531 
532  for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533  sector_t dist;
534  sector_t first_bad;
535  int bad_sectors;
536  unsigned int pending;
537  bool nonrot;
538 
539  rdev = rcu_dereference(conf->mirrors[disk].rdev);
540  if (r1_bio->bios[disk] == IO_BLOCKED
541  || rdev == NULL
542  || test_bit(Unmerged, &rdev->flags)
543  || test_bit(Faulty, &rdev->flags))
544  continue;
545  if (!test_bit(In_sync, &rdev->flags) &&
546  rdev->recovery_offset < this_sector + sectors)
547  continue;
548  if (test_bit(WriteMostly, &rdev->flags)) {
549  /* Don't balance among write-mostly, just
550  * use the first as a last resort */
551  if (best_disk < 0) {
552  if (is_badblock(rdev, this_sector, sectors,
553  &first_bad, &bad_sectors)) {
554  if (first_bad < this_sector)
555  /* Cannot use this */
556  continue;
557  best_good_sectors = first_bad - this_sector;
558  } else
559  best_good_sectors = sectors;
560  best_disk = disk;
561  }
562  continue;
563  }
564  /* This is a reasonable device to use. It might
565  * even be best.
566  */
567  if (is_badblock(rdev, this_sector, sectors,
568  &first_bad, &bad_sectors)) {
569  if (best_dist < MaxSector)
570  /* already have a better device */
571  continue;
572  if (first_bad <= this_sector) {
573  /* cannot read here. If this is the 'primary'
574  * device, then we must not read beyond
575  * bad_sectors from another device..
576  */
577  bad_sectors -= (this_sector - first_bad);
578  if (choose_first && sectors > bad_sectors)
579  sectors = bad_sectors;
580  if (best_good_sectors > sectors)
581  best_good_sectors = sectors;
582 
583  } else {
584  sector_t good_sectors = first_bad - this_sector;
585  if (good_sectors > best_good_sectors) {
586  best_good_sectors = good_sectors;
587  best_disk = disk;
588  }
589  if (choose_first)
590  break;
591  }
592  continue;
593  } else
594  best_good_sectors = sectors;
595 
596  nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597  has_nonrot_disk |= nonrot;
598  pending = atomic_read(&rdev->nr_pending);
599  dist = abs(this_sector - conf->mirrors[disk].head_position);
600  if (choose_first) {
601  best_disk = disk;
602  break;
603  }
604  /* Don't change to another disk for sequential reads */
605  if (conf->mirrors[disk].next_seq_sect == this_sector
606  || dist == 0) {
607  int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608  struct raid1_info *mirror = &conf->mirrors[disk];
609 
610  best_disk = disk;
611  /*
612  * If buffered sequential IO size exceeds optimal
613  * iosize, check if there is idle disk. If yes, choose
614  * the idle disk. read_balance could already choose an
615  * idle disk before noticing it's a sequential IO in
616  * this disk. This doesn't matter because this disk
617  * will idle, next time it will be utilized after the
618  * first disk has IO size exceeds optimal iosize. In
619  * this way, iosize of the first disk will be optimal
620  * iosize at least. iosize of the second disk might be
621  * small, but not a big deal since when the second disk
622  * starts IO, the first disk is likely still busy.
623  */
624  if (nonrot && opt_iosize > 0 &&
625  mirror->seq_start != MaxSector &&
626  mirror->next_seq_sect > opt_iosize &&
627  mirror->next_seq_sect - opt_iosize >=
628  mirror->seq_start) {
629  choose_next_idle = 1;
630  continue;
631  }
632  break;
633  }
634  /* If device is idle, use it */
635  if (pending == 0) {
636  best_disk = disk;
637  break;
638  }
639 
640  if (choose_next_idle)
641  continue;
642 
643  if (min_pending > pending) {
644  min_pending = pending;
645  best_pending_disk = disk;
646  }
647 
648  if (dist < best_dist) {
649  best_dist = dist;
650  best_dist_disk = disk;
651  }
652  }
653 
654  /*
655  * If all disks are rotational, choose the closest disk. If any disk is
656  * non-rotational, choose the disk with less pending request even the
657  * disk is rotational, which might/might not be optimal for raids with
658  * mixed ratation/non-rotational disks depending on workload.
659  */
660  if (best_disk == -1) {
661  if (has_nonrot_disk)
662  best_disk = best_pending_disk;
663  else
664  best_disk = best_dist_disk;
665  }
666 
667  if (best_disk >= 0) {
668  rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669  if (!rdev)
670  goto retry;
671  atomic_inc(&rdev->nr_pending);
672  if (test_bit(Faulty, &rdev->flags)) {
673  /* cannot risk returning a device that failed
674  * before we inc'ed nr_pending
675  */
676  rdev_dec_pending(rdev, conf->mddev);
677  goto retry;
678  }
679  sectors = best_good_sectors;
680 
681  if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682  conf->mirrors[best_disk].seq_start = this_sector;
683 
684  conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
685  }
686  rcu_read_unlock();
687  *max_sectors = sectors;
688 
689  return best_disk;
690 }
691 
692 static int raid1_mergeable_bvec(struct request_queue *q,
693  struct bvec_merge_data *bvm,
694  struct bio_vec *biovec)
695 {
696  struct mddev *mddev = q->queuedata;
697  struct r1conf *conf = mddev->private;
698  sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699  int max = biovec->bv_len;
700 
701  if (mddev->merge_check_needed) {
702  int disk;
703  rcu_read_lock();
704  for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705  struct md_rdev *rdev = rcu_dereference(
706  conf->mirrors[disk].rdev);
707  if (rdev && !test_bit(Faulty, &rdev->flags)) {
708  struct request_queue *q =
709  bdev_get_queue(rdev->bdev);
710  if (q->merge_bvec_fn) {
711  bvm->bi_sector = sector +
712  rdev->data_offset;
713  bvm->bi_bdev = rdev->bdev;
714  max = min(max, q->merge_bvec_fn(
715  q, bvm, biovec));
716  }
717  }
718  }
719  rcu_read_unlock();
720  }
721  return max;
722 
723 }
724 
725 int md_raid1_congested(struct mddev *mddev, int bits)
726 {
727  struct r1conf *conf = mddev->private;
728  int i, ret = 0;
729 
730  if ((bits & (1 << BDI_async_congested)) &&
731  conf->pending_count >= max_queued_requests)
732  return 1;
733 
734  rcu_read_lock();
735  for (i = 0; i < conf->raid_disks * 2; i++) {
736  struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737  if (rdev && !test_bit(Faulty, &rdev->flags)) {
738  struct request_queue *q = bdev_get_queue(rdev->bdev);
739 
740  BUG_ON(!q);
741 
742  /* Note the '|| 1' - when read_balance prefers
743  * non-congested targets, it can be removed
744  */
745  if ((bits & (1<<BDI_async_congested)) || 1)
746  ret |= bdi_congested(&q->backing_dev_info, bits);
747  else
748  ret &= bdi_congested(&q->backing_dev_info, bits);
749  }
750  }
751  rcu_read_unlock();
752  return ret;
753 }
755 
756 static int raid1_congested(void *data, int bits)
757 {
758  struct mddev *mddev = data;
759 
760  return mddev_congested(mddev, bits) ||
761  md_raid1_congested(mddev, bits);
762 }
763 
764 static void flush_pending_writes(struct r1conf *conf)
765 {
766  /* Any writes that have been queued but are awaiting
767  * bitmap updates get flushed here.
768  */
769  spin_lock_irq(&conf->device_lock);
770 
771  if (conf->pending_bio_list.head) {
772  struct bio *bio;
773  bio = bio_list_get(&conf->pending_bio_list);
774  conf->pending_count = 0;
775  spin_unlock_irq(&conf->device_lock);
776  /* flush any pending bitmap writes to
777  * disk before proceeding w/ I/O */
778  bitmap_unplug(conf->mddev->bitmap);
779  wake_up(&conf->wait_barrier);
780 
781  while (bio) { /* submit pending writes */
782  struct bio *next = bio->bi_next;
783  bio->bi_next = NULL;
784  if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785  !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786  /* Just ignore it */
787  bio_endio(bio, 0);
788  else
790  bio = next;
791  }
792  } else
793  spin_unlock_irq(&conf->device_lock);
794 }
795 
796 /* Barriers....
797  * Sometimes we need to suspend IO while we do something else,
798  * either some resync/recovery, or reconfigure the array.
799  * To do this we raise a 'barrier'.
800  * The 'barrier' is a counter that can be raised multiple times
801  * to count how many activities are happening which preclude
802  * normal IO.
803  * We can only raise the barrier if there is no pending IO.
804  * i.e. if nr_pending == 0.
805  * We choose only to raise the barrier if no-one is waiting for the
806  * barrier to go down. This means that as soon as an IO request
807  * is ready, no other operations which require a barrier will start
808  * until the IO request has had a chance.
809  *
810  * So: regular IO calls 'wait_barrier'. When that returns there
811  * is no backgroup IO happening, It must arrange to call
812  * allow_barrier when it has finished its IO.
813  * backgroup IO calls must call raise_barrier. Once that returns
814  * there is no normal IO happeing. It must arrange to call
815  * lower_barrier when the particular background IO completes.
816  */
817 #define RESYNC_DEPTH 32
818 
819 static void raise_barrier(struct r1conf *conf)
820 {
821  spin_lock_irq(&conf->resync_lock);
822 
823  /* Wait until no block IO is waiting */
825  conf->resync_lock, );
826 
827  /* block any new IO from starting */
828  conf->barrier++;
829 
830  /* Now wait for all pending IO to complete */
832  !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
833  conf->resync_lock, );
834 
835  spin_unlock_irq(&conf->resync_lock);
836 }
837 
838 static void lower_barrier(struct r1conf *conf)
839 {
840  unsigned long flags;
841  BUG_ON(conf->barrier <= 0);
842  spin_lock_irqsave(&conf->resync_lock, flags);
843  conf->barrier--;
844  spin_unlock_irqrestore(&conf->resync_lock, flags);
845  wake_up(&conf->wait_barrier);
846 }
847 
848 static void wait_barrier(struct r1conf *conf)
849 {
850  spin_lock_irq(&conf->resync_lock);
851  if (conf->barrier) {
852  conf->nr_waiting++;
853  /* Wait for the barrier to drop.
854  * However if there are already pending
855  * requests (preventing the barrier from
856  * rising completely), and the
857  * pre-process bio queue isn't empty,
858  * then don't wait, as we need to empty
859  * that queue to get the nr_pending
860  * count down.
861  */
863  !conf->barrier ||
864  (conf->nr_pending &&
865  current->bio_list &&
866  !bio_list_empty(current->bio_list)),
867  conf->resync_lock,
868  );
869  conf->nr_waiting--;
870  }
871  conf->nr_pending++;
872  spin_unlock_irq(&conf->resync_lock);
873 }
874 
875 static void allow_barrier(struct r1conf *conf)
876 {
877  unsigned long flags;
878  spin_lock_irqsave(&conf->resync_lock, flags);
879  conf->nr_pending--;
880  spin_unlock_irqrestore(&conf->resync_lock, flags);
881  wake_up(&conf->wait_barrier);
882 }
883 
884 static void freeze_array(struct r1conf *conf)
885 {
886  /* stop syncio and normal IO and wait for everything to
887  * go quite.
888  * We increment barrier and nr_waiting, and then
889  * wait until nr_pending match nr_queued+1
890  * This is called in the context of one normal IO request
891  * that has failed. Thus any sync request that might be pending
892  * will be blocked by nr_pending, and we need to wait for
893  * pending IO requests to complete or be queued for re-try.
894  * Thus the number queued (nr_queued) plus this request (1)
895  * must match the number of pending IOs (nr_pending) before
896  * we continue.
897  */
898  spin_lock_irq(&conf->resync_lock);
899  conf->barrier++;
900  conf->nr_waiting++;
902  conf->nr_pending == conf->nr_queued+1,
903  conf->resync_lock,
904  flush_pending_writes(conf));
905  spin_unlock_irq(&conf->resync_lock);
906 }
907 static void unfreeze_array(struct r1conf *conf)
908 {
909  /* reverse the effect of the freeze */
910  spin_lock_irq(&conf->resync_lock);
911  conf->barrier--;
912  conf->nr_waiting--;
913  wake_up(&conf->wait_barrier);
914  spin_unlock_irq(&conf->resync_lock);
915 }
916 
917 
918 /* duplicate the data pages for behind I/O
919  */
920 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
921 {
922  int i;
923  struct bio_vec *bvec;
924  struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
925  GFP_NOIO);
926  if (unlikely(!bvecs))
927  return;
928 
929  bio_for_each_segment(bvec, bio, i) {
930  bvecs[i] = *bvec;
931  bvecs[i].bv_page = alloc_page(GFP_NOIO);
932  if (unlikely(!bvecs[i].bv_page))
933  goto do_sync_io;
934  memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
935  kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
936  kunmap(bvecs[i].bv_page);
937  kunmap(bvec->bv_page);
938  }
939  r1_bio->behind_bvecs = bvecs;
940  r1_bio->behind_page_count = bio->bi_vcnt;
941  set_bit(R1BIO_BehindIO, &r1_bio->state);
942  return;
943 
944 do_sync_io:
945  for (i = 0; i < bio->bi_vcnt; i++)
946  if (bvecs[i].bv_page)
947  put_page(bvecs[i].bv_page);
948  kfree(bvecs);
949  pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
950 }
951 
953  struct blk_plug_cb cb;
954  struct bio_list pending;
956 };
957 
958 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
959 {
960  struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
961  cb);
962  struct mddev *mddev = plug->cb.data;
963  struct r1conf *conf = mddev->private;
964  struct bio *bio;
965 
966  if (from_schedule || current->bio_list) {
967  spin_lock_irq(&conf->device_lock);
968  bio_list_merge(&conf->pending_bio_list, &plug->pending);
969  conf->pending_count += plug->pending_cnt;
970  spin_unlock_irq(&conf->device_lock);
971  md_wakeup_thread(mddev->thread);
972  kfree(plug);
973  return;
974  }
975 
976  /* we aren't scheduling, so we can do the write-out directly. */
977  bio = bio_list_get(&plug->pending);
978  bitmap_unplug(mddev->bitmap);
979  wake_up(&conf->wait_barrier);
980 
981  while (bio) { /* submit pending writes */
982  struct bio *next = bio->bi_next;
983  bio->bi_next = NULL;
985  bio = next;
986  }
987  kfree(plug);
988 }
989 
990 static void make_request(struct mddev *mddev, struct bio * bio)
991 {
992  struct r1conf *conf = mddev->private;
993  struct raid1_info *mirror;
994  struct r1bio *r1_bio;
995  struct bio *read_bio;
996  int i, disks;
997  struct bitmap *bitmap;
998  unsigned long flags;
999  const int rw = bio_data_dir(bio);
1000  const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1001  const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1002  const unsigned long do_discard = (bio->bi_rw
1003  & (REQ_DISCARD | REQ_SECURE));
1004  struct md_rdev *blocked_rdev;
1005  struct blk_plug_cb *cb;
1006  struct raid1_plug_cb *plug = NULL;
1007  int first_clone;
1008  int sectors_handled;
1009  int max_sectors;
1010 
1011  /*
1012  * Register the new request and wait if the reconstruction
1013  * thread has put up a bar for new requests.
1014  * Continue immediately if no resync is active currently.
1015  */
1016 
1017  md_write_start(mddev, bio); /* wait on superblock update early */
1018 
1019  if (bio_data_dir(bio) == WRITE &&
1020  bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1021  bio->bi_sector < mddev->suspend_hi) {
1022  /* As the suspend_* range is controlled by
1023  * userspace, we want an interruptible
1024  * wait.
1025  */
1026  DEFINE_WAIT(w);
1027  for (;;) {
1030  &w, TASK_INTERRUPTIBLE);
1031  if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1032  bio->bi_sector >= mddev->suspend_hi)
1033  break;
1034  schedule();
1035  }
1036  finish_wait(&conf->wait_barrier, &w);
1037  }
1038 
1039  wait_barrier(conf);
1040 
1041  bitmap = mddev->bitmap;
1042 
1043  /*
1044  * make_request() can abort the operation when READA is being
1045  * used and no empty request is available.
1046  *
1047  */
1048  r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1049 
1050  r1_bio->master_bio = bio;
1051  r1_bio->sectors = bio->bi_size >> 9;
1052  r1_bio->state = 0;
1053  r1_bio->mddev = mddev;
1054  r1_bio->sector = bio->bi_sector;
1055 
1056  /* We might need to issue multiple reads to different
1057  * devices if there are bad blocks around, so we keep
1058  * track of the number of reads in bio->bi_phys_segments.
1059  * If this is 0, there is only one r1_bio and no locking
1060  * will be needed when requests complete. If it is
1061  * non-zero, then it is the number of not-completed requests.
1062  */
1063  bio->bi_phys_segments = 0;
1064  clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1065 
1066  if (rw == READ) {
1067  /*
1068  * read balancing logic:
1069  */
1070  int rdisk;
1071 
1072 read_again:
1073  rdisk = read_balance(conf, r1_bio, &max_sectors);
1074 
1075  if (rdisk < 0) {
1076  /* couldn't find anywhere to read from */
1077  raid_end_bio_io(r1_bio);
1078  return;
1079  }
1080  mirror = conf->mirrors + rdisk;
1081 
1082  if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1083  bitmap) {
1084  /* Reading from a write-mostly device must
1085  * take care not to over-take any writes
1086  * that are 'behind'
1087  */
1088  wait_event(bitmap->behind_wait,
1089  atomic_read(&bitmap->behind_writes) == 0);
1090  }
1091  r1_bio->read_disk = rdisk;
1092 
1093  read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1094  md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1095  max_sectors);
1096 
1097  r1_bio->bios[rdisk] = read_bio;
1098 
1099  read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1100  read_bio->bi_bdev = mirror->rdev->bdev;
1101  read_bio->bi_end_io = raid1_end_read_request;
1102  read_bio->bi_rw = READ | do_sync;
1103  read_bio->bi_private = r1_bio;
1104 
1105  if (max_sectors < r1_bio->sectors) {
1106  /* could not read all from this device, so we will
1107  * need another r1_bio.
1108  */
1109 
1110  sectors_handled = (r1_bio->sector + max_sectors
1111  - bio->bi_sector);
1112  r1_bio->sectors = max_sectors;
1113  spin_lock_irq(&conf->device_lock);
1114  if (bio->bi_phys_segments == 0)
1115  bio->bi_phys_segments = 2;
1116  else
1117  bio->bi_phys_segments++;
1118  spin_unlock_irq(&conf->device_lock);
1119  /* Cannot call generic_make_request directly
1120  * as that will be queued in __make_request
1121  * and subsequent mempool_alloc might block waiting
1122  * for it. So hand bio over to raid1d.
1123  */
1124  reschedule_retry(r1_bio);
1125 
1126  r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1127 
1128  r1_bio->master_bio = bio;
1129  r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1130  r1_bio->state = 0;
1131  r1_bio->mddev = mddev;
1132  r1_bio->sector = bio->bi_sector + sectors_handled;
1133  goto read_again;
1134  } else
1135  generic_make_request(read_bio);
1136  return;
1137  }
1138 
1139  /*
1140  * WRITE:
1141  */
1142  if (conf->pending_count >= max_queued_requests) {
1143  md_wakeup_thread(mddev->thread);
1144  wait_event(conf->wait_barrier,
1145  conf->pending_count < max_queued_requests);
1146  }
1147  /* first select target devices under rcu_lock and
1148  * inc refcount on their rdev. Record them by setting
1149  * bios[x] to bio
1150  * If there are known/acknowledged bad blocks on any device on
1151  * which we have seen a write error, we want to avoid writing those
1152  * blocks.
1153  * This potentially requires several writes to write around
1154  * the bad blocks. Each set of writes gets it's own r1bio
1155  * with a set of bios attached.
1156  */
1157 
1158  disks = conf->raid_disks * 2;
1159  retry_write:
1160  blocked_rdev = NULL;
1161  rcu_read_lock();
1162  max_sectors = r1_bio->sectors;
1163  for (i = 0; i < disks; i++) {
1164  struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1165  if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1166  atomic_inc(&rdev->nr_pending);
1167  blocked_rdev = rdev;
1168  break;
1169  }
1170  r1_bio->bios[i] = NULL;
1171  if (!rdev || test_bit(Faulty, &rdev->flags)
1172  || test_bit(Unmerged, &rdev->flags)) {
1173  if (i < conf->raid_disks)
1174  set_bit(R1BIO_Degraded, &r1_bio->state);
1175  continue;
1176  }
1177 
1178  atomic_inc(&rdev->nr_pending);
1179  if (test_bit(WriteErrorSeen, &rdev->flags)) {
1180  sector_t first_bad;
1181  int bad_sectors;
1182  int is_bad;
1183 
1184  is_bad = is_badblock(rdev, r1_bio->sector,
1185  max_sectors,
1186  &first_bad, &bad_sectors);
1187  if (is_bad < 0) {
1188  /* mustn't write here until the bad block is
1189  * acknowledged*/
1190  set_bit(BlockedBadBlocks, &rdev->flags);
1191  blocked_rdev = rdev;
1192  break;
1193  }
1194  if (is_bad && first_bad <= r1_bio->sector) {
1195  /* Cannot write here at all */
1196  bad_sectors -= (r1_bio->sector - first_bad);
1197  if (bad_sectors < max_sectors)
1198  /* mustn't write more than bad_sectors
1199  * to other devices yet
1200  */
1201  max_sectors = bad_sectors;
1202  rdev_dec_pending(rdev, mddev);
1203  /* We don't set R1BIO_Degraded as that
1204  * only applies if the disk is
1205  * missing, so it might be re-added,
1206  * and we want to know to recover this
1207  * chunk.
1208  * In this case the device is here,
1209  * and the fact that this chunk is not
1210  * in-sync is recorded in the bad
1211  * block log
1212  */
1213  continue;
1214  }
1215  if (is_bad) {
1216  int good_sectors = first_bad - r1_bio->sector;
1217  if (good_sectors < max_sectors)
1218  max_sectors = good_sectors;
1219  }
1220  }
1221  r1_bio->bios[i] = bio;
1222  }
1223  rcu_read_unlock();
1224 
1225  if (unlikely(blocked_rdev)) {
1226  /* Wait for this device to become unblocked */
1227  int j;
1228 
1229  for (j = 0; j < i; j++)
1230  if (r1_bio->bios[j])
1231  rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1232  r1_bio->state = 0;
1233  allow_barrier(conf);
1234  md_wait_for_blocked_rdev(blocked_rdev, mddev);
1235  wait_barrier(conf);
1236  goto retry_write;
1237  }
1238 
1239  if (max_sectors < r1_bio->sectors) {
1240  /* We are splitting this write into multiple parts, so
1241  * we need to prepare for allocating another r1_bio.
1242  */
1243  r1_bio->sectors = max_sectors;
1244  spin_lock_irq(&conf->device_lock);
1245  if (bio->bi_phys_segments == 0)
1246  bio->bi_phys_segments = 2;
1247  else
1248  bio->bi_phys_segments++;
1249  spin_unlock_irq(&conf->device_lock);
1250  }
1251  sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1252 
1253  atomic_set(&r1_bio->remaining, 1);
1254  atomic_set(&r1_bio->behind_remaining, 0);
1255 
1256  first_clone = 1;
1257  for (i = 0; i < disks; i++) {
1258  struct bio *mbio;
1259  if (!r1_bio->bios[i])
1260  continue;
1261 
1262  mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1263  md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1264 
1265  if (first_clone) {
1266  /* do behind I/O ?
1267  * Not if there are too many, or cannot
1268  * allocate memory, or a reader on WriteMostly
1269  * is waiting for behind writes to flush */
1270  if (bitmap &&
1271  (atomic_read(&bitmap->behind_writes)
1272  < mddev->bitmap_info.max_write_behind) &&
1273  !waitqueue_active(&bitmap->behind_wait))
1274  alloc_behind_pages(mbio, r1_bio);
1275 
1276  bitmap_startwrite(bitmap, r1_bio->sector,
1277  r1_bio->sectors,
1279  &r1_bio->state));
1280  first_clone = 0;
1281  }
1282  if (r1_bio->behind_bvecs) {
1283  struct bio_vec *bvec;
1284  int j;
1285 
1286  /* Yes, I really want the '__' version so that
1287  * we clear any unused pointer in the io_vec, rather
1288  * than leave them unchanged. This is important
1289  * because when we come to free the pages, we won't
1290  * know the original bi_idx, so we just free
1291  * them all
1292  */
1293  __bio_for_each_segment(bvec, mbio, j, 0)
1294  bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1295  if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1296  atomic_inc(&r1_bio->behind_remaining);
1297  }
1298 
1299  r1_bio->bios[i] = mbio;
1300 
1301  mbio->bi_sector = (r1_bio->sector +
1302  conf->mirrors[i].rdev->data_offset);
1303  mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1304  mbio->bi_end_io = raid1_end_write_request;
1305  mbio->bi_rw = WRITE | do_flush_fua | do_sync | do_discard;
1306  mbio->bi_private = r1_bio;
1307 
1308  atomic_inc(&r1_bio->remaining);
1309 
1310  cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1311  if (cb)
1312  plug = container_of(cb, struct raid1_plug_cb, cb);
1313  else
1314  plug = NULL;
1315  spin_lock_irqsave(&conf->device_lock, flags);
1316  if (plug) {
1317  bio_list_add(&plug->pending, mbio);
1318  plug->pending_cnt++;
1319  } else {
1320  bio_list_add(&conf->pending_bio_list, mbio);
1321  conf->pending_count++;
1322  }
1323  spin_unlock_irqrestore(&conf->device_lock, flags);
1324  if (!plug)
1325  md_wakeup_thread(mddev->thread);
1326  }
1327  /* Mustn't call r1_bio_write_done before this next test,
1328  * as it could result in the bio being freed.
1329  */
1330  if (sectors_handled < (bio->bi_size >> 9)) {
1331  r1_bio_write_done(r1_bio);
1332  /* We need another r1_bio. It has already been counted
1333  * in bio->bi_phys_segments
1334  */
1335  r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1336  r1_bio->master_bio = bio;
1337  r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1338  r1_bio->state = 0;
1339  r1_bio->mddev = mddev;
1340  r1_bio->sector = bio->bi_sector + sectors_handled;
1341  goto retry_write;
1342  }
1343 
1344  r1_bio_write_done(r1_bio);
1345 
1346  /* In case raid1d snuck in to freeze_array */
1347  wake_up(&conf->wait_barrier);
1348 }
1349 
1350 static void status(struct seq_file *seq, struct mddev *mddev)
1351 {
1352  struct r1conf *conf = mddev->private;
1353  int i;
1354 
1355  seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1356  conf->raid_disks - mddev->degraded);
1357  rcu_read_lock();
1358  for (i = 0; i < conf->raid_disks; i++) {
1359  struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1360  seq_printf(seq, "%s",
1361  rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1362  }
1363  rcu_read_unlock();
1364  seq_printf(seq, "]");
1365 }
1366 
1367 
1368 static void error(struct mddev *mddev, struct md_rdev *rdev)
1369 {
1370  char b[BDEVNAME_SIZE];
1371  struct r1conf *conf = mddev->private;
1372 
1373  /*
1374  * If it is not operational, then we have already marked it as dead
1375  * else if it is the last working disks, ignore the error, let the
1376  * next level up know.
1377  * else mark the drive as failed
1378  */
1379  if (test_bit(In_sync, &rdev->flags)
1380  && (conf->raid_disks - mddev->degraded) == 1) {
1381  /*
1382  * Don't fail the drive, act as though we were just a
1383  * normal single drive.
1384  * However don't try a recovery from this drive as
1385  * it is very likely to fail.
1386  */
1387  conf->recovery_disabled = mddev->recovery_disabled;
1388  return;
1389  }
1390  set_bit(Blocked, &rdev->flags);
1391  if (test_and_clear_bit(In_sync, &rdev->flags)) {
1392  unsigned long flags;
1393  spin_lock_irqsave(&conf->device_lock, flags);
1394  mddev->degraded++;
1395  set_bit(Faulty, &rdev->flags);
1396  spin_unlock_irqrestore(&conf->device_lock, flags);
1397  /*
1398  * if recovery is running, make sure it aborts.
1399  */
1400  set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1401  } else
1402  set_bit(Faulty, &rdev->flags);
1403  set_bit(MD_CHANGE_DEVS, &mddev->flags);
1405  "md/raid1:%s: Disk failure on %s, disabling device.\n"
1406  "md/raid1:%s: Operation continuing on %d devices.\n",
1407  mdname(mddev), bdevname(rdev->bdev, b),
1408  mdname(mddev), conf->raid_disks - mddev->degraded);
1409 }
1410 
1411 static void print_conf(struct r1conf *conf)
1412 {
1413  int i;
1414 
1415  printk(KERN_DEBUG "RAID1 conf printout:\n");
1416  if (!conf) {
1417  printk(KERN_DEBUG "(!conf)\n");
1418  return;
1419  }
1420  printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1421  conf->raid_disks);
1422 
1423  rcu_read_lock();
1424  for (i = 0; i < conf->raid_disks; i++) {
1425  char b[BDEVNAME_SIZE];
1426  struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1427  if (rdev)
1428  printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1429  i, !test_bit(In_sync, &rdev->flags),
1430  !test_bit(Faulty, &rdev->flags),
1431  bdevname(rdev->bdev,b));
1432  }
1433  rcu_read_unlock();
1434 }
1435 
1436 static void close_sync(struct r1conf *conf)
1437 {
1438  wait_barrier(conf);
1439  allow_barrier(conf);
1440 
1441  mempool_destroy(conf->r1buf_pool);
1442  conf->r1buf_pool = NULL;
1443 }
1444 
1445 static int raid1_spare_active(struct mddev *mddev)
1446 {
1447  int i;
1448  struct r1conf *conf = mddev->private;
1449  int count = 0;
1450  unsigned long flags;
1451 
1452  /*
1453  * Find all failed disks within the RAID1 configuration
1454  * and mark them readable.
1455  * Called under mddev lock, so rcu protection not needed.
1456  */
1457  for (i = 0; i < conf->raid_disks; i++) {
1458  struct md_rdev *rdev = conf->mirrors[i].rdev;
1459  struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1460  if (repl
1461  && repl->recovery_offset == MaxSector
1462  && !test_bit(Faulty, &repl->flags)
1463  && !test_and_set_bit(In_sync, &repl->flags)) {
1464  /* replacement has just become active */
1465  if (!rdev ||
1466  !test_and_clear_bit(In_sync, &rdev->flags))
1467  count++;
1468  if (rdev) {
1469  /* Replaced device not technically
1470  * faulty, but we need to be sure
1471  * it gets removed and never re-added
1472  */
1473  set_bit(Faulty, &rdev->flags);
1474  sysfs_notify_dirent_safe(
1475  rdev->sysfs_state);
1476  }
1477  }
1478  if (rdev
1479  && !test_bit(Faulty, &rdev->flags)
1480  && !test_and_set_bit(In_sync, &rdev->flags)) {
1481  count++;
1482  sysfs_notify_dirent_safe(rdev->sysfs_state);
1483  }
1484  }
1485  spin_lock_irqsave(&conf->device_lock, flags);
1486  mddev->degraded -= count;
1487  spin_unlock_irqrestore(&conf->device_lock, flags);
1488 
1489  print_conf(conf);
1490  return count;
1491 }
1492 
1493 
1494 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1495 {
1496  struct r1conf *conf = mddev->private;
1497  int err = -EEXIST;
1498  int mirror = 0;
1499  struct raid1_info *p;
1500  int first = 0;
1501  int last = conf->raid_disks - 1;
1502  struct request_queue *q = bdev_get_queue(rdev->bdev);
1503 
1504  if (mddev->recovery_disabled == conf->recovery_disabled)
1505  return -EBUSY;
1506 
1507  if (rdev->raid_disk >= 0)
1508  first = last = rdev->raid_disk;
1509 
1510  if (q->merge_bvec_fn) {
1511  set_bit(Unmerged, &rdev->flags);
1512  mddev->merge_check_needed = 1;
1513  }
1514 
1515  for (mirror = first; mirror <= last; mirror++) {
1516  p = conf->mirrors+mirror;
1517  if (!p->rdev) {
1518 
1519  disk_stack_limits(mddev->gendisk, rdev->bdev,
1520  rdev->data_offset << 9);
1521 
1522  p->head_position = 0;
1523  rdev->raid_disk = mirror;
1524  err = 0;
1525  /* As all devices are equivalent, we don't need a full recovery
1526  * if this was recently any drive of the array
1527  */
1528  if (rdev->saved_raid_disk < 0)
1529  conf->fullsync = 1;
1530  rcu_assign_pointer(p->rdev, rdev);
1531  break;
1532  }
1533  if (test_bit(WantReplacement, &p->rdev->flags) &&
1534  p[conf->raid_disks].rdev == NULL) {
1535  /* Add this device as a replacement */
1536  clear_bit(In_sync, &rdev->flags);
1537  set_bit(Replacement, &rdev->flags);
1538  rdev->raid_disk = mirror;
1539  err = 0;
1540  conf->fullsync = 1;
1541  rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1542  break;
1543  }
1544  }
1545  if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1546  /* Some requests might not have seen this new
1547  * merge_bvec_fn. We must wait for them to complete
1548  * before merging the device fully.
1549  * First we make sure any code which has tested
1550  * our function has submitted the request, then
1551  * we wait for all outstanding requests to complete.
1552  */
1554  raise_barrier(conf);
1555  lower_barrier(conf);
1556  clear_bit(Unmerged, &rdev->flags);
1557  }
1558  md_integrity_add_rdev(rdev, mddev);
1559  if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1560  queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1561  print_conf(conf);
1562  return err;
1563 }
1564 
1565 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567  struct r1conf *conf = mddev->private;
1568  int err = 0;
1569  int number = rdev->raid_disk;
1570  struct raid1_info *p = conf->mirrors + number;
1571 
1572  if (rdev != p->rdev)
1573  p = conf->mirrors + conf->raid_disks + number;
1574 
1575  print_conf(conf);
1576  if (rdev == p->rdev) {
1577  if (test_bit(In_sync, &rdev->flags) ||
1578  atomic_read(&rdev->nr_pending)) {
1579  err = -EBUSY;
1580  goto abort;
1581  }
1582  /* Only remove non-faulty devices if recovery
1583  * is not possible.
1584  */
1585  if (!test_bit(Faulty, &rdev->flags) &&
1586  mddev->recovery_disabled != conf->recovery_disabled &&
1587  mddev->degraded < conf->raid_disks) {
1588  err = -EBUSY;
1589  goto abort;
1590  }
1591  p->rdev = NULL;
1592  synchronize_rcu();
1593  if (atomic_read(&rdev->nr_pending)) {
1594  /* lost the race, try later */
1595  err = -EBUSY;
1596  p->rdev = rdev;
1597  goto abort;
1598  } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1599  /* We just removed a device that is being replaced.
1600  * Move down the replacement. We drain all IO before
1601  * doing this to avoid confusion.
1602  */
1603  struct md_rdev *repl =
1604  conf->mirrors[conf->raid_disks + number].rdev;
1605  raise_barrier(conf);
1606  clear_bit(Replacement, &repl->flags);
1607  p->rdev = repl;
1608  conf->mirrors[conf->raid_disks + number].rdev = NULL;
1609  lower_barrier(conf);
1610  clear_bit(WantReplacement, &rdev->flags);
1611  } else
1612  clear_bit(WantReplacement, &rdev->flags);
1613  err = md_integrity_register(mddev);
1614  }
1615 abort:
1616 
1617  print_conf(conf);
1618  return err;
1619 }
1620 
1621 
1622 static void end_sync_read(struct bio *bio, int error)
1623 {
1624  struct r1bio *r1_bio = bio->bi_private;
1625 
1626  update_head_pos(r1_bio->read_disk, r1_bio);
1627 
1628  /*
1629  * we have read a block, now it needs to be re-written,
1630  * or re-read if the read failed.
1631  * We don't do much here, just schedule handling by raid1d
1632  */
1633  if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1634  set_bit(R1BIO_Uptodate, &r1_bio->state);
1635 
1636  if (atomic_dec_and_test(&r1_bio->remaining))
1637  reschedule_retry(r1_bio);
1638 }
1639 
1640 static void end_sync_write(struct bio *bio, int error)
1641 {
1642  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1643  struct r1bio *r1_bio = bio->bi_private;
1644  struct mddev *mddev = r1_bio->mddev;
1645  struct r1conf *conf = mddev->private;
1646  int mirror=0;
1647  sector_t first_bad;
1648  int bad_sectors;
1649 
1650  mirror = find_bio_disk(r1_bio, bio);
1651 
1652  if (!uptodate) {
1653  sector_t sync_blocks = 0;
1654  sector_t s = r1_bio->sector;
1655  long sectors_to_go = r1_bio->sectors;
1656  /* make sure these bits doesn't get cleared. */
1657  do {
1658  bitmap_end_sync(mddev->bitmap, s,
1659  &sync_blocks, 1);
1660  s += sync_blocks;
1661  sectors_to_go -= sync_blocks;
1662  } while (sectors_to_go > 0);
1664  &conf->mirrors[mirror].rdev->flags);
1666  &conf->mirrors[mirror].rdev->flags))
1668  mddev->recovery);
1669  set_bit(R1BIO_WriteError, &r1_bio->state);
1670  } else if (is_badblock(conf->mirrors[mirror].rdev,
1671  r1_bio->sector,
1672  r1_bio->sectors,
1673  &first_bad, &bad_sectors) &&
1674  !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1675  r1_bio->sector,
1676  r1_bio->sectors,
1677  &first_bad, &bad_sectors)
1678  )
1679  set_bit(R1BIO_MadeGood, &r1_bio->state);
1680 
1681  if (atomic_dec_and_test(&r1_bio->remaining)) {
1682  int s = r1_bio->sectors;
1683  if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1684  test_bit(R1BIO_WriteError, &r1_bio->state))
1685  reschedule_retry(r1_bio);
1686  else {
1687  put_buf(r1_bio);
1688  md_done_sync(mddev, s, uptodate);
1689  }
1690  }
1691 }
1692 
1693 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1694  int sectors, struct page *page, int rw)
1695 {
1696  if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1697  /* success */
1698  return 1;
1699  if (rw == WRITE) {
1700  set_bit(WriteErrorSeen, &rdev->flags);
1702  &rdev->flags))
1704  rdev->mddev->recovery);
1705  }
1706  /* need to record an error - either for the block or the device */
1707  if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1708  md_error(rdev->mddev, rdev);
1709  return 0;
1710 }
1711 
1712 static int fix_sync_read_error(struct r1bio *r1_bio)
1713 {
1714  /* Try some synchronous reads of other devices to get
1715  * good data, much like with normal read errors. Only
1716  * read into the pages we already have so we don't
1717  * need to re-issue the read request.
1718  * We don't need to freeze the array, because being in an
1719  * active sync request, there is no normal IO, and
1720  * no overlapping syncs.
1721  * We don't need to check is_badblock() again as we
1722  * made sure that anything with a bad block in range
1723  * will have bi_end_io clear.
1724  */
1725  struct mddev *mddev = r1_bio->mddev;
1726  struct r1conf *conf = mddev->private;
1727  struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1728  sector_t sect = r1_bio->sector;
1729  int sectors = r1_bio->sectors;
1730  int idx = 0;
1731 
1732  while(sectors) {
1733  int s = sectors;
1734  int d = r1_bio->read_disk;
1735  int success = 0;
1736  struct md_rdev *rdev;
1737  int start;
1738 
1739  if (s > (PAGE_SIZE>>9))
1740  s = PAGE_SIZE >> 9;
1741  do {
1742  if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1743  /* No rcu protection needed here devices
1744  * can only be removed when no resync is
1745  * active, and resync is currently active
1746  */
1747  rdev = conf->mirrors[d].rdev;
1748  if (sync_page_io(rdev, sect, s<<9,
1749  bio->bi_io_vec[idx].bv_page,
1750  READ, false)) {
1751  success = 1;
1752  break;
1753  }
1754  }
1755  d++;
1756  if (d == conf->raid_disks * 2)
1757  d = 0;
1758  } while (!success && d != r1_bio->read_disk);
1759 
1760  if (!success) {
1761  char b[BDEVNAME_SIZE];
1762  int abort = 0;
1763  /* Cannot read from anywhere, this block is lost.
1764  * Record a bad block on each device. If that doesn't
1765  * work just disable and interrupt the recovery.
1766  * Don't fail devices as that won't really help.
1767  */
1768  printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1769  " for block %llu\n",
1770  mdname(mddev),
1771  bdevname(bio->bi_bdev, b),
1772  (unsigned long long)r1_bio->sector);
1773  for (d = 0; d < conf->raid_disks * 2; d++) {
1774  rdev = conf->mirrors[d].rdev;
1775  if (!rdev || test_bit(Faulty, &rdev->flags))
1776  continue;
1777  if (!rdev_set_badblocks(rdev, sect, s, 0))
1778  abort = 1;
1779  }
1780  if (abort) {
1781  conf->recovery_disabled =
1782  mddev->recovery_disabled;
1783  set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1784  md_done_sync(mddev, r1_bio->sectors, 0);
1785  put_buf(r1_bio);
1786  return 0;
1787  }
1788  /* Try next page */
1789  sectors -= s;
1790  sect += s;
1791  idx++;
1792  continue;
1793  }
1794 
1795  start = d;
1796  /* write it back and re-read */
1797  while (d != r1_bio->read_disk) {
1798  if (d == 0)
1799  d = conf->raid_disks * 2;
1800  d--;
1801  if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1802  continue;
1803  rdev = conf->mirrors[d].rdev;
1804  if (r1_sync_page_io(rdev, sect, s,
1805  bio->bi_io_vec[idx].bv_page,
1806  WRITE) == 0) {
1807  r1_bio->bios[d]->bi_end_io = NULL;
1808  rdev_dec_pending(rdev, mddev);
1809  }
1810  }
1811  d = start;
1812  while (d != r1_bio->read_disk) {
1813  if (d == 0)
1814  d = conf->raid_disks * 2;
1815  d--;
1816  if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1817  continue;
1818  rdev = conf->mirrors[d].rdev;
1819  if (r1_sync_page_io(rdev, sect, s,
1820  bio->bi_io_vec[idx].bv_page,
1821  READ) != 0)
1822  atomic_add(s, &rdev->corrected_errors);
1823  }
1824  sectors -= s;
1825  sect += s;
1826  idx ++;
1827  }
1828  set_bit(R1BIO_Uptodate, &r1_bio->state);
1829  set_bit(BIO_UPTODATE, &bio->bi_flags);
1830  return 1;
1831 }
1832 
1833 static int process_checks(struct r1bio *r1_bio)
1834 {
1835  /* We have read all readable devices. If we haven't
1836  * got the block, then there is no hope left.
1837  * If we have, then we want to do a comparison
1838  * and skip the write if everything is the same.
1839  * If any blocks failed to read, then we need to
1840  * attempt an over-write
1841  */
1842  struct mddev *mddev = r1_bio->mddev;
1843  struct r1conf *conf = mddev->private;
1844  int primary;
1845  int i;
1846  int vcnt;
1847 
1848  for (primary = 0; primary < conf->raid_disks * 2; primary++)
1849  if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1850  test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1851  r1_bio->bios[primary]->bi_end_io = NULL;
1852  rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1853  break;
1854  }
1855  r1_bio->read_disk = primary;
1856  vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1857  for (i = 0; i < conf->raid_disks * 2; i++) {
1858  int j;
1859  struct bio *pbio = r1_bio->bios[primary];
1860  struct bio *sbio = r1_bio->bios[i];
1861  int size;
1862 
1863  if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1864  continue;
1865 
1866  if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1867  for (j = vcnt; j-- ; ) {
1868  struct page *p, *s;
1869  p = pbio->bi_io_vec[j].bv_page;
1870  s = sbio->bi_io_vec[j].bv_page;
1871  if (memcmp(page_address(p),
1872  page_address(s),
1873  sbio->bi_io_vec[j].bv_len))
1874  break;
1875  }
1876  } else
1877  j = 0;
1878  if (j >= 0)
1879  atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1880  if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1881  && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1882  /* No need to write to this device. */
1883  sbio->bi_end_io = NULL;
1884  rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1885  continue;
1886  }
1887  /* fixup the bio for reuse */
1888  sbio->bi_vcnt = vcnt;
1889  sbio->bi_size = r1_bio->sectors << 9;
1890  sbio->bi_idx = 0;
1891  sbio->bi_phys_segments = 0;
1892  sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1893  sbio->bi_flags |= 1 << BIO_UPTODATE;
1894  sbio->bi_next = NULL;
1895  sbio->bi_sector = r1_bio->sector +
1896  conf->mirrors[i].rdev->data_offset;
1897  sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1898  size = sbio->bi_size;
1899  for (j = 0; j < vcnt ; j++) {
1900  struct bio_vec *bi;
1901  bi = &sbio->bi_io_vec[j];
1902  bi->bv_offset = 0;
1903  if (size > PAGE_SIZE)
1904  bi->bv_len = PAGE_SIZE;
1905  else
1906  bi->bv_len = size;
1907  size -= PAGE_SIZE;
1908  memcpy(page_address(bi->bv_page),
1909  page_address(pbio->bi_io_vec[j].bv_page),
1910  PAGE_SIZE);
1911  }
1912  }
1913  return 0;
1914 }
1915 
1916 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1917 {
1918  struct r1conf *conf = mddev->private;
1919  int i;
1920  int disks = conf->raid_disks * 2;
1921  struct bio *bio, *wbio;
1922 
1923  bio = r1_bio->bios[r1_bio->read_disk];
1924 
1925  if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1926  /* ouch - failed to read all of that. */
1927  if (!fix_sync_read_error(r1_bio))
1928  return;
1929 
1930  if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1931  if (process_checks(r1_bio) < 0)
1932  return;
1933  /*
1934  * schedule writes
1935  */
1936  atomic_set(&r1_bio->remaining, 1);
1937  for (i = 0; i < disks ; i++) {
1938  wbio = r1_bio->bios[i];
1939  if (wbio->bi_end_io == NULL ||
1940  (wbio->bi_end_io == end_sync_read &&
1941  (i == r1_bio->read_disk ||
1942  !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1943  continue;
1944 
1945  wbio->bi_rw = WRITE;
1946  wbio->bi_end_io = end_sync_write;
1947  atomic_inc(&r1_bio->remaining);
1948  md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1949 
1950  generic_make_request(wbio);
1951  }
1952 
1953  if (atomic_dec_and_test(&r1_bio->remaining)) {
1954  /* if we're here, all write(s) have completed, so clean up */
1955  int s = r1_bio->sectors;
1956  if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1957  test_bit(R1BIO_WriteError, &r1_bio->state))
1958  reschedule_retry(r1_bio);
1959  else {
1960  put_buf(r1_bio);
1961  md_done_sync(mddev, s, 1);
1962  }
1963  }
1964 }
1965 
1966 /*
1967  * This is a kernel thread which:
1968  *
1969  * 1. Retries failed read operations on working mirrors.
1970  * 2. Updates the raid superblock when problems encounter.
1971  * 3. Performs writes following reads for array synchronising.
1972  */
1973 
1974 static void fix_read_error(struct r1conf *conf, int read_disk,
1975  sector_t sect, int sectors)
1976 {
1977  struct mddev *mddev = conf->mddev;
1978  while(sectors) {
1979  int s = sectors;
1980  int d = read_disk;
1981  int success = 0;
1982  int start;
1983  struct md_rdev *rdev;
1984 
1985  if (s > (PAGE_SIZE>>9))
1986  s = PAGE_SIZE >> 9;
1987 
1988  do {
1989  /* Note: no rcu protection needed here
1990  * as this is synchronous in the raid1d thread
1991  * which is the thread that might remove
1992  * a device. If raid1d ever becomes multi-threaded....
1993  */
1994  sector_t first_bad;
1995  int bad_sectors;
1996 
1997  rdev = conf->mirrors[d].rdev;
1998  if (rdev &&
1999  (test_bit(In_sync, &rdev->flags) ||
2000  (!test_bit(Faulty, &rdev->flags) &&
2001  rdev->recovery_offset >= sect + s)) &&
2002  is_badblock(rdev, sect, s,
2003  &first_bad, &bad_sectors) == 0 &&
2004  sync_page_io(rdev, sect, s<<9,
2005  conf->tmppage, READ, false))
2006  success = 1;
2007  else {
2008  d++;
2009  if (d == conf->raid_disks * 2)
2010  d = 0;
2011  }
2012  } while (!success && d != read_disk);
2013 
2014  if (!success) {
2015  /* Cannot read from anywhere - mark it bad */
2016  struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2017  if (!rdev_set_badblocks(rdev, sect, s, 0))
2018  md_error(mddev, rdev);
2019  break;
2020  }
2021  /* write it back and re-read */
2022  start = d;
2023  while (d != read_disk) {
2024  if (d==0)
2025  d = conf->raid_disks * 2;
2026  d--;
2027  rdev = conf->mirrors[d].rdev;
2028  if (rdev &&
2029  test_bit(In_sync, &rdev->flags))
2030  r1_sync_page_io(rdev, sect, s,
2031  conf->tmppage, WRITE);
2032  }
2033  d = start;
2034  while (d != read_disk) {
2035  char b[BDEVNAME_SIZE];
2036  if (d==0)
2037  d = conf->raid_disks * 2;
2038  d--;
2039  rdev = conf->mirrors[d].rdev;
2040  if (rdev &&
2041  test_bit(In_sync, &rdev->flags)) {
2042  if (r1_sync_page_io(rdev, sect, s,
2043  conf->tmppage, READ)) {
2044  atomic_add(s, &rdev->corrected_errors);
2046  "md/raid1:%s: read error corrected "
2047  "(%d sectors at %llu on %s)\n",
2048  mdname(mddev), s,
2049  (unsigned long long)(sect +
2050  rdev->data_offset),
2051  bdevname(rdev->bdev, b));
2052  }
2053  }
2054  }
2055  sectors -= s;
2056  sect += s;
2057  }
2058 }
2059 
2060 static void bi_complete(struct bio *bio, int error)
2061 {
2062  complete((struct completion *)bio->bi_private);
2063 }
2064 
2065 static int submit_bio_wait(int rw, struct bio *bio)
2066 {
2067  struct completion event;
2068  rw |= REQ_SYNC;
2069 
2070  init_completion(&event);
2071  bio->bi_private = &event;
2072  bio->bi_end_io = bi_complete;
2073  submit_bio(rw, bio);
2075 
2076  return test_bit(BIO_UPTODATE, &bio->bi_flags);
2077 }
2078 
2079 static int narrow_write_error(struct r1bio *r1_bio, int i)
2080 {
2081  struct mddev *mddev = r1_bio->mddev;
2082  struct r1conf *conf = mddev->private;
2083  struct md_rdev *rdev = conf->mirrors[i].rdev;
2084  int vcnt, idx;
2085  struct bio_vec *vec;
2086 
2087  /* bio has the data to be written to device 'i' where
2088  * we just recently had a write error.
2089  * We repeatedly clone the bio and trim down to one block,
2090  * then try the write. Where the write fails we record
2091  * a bad block.
2092  * It is conceivable that the bio doesn't exactly align with
2093  * blocks. We must handle this somehow.
2094  *
2095  * We currently own a reference on the rdev.
2096  */
2097 
2098  int block_sectors;
2099  sector_t sector;
2100  int sectors;
2101  int sect_to_write = r1_bio->sectors;
2102  int ok = 1;
2103 
2104  if (rdev->badblocks.shift < 0)
2105  return 0;
2106 
2107  block_sectors = 1 << rdev->badblocks.shift;
2108  sector = r1_bio->sector;
2109  sectors = ((sector + block_sectors)
2110  & ~(sector_t)(block_sectors - 1))
2111  - sector;
2112 
2113  if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2114  vcnt = r1_bio->behind_page_count;
2115  vec = r1_bio->behind_bvecs;
2116  idx = 0;
2117  while (vec[idx].bv_page == NULL)
2118  idx++;
2119  } else {
2120  vcnt = r1_bio->master_bio->bi_vcnt;
2121  vec = r1_bio->master_bio->bi_io_vec;
2122  idx = r1_bio->master_bio->bi_idx;
2123  }
2124  while (sect_to_write) {
2125  struct bio *wbio;
2126  if (sectors > sect_to_write)
2127  sectors = sect_to_write;
2128  /* Write at 'sector' for 'sectors'*/
2129 
2130  wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2131  memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2132  wbio->bi_sector = r1_bio->sector;
2133  wbio->bi_rw = WRITE;
2134  wbio->bi_vcnt = vcnt;
2135  wbio->bi_size = r1_bio->sectors << 9;
2136  wbio->bi_idx = idx;
2137 
2138  md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2139  wbio->bi_sector += rdev->data_offset;
2140  wbio->bi_bdev = rdev->bdev;
2141  if (submit_bio_wait(WRITE, wbio) == 0)
2142  /* failure! */
2143  ok = rdev_set_badblocks(rdev, sector,
2144  sectors, 0)
2145  && ok;
2146 
2147  bio_put(wbio);
2148  sect_to_write -= sectors;
2149  sector += sectors;
2150  sectors = block_sectors;
2151  }
2152  return ok;
2153 }
2154 
2155 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2156 {
2157  int m;
2158  int s = r1_bio->sectors;
2159  for (m = 0; m < conf->raid_disks * 2 ; m++) {
2160  struct md_rdev *rdev = conf->mirrors[m].rdev;
2161  struct bio *bio = r1_bio->bios[m];
2162  if (bio->bi_end_io == NULL)
2163  continue;
2164  if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2165  test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2166  rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2167  }
2168  if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2169  test_bit(R1BIO_WriteError, &r1_bio->state)) {
2170  if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2171  md_error(conf->mddev, rdev);
2172  }
2173  }
2174  put_buf(r1_bio);
2175  md_done_sync(conf->mddev, s, 1);
2176 }
2177 
2178 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2179 {
2180  int m;
2181  for (m = 0; m < conf->raid_disks * 2 ; m++)
2182  if (r1_bio->bios[m] == IO_MADE_GOOD) {
2183  struct md_rdev *rdev = conf->mirrors[m].rdev;
2184  rdev_clear_badblocks(rdev,
2185  r1_bio->sector,
2186  r1_bio->sectors, 0);
2187  rdev_dec_pending(rdev, conf->mddev);
2188  } else if (r1_bio->bios[m] != NULL) {
2189  /* This drive got a write error. We need to
2190  * narrow down and record precise write
2191  * errors.
2192  */
2193  if (!narrow_write_error(r1_bio, m)) {
2194  md_error(conf->mddev,
2195  conf->mirrors[m].rdev);
2196  /* an I/O failed, we can't clear the bitmap */
2197  set_bit(R1BIO_Degraded, &r1_bio->state);
2198  }
2199  rdev_dec_pending(conf->mirrors[m].rdev,
2200  conf->mddev);
2201  }
2202  if (test_bit(R1BIO_WriteError, &r1_bio->state))
2203  close_write(r1_bio);
2204  raid_end_bio_io(r1_bio);
2205 }
2206 
2207 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2208 {
2209  int disk;
2210  int max_sectors;
2211  struct mddev *mddev = conf->mddev;
2212  struct bio *bio;
2213  char b[BDEVNAME_SIZE];
2214  struct md_rdev *rdev;
2215 
2216  clear_bit(R1BIO_ReadError, &r1_bio->state);
2217  /* we got a read error. Maybe the drive is bad. Maybe just
2218  * the block and we can fix it.
2219  * We freeze all other IO, and try reading the block from
2220  * other devices. When we find one, we re-write
2221  * and check it that fixes the read error.
2222  * This is all done synchronously while the array is
2223  * frozen
2224  */
2225  if (mddev->ro == 0) {
2226  freeze_array(conf);
2227  fix_read_error(conf, r1_bio->read_disk,
2228  r1_bio->sector, r1_bio->sectors);
2229  unfreeze_array(conf);
2230  } else
2231  md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2232  rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2233 
2234  bio = r1_bio->bios[r1_bio->read_disk];
2235  bdevname(bio->bi_bdev, b);
2236 read_more:
2237  disk = read_balance(conf, r1_bio, &max_sectors);
2238  if (disk == -1) {
2239  printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2240  " read error for block %llu\n",
2241  mdname(mddev), b, (unsigned long long)r1_bio->sector);
2242  raid_end_bio_io(r1_bio);
2243  } else {
2244  const unsigned long do_sync
2245  = r1_bio->master_bio->bi_rw & REQ_SYNC;
2246  if (bio) {
2247  r1_bio->bios[r1_bio->read_disk] =
2248  mddev->ro ? IO_BLOCKED : NULL;
2249  bio_put(bio);
2250  }
2251  r1_bio->read_disk = disk;
2252  bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2253  md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2254  r1_bio->bios[r1_bio->read_disk] = bio;
2255  rdev = conf->mirrors[disk].rdev;
2257  "md/raid1:%s: redirecting sector %llu"
2258  " to other mirror: %s\n",
2259  mdname(mddev),
2260  (unsigned long long)r1_bio->sector,
2261  bdevname(rdev->bdev, b));
2262  bio->bi_sector = r1_bio->sector + rdev->data_offset;
2263  bio->bi_bdev = rdev->bdev;
2264  bio->bi_end_io = raid1_end_read_request;
2265  bio->bi_rw = READ | do_sync;
2266  bio->bi_private = r1_bio;
2267  if (max_sectors < r1_bio->sectors) {
2268  /* Drat - have to split this up more */
2269  struct bio *mbio = r1_bio->master_bio;
2270  int sectors_handled = (r1_bio->sector + max_sectors
2271  - mbio->bi_sector);
2272  r1_bio->sectors = max_sectors;
2273  spin_lock_irq(&conf->device_lock);
2274  if (mbio->bi_phys_segments == 0)
2275  mbio->bi_phys_segments = 2;
2276  else
2277  mbio->bi_phys_segments++;
2278  spin_unlock_irq(&conf->device_lock);
2279  generic_make_request(bio);
2280  bio = NULL;
2281 
2282  r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2283 
2284  r1_bio->master_bio = mbio;
2285  r1_bio->sectors = (mbio->bi_size >> 9)
2286  - sectors_handled;
2287  r1_bio->state = 0;
2288  set_bit(R1BIO_ReadError, &r1_bio->state);
2289  r1_bio->mddev = mddev;
2290  r1_bio->sector = mbio->bi_sector + sectors_handled;
2291 
2292  goto read_more;
2293  } else
2294  generic_make_request(bio);
2295  }
2296 }
2297 
2298 static void raid1d(struct md_thread *thread)
2299 {
2300  struct mddev *mddev = thread->mddev;
2301  struct r1bio *r1_bio;
2302  unsigned long flags;
2303  struct r1conf *conf = mddev->private;
2304  struct list_head *head = &conf->retry_list;
2305  struct blk_plug plug;
2306 
2307  md_check_recovery(mddev);
2308 
2309  blk_start_plug(&plug);
2310  for (;;) {
2311 
2312  flush_pending_writes(conf);
2313 
2314  spin_lock_irqsave(&conf->device_lock, flags);
2315  if (list_empty(head)) {
2316  spin_unlock_irqrestore(&conf->device_lock, flags);
2317  break;
2318  }
2319  r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2320  list_del(head->prev);
2321  conf->nr_queued--;
2322  spin_unlock_irqrestore(&conf->device_lock, flags);
2323 
2324  mddev = r1_bio->mddev;
2325  conf = mddev->private;
2326  if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2327  if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2328  test_bit(R1BIO_WriteError, &r1_bio->state))
2329  handle_sync_write_finished(conf, r1_bio);
2330  else
2331  sync_request_write(mddev, r1_bio);
2332  } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2333  test_bit(R1BIO_WriteError, &r1_bio->state))
2334  handle_write_finished(conf, r1_bio);
2335  else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2336  handle_read_error(conf, r1_bio);
2337  else
2338  /* just a partial read to be scheduled from separate
2339  * context
2340  */
2341  generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2342 
2343  cond_resched();
2344  if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2345  md_check_recovery(mddev);
2346  }
2347  blk_finish_plug(&plug);
2348 }
2349 
2350 
2351 static int init_resync(struct r1conf *conf)
2352 {
2353  int buffs;
2354 
2355  buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2356  BUG_ON(conf->r1buf_pool);
2357  conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2358  conf->poolinfo);
2359  if (!conf->r1buf_pool)
2360  return -ENOMEM;
2361  conf->next_resync = 0;
2362  return 0;
2363 }
2364 
2365 /*
2366  * perform a "sync" on one "block"
2367  *
2368  * We need to make sure that no normal I/O request - particularly write
2369  * requests - conflict with active sync requests.
2370  *
2371  * This is achieved by tracking pending requests and a 'barrier' concept
2372  * that can be installed to exclude normal IO requests.
2373  */
2374 
2375 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2376 {
2377  struct r1conf *conf = mddev->private;
2378  struct r1bio *r1_bio;
2379  struct bio *bio;
2380  sector_t max_sector, nr_sectors;
2381  int disk = -1;
2382  int i;
2383  int wonly = -1;
2384  int write_targets = 0, read_targets = 0;
2385  sector_t sync_blocks;
2386  int still_degraded = 0;
2387  int good_sectors = RESYNC_SECTORS;
2388  int min_bad = 0; /* number of sectors that are bad in all devices */
2389 
2390  if (!conf->r1buf_pool)
2391  if (init_resync(conf))
2392  return 0;
2393 
2394  max_sector = mddev->dev_sectors;
2395  if (sector_nr >= max_sector) {
2396  /* If we aborted, we need to abort the
2397  * sync on the 'current' bitmap chunk (there will
2398  * only be one in raid1 resync.
2399  * We can find the current addess in mddev->curr_resync
2400  */
2401  if (mddev->curr_resync < max_sector) /* aborted */
2402  bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2403  &sync_blocks, 1);
2404  else /* completed sync */
2405  conf->fullsync = 0;
2406 
2407  bitmap_close_sync(mddev->bitmap);
2408  close_sync(conf);
2409  return 0;
2410  }
2411 
2412  if (mddev->bitmap == NULL &&
2413  mddev->recovery_cp == MaxSector &&
2415  conf->fullsync == 0) {
2416  *skipped = 1;
2417  return max_sector - sector_nr;
2418  }
2419  /* before building a request, check if we can skip these blocks..
2420  * This call the bitmap_start_sync doesn't actually record anything
2421  */
2422  if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2423  !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2424  /* We can skip this block, and probably several more */
2425  *skipped = 1;
2426  return sync_blocks;
2427  }
2428  /*
2429  * If there is non-resync activity waiting for a turn,
2430  * and resync is going fast enough,
2431  * then let it though before starting on this new sync request.
2432  */
2433  if (!go_faster && conf->nr_waiting)
2434  msleep_interruptible(1000);
2435 
2436  bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2437  r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2438  raise_barrier(conf);
2439 
2440  conf->next_resync = sector_nr;
2441 
2442  rcu_read_lock();
2443  /*
2444  * If we get a correctably read error during resync or recovery,
2445  * we might want to read from a different device. So we
2446  * flag all drives that could conceivably be read from for READ,
2447  * and any others (which will be non-In_sync devices) for WRITE.
2448  * If a read fails, we try reading from something else for which READ
2449  * is OK.
2450  */
2451 
2452  r1_bio->mddev = mddev;
2453  r1_bio->sector = sector_nr;
2454  r1_bio->state = 0;
2455  set_bit(R1BIO_IsSync, &r1_bio->state);
2456 
2457  for (i = 0; i < conf->raid_disks * 2; i++) {
2458  struct md_rdev *rdev;
2459  bio = r1_bio->bios[i];
2460 
2461  /* take from bio_init */
2462  bio->bi_next = NULL;
2463  bio->bi_flags &= ~(BIO_POOL_MASK-1);
2464  bio->bi_flags |= 1 << BIO_UPTODATE;
2465  bio->bi_rw = READ;
2466  bio->bi_vcnt = 0;
2467  bio->bi_idx = 0;
2468  bio->bi_phys_segments = 0;
2469  bio->bi_size = 0;
2470  bio->bi_end_io = NULL;
2471  bio->bi_private = NULL;
2472 
2473  rdev = rcu_dereference(conf->mirrors[i].rdev);
2474  if (rdev == NULL ||
2475  test_bit(Faulty, &rdev->flags)) {
2476  if (i < conf->raid_disks)
2477  still_degraded = 1;
2478  } else if (!test_bit(In_sync, &rdev->flags)) {
2479  bio->bi_rw = WRITE;
2480  bio->bi_end_io = end_sync_write;
2481  write_targets ++;
2482  } else {
2483  /* may need to read from here */
2484  sector_t first_bad = MaxSector;
2485  int bad_sectors;
2486 
2487  if (is_badblock(rdev, sector_nr, good_sectors,
2488  &first_bad, &bad_sectors)) {
2489  if (first_bad > sector_nr)
2490  good_sectors = first_bad - sector_nr;
2491  else {
2492  bad_sectors -= (sector_nr - first_bad);
2493  if (min_bad == 0 ||
2494  min_bad > bad_sectors)
2495  min_bad = bad_sectors;
2496  }
2497  }
2498  if (sector_nr < first_bad) {
2499  if (test_bit(WriteMostly, &rdev->flags)) {
2500  if (wonly < 0)
2501  wonly = i;
2502  } else {
2503  if (disk < 0)
2504  disk = i;
2505  }
2506  bio->bi_rw = READ;
2507  bio->bi_end_io = end_sync_read;
2508  read_targets++;
2509  } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2510  test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2511  !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2512  /*
2513  * The device is suitable for reading (InSync),
2514  * but has bad block(s) here. Let's try to correct them,
2515  * if we are doing resync or repair. Otherwise, leave
2516  * this device alone for this sync request.
2517  */
2518  bio->bi_rw = WRITE;
2519  bio->bi_end_io = end_sync_write;
2520  write_targets++;
2521  }
2522  }
2523  if (bio->bi_end_io) {
2524  atomic_inc(&rdev->nr_pending);
2525  bio->bi_sector = sector_nr + rdev->data_offset;
2526  bio->bi_bdev = rdev->bdev;
2527  bio->bi_private = r1_bio;
2528  }
2529  }
2530  rcu_read_unlock();
2531  if (disk < 0)
2532  disk = wonly;
2533  r1_bio->read_disk = disk;
2534 
2535  if (read_targets == 0 && min_bad > 0) {
2536  /* These sectors are bad on all InSync devices, so we
2537  * need to mark them bad on all write targets
2538  */
2539  int ok = 1;
2540  for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2541  if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2542  struct md_rdev *rdev = conf->mirrors[i].rdev;
2543  ok = rdev_set_badblocks(rdev, sector_nr,
2544  min_bad, 0
2545  ) && ok;
2546  }
2547  set_bit(MD_CHANGE_DEVS, &mddev->flags);
2548  *skipped = 1;
2549  put_buf(r1_bio);
2550 
2551  if (!ok) {
2552  /* Cannot record the badblocks, so need to
2553  * abort the resync.
2554  * If there are multiple read targets, could just
2555  * fail the really bad ones ???
2556  */
2557  conf->recovery_disabled = mddev->recovery_disabled;
2558  set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2559  return 0;
2560  } else
2561  return min_bad;
2562 
2563  }
2564  if (min_bad > 0 && min_bad < good_sectors) {
2565  /* only resync enough to reach the next bad->good
2566  * transition */
2567  good_sectors = min_bad;
2568  }
2569 
2570  if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2571  /* extra read targets are also write targets */
2572  write_targets += read_targets-1;
2573 
2574  if (write_targets == 0 || read_targets == 0) {
2575  /* There is nowhere to write, so all non-sync
2576  * drives must be failed - so we are finished
2577  */
2578  sector_t rv;
2579  if (min_bad > 0)
2580  max_sector = sector_nr + min_bad;
2581  rv = max_sector - sector_nr;
2582  *skipped = 1;
2583  put_buf(r1_bio);
2584  return rv;
2585  }
2586 
2587  if (max_sector > mddev->resync_max)
2588  max_sector = mddev->resync_max; /* Don't do IO beyond here */
2589  if (max_sector > sector_nr + good_sectors)
2590  max_sector = sector_nr + good_sectors;
2591  nr_sectors = 0;
2592  sync_blocks = 0;
2593  do {
2594  struct page *page;
2595  int len = PAGE_SIZE;
2596  if (sector_nr + (len>>9) > max_sector)
2597  len = (max_sector - sector_nr) << 9;
2598  if (len == 0)
2599  break;
2600  if (sync_blocks == 0) {
2601  if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2602  &sync_blocks, still_degraded) &&
2603  !conf->fullsync &&
2605  break;
2606  BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2607  if ((len >> 9) > sync_blocks)
2608  len = sync_blocks<<9;
2609  }
2610 
2611  for (i = 0 ; i < conf->raid_disks * 2; i++) {
2612  bio = r1_bio->bios[i];
2613  if (bio->bi_end_io) {
2614  page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2615  if (bio_add_page(bio, page, len, 0) == 0) {
2616  /* stop here */
2617  bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2618  while (i > 0) {
2619  i--;
2620  bio = r1_bio->bios[i];
2621  if (bio->bi_end_io==NULL)
2622  continue;
2623  /* remove last page from this bio */
2624  bio->bi_vcnt--;
2625  bio->bi_size -= len;
2626  bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2627  }
2628  goto bio_full;
2629  }
2630  }
2631  }
2632  nr_sectors += len>>9;
2633  sector_nr += len>>9;
2634  sync_blocks -= (len>>9);
2635  } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2636  bio_full:
2637  r1_bio->sectors = nr_sectors;
2638 
2639  /* For a user-requested sync, we read all readable devices and do a
2640  * compare
2641  */
2642  if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2643  atomic_set(&r1_bio->remaining, read_targets);
2644  for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2645  bio = r1_bio->bios[i];
2646  if (bio->bi_end_io == end_sync_read) {
2647  read_targets--;
2648  md_sync_acct(bio->bi_bdev, nr_sectors);
2649  generic_make_request(bio);
2650  }
2651  }
2652  } else {
2653  atomic_set(&r1_bio->remaining, 1);
2654  bio = r1_bio->bios[r1_bio->read_disk];
2655  md_sync_acct(bio->bi_bdev, nr_sectors);
2656  generic_make_request(bio);
2657 
2658  }
2659  return nr_sectors;
2660 }
2661 
2662 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2663 {
2664  if (sectors)
2665  return sectors;
2666 
2667  return mddev->dev_sectors;
2668 }
2669 
2670 static struct r1conf *setup_conf(struct mddev *mddev)
2671 {
2672  struct r1conf *conf;
2673  int i;
2674  struct raid1_info *disk;
2675  struct md_rdev *rdev;
2676  int err = -ENOMEM;
2677 
2678  conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2679  if (!conf)
2680  goto abort;
2681 
2682  conf->mirrors = kzalloc(sizeof(struct raid1_info)
2683  * mddev->raid_disks * 2,
2684  GFP_KERNEL);
2685  if (!conf->mirrors)
2686  goto abort;
2687 
2688  conf->tmppage = alloc_page(GFP_KERNEL);
2689  if (!conf->tmppage)
2690  goto abort;
2691 
2692  conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2693  if (!conf->poolinfo)
2694  goto abort;
2695  conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2696  conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2697  r1bio_pool_free,
2698  conf->poolinfo);
2699  if (!conf->r1bio_pool)
2700  goto abort;
2701 
2702  conf->poolinfo->mddev = mddev;
2703 
2704  err = -EINVAL;
2705  spin_lock_init(&conf->device_lock);
2706  rdev_for_each(rdev, mddev) {
2707  struct request_queue *q;
2708  int disk_idx = rdev->raid_disk;
2709  if (disk_idx >= mddev->raid_disks
2710  || disk_idx < 0)
2711  continue;
2712  if (test_bit(Replacement, &rdev->flags))
2713  disk = conf->mirrors + mddev->raid_disks + disk_idx;
2714  else
2715  disk = conf->mirrors + disk_idx;
2716 
2717  if (disk->rdev)
2718  goto abort;
2719  disk->rdev = rdev;
2720  q = bdev_get_queue(rdev->bdev);
2721  if (q->merge_bvec_fn)
2722  mddev->merge_check_needed = 1;
2723 
2724  disk->head_position = 0;
2725  disk->seq_start = MaxSector;
2726  }
2727  conf->raid_disks = mddev->raid_disks;
2728  conf->mddev = mddev;
2729  INIT_LIST_HEAD(&conf->retry_list);
2730 
2731  spin_lock_init(&conf->resync_lock);
2733 
2734  bio_list_init(&conf->pending_bio_list);
2735  conf->pending_count = 0;
2736  conf->recovery_disabled = mddev->recovery_disabled - 1;
2737 
2738  err = -EIO;
2739  for (i = 0; i < conf->raid_disks * 2; i++) {
2740 
2741  disk = conf->mirrors + i;
2742 
2743  if (i < conf->raid_disks &&
2744  disk[conf->raid_disks].rdev) {
2745  /* This slot has a replacement. */
2746  if (!disk->rdev) {
2747  /* No original, just make the replacement
2748  * a recovering spare
2749  */
2750  disk->rdev =
2751  disk[conf->raid_disks].rdev;
2752  disk[conf->raid_disks].rdev = NULL;
2753  } else if (!test_bit(In_sync, &disk->rdev->flags))
2754  /* Original is not in_sync - bad */
2755  goto abort;
2756  }
2757 
2758  if (!disk->rdev ||
2759  !test_bit(In_sync, &disk->rdev->flags)) {
2760  disk->head_position = 0;
2761  if (disk->rdev &&
2762  (disk->rdev->saved_raid_disk < 0))
2763  conf->fullsync = 1;
2764  }
2765  }
2766 
2767  err = -ENOMEM;
2768  conf->thread = md_register_thread(raid1d, mddev, "raid1");
2769  if (!conf->thread) {
2771  "md/raid1:%s: couldn't allocate thread\n",
2772  mdname(mddev));
2773  goto abort;
2774  }
2775 
2776  return conf;
2777 
2778  abort:
2779  if (conf) {
2780  if (conf->r1bio_pool)
2781  mempool_destroy(conf->r1bio_pool);
2782  kfree(conf->mirrors);
2783  safe_put_page(conf->tmppage);
2784  kfree(conf->poolinfo);
2785  kfree(conf);
2786  }
2787  return ERR_PTR(err);
2788 }
2789 
2790 static int stop(struct mddev *mddev);
2791 static int run(struct mddev *mddev)
2792 {
2793  struct r1conf *conf;
2794  int i;
2795  struct md_rdev *rdev;
2796  int ret;
2797  bool discard_supported = false;
2798 
2799  if (mddev->level != 1) {
2800  printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2801  mdname(mddev), mddev->level);
2802  return -EIO;
2803  }
2804  if (mddev->reshape_position != MaxSector) {
2805  printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2806  mdname(mddev));
2807  return -EIO;
2808  }
2809  /*
2810  * copy the already verified devices into our private RAID1
2811  * bookkeeping area. [whatever we allocate in run(),
2812  * should be freed in stop()]
2813  */
2814  if (mddev->private == NULL)
2815  conf = setup_conf(mddev);
2816  else
2817  conf = mddev->private;
2818 
2819  if (IS_ERR(conf))
2820  return PTR_ERR(conf);
2821 
2822  rdev_for_each(rdev, mddev) {
2823  if (!mddev->gendisk)
2824  continue;
2825  disk_stack_limits(mddev->gendisk, rdev->bdev,
2826  rdev->data_offset << 9);
2827  if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2828  discard_supported = true;
2829  }
2830 
2831  mddev->degraded = 0;
2832  for (i=0; i < conf->raid_disks; i++)
2833  if (conf->mirrors[i].rdev == NULL ||
2834  !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2835  test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2836  mddev->degraded++;
2837 
2838  if (conf->raid_disks - mddev->degraded == 1)
2839  mddev->recovery_cp = MaxSector;
2840 
2841  if (mddev->recovery_cp != MaxSector)
2842  printk(KERN_NOTICE "md/raid1:%s: not clean"
2843  " -- starting background reconstruction\n",
2844  mdname(mddev));
2845  printk(KERN_INFO
2846  "md/raid1:%s: active with %d out of %d mirrors\n",
2847  mdname(mddev), mddev->raid_disks - mddev->degraded,
2848  mddev->raid_disks);
2849 
2850  /*
2851  * Ok, everything is just fine now
2852  */
2853  mddev->thread = conf->thread;
2854  conf->thread = NULL;
2855  mddev->private = conf;
2856 
2857  md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2858 
2859  if (mddev->queue) {
2860  mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2861  mddev->queue->backing_dev_info.congested_data = mddev;
2862  blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2863 
2864  if (discard_supported)
2865  queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2866  mddev->queue);
2867  else
2868  queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2869  mddev->queue);
2870  }
2871 
2872  ret = md_integrity_register(mddev);
2873  if (ret)
2874  stop(mddev);
2875  return ret;
2876 }
2877 
2878 static int stop(struct mddev *mddev)
2879 {
2880  struct r1conf *conf = mddev->private;
2881  struct bitmap *bitmap = mddev->bitmap;
2882 
2883  /* wait for behind writes to complete */
2884  if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2885  printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2886  mdname(mddev));
2887  /* need to kick something here to make sure I/O goes? */
2888  wait_event(bitmap->behind_wait,
2889  atomic_read(&bitmap->behind_writes) == 0);
2890  }
2891 
2892  raise_barrier(conf);
2893  lower_barrier(conf);
2894 
2895  md_unregister_thread(&mddev->thread);
2896  if (conf->r1bio_pool)
2897  mempool_destroy(conf->r1bio_pool);
2898  kfree(conf->mirrors);
2899  kfree(conf->poolinfo);
2900  kfree(conf);
2901  mddev->private = NULL;
2902  return 0;
2903 }
2904 
2905 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2906 {
2907  /* no resync is happening, and there is enough space
2908  * on all devices, so we can resize.
2909  * We need to make sure resync covers any new space.
2910  * If the array is shrinking we should possibly wait until
2911  * any io in the removed space completes, but it hardly seems
2912  * worth it.
2913  */
2914  sector_t newsize = raid1_size(mddev, sectors, 0);
2915  if (mddev->external_size &&
2916  mddev->array_sectors > newsize)
2917  return -EINVAL;
2918  if (mddev->bitmap) {
2919  int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2920  if (ret)
2921  return ret;
2922  }
2923  md_set_array_sectors(mddev, newsize);
2924  set_capacity(mddev->gendisk, mddev->array_sectors);
2925  revalidate_disk(mddev->gendisk);
2926  if (sectors > mddev->dev_sectors &&
2927  mddev->recovery_cp > mddev->dev_sectors) {
2928  mddev->recovery_cp = mddev->dev_sectors;
2930  }
2931  mddev->dev_sectors = sectors;
2932  mddev->resync_max_sectors = sectors;
2933  return 0;
2934 }
2935 
2936 static int raid1_reshape(struct mddev *mddev)
2937 {
2938  /* We need to:
2939  * 1/ resize the r1bio_pool
2940  * 2/ resize conf->mirrors
2941  *
2942  * We allocate a new r1bio_pool if we can.
2943  * Then raise a device barrier and wait until all IO stops.
2944  * Then resize conf->mirrors and swap in the new r1bio pool.
2945  *
2946  * At the same time, we "pack" the devices so that all the missing
2947  * devices have the higher raid_disk numbers.
2948  */
2949  mempool_t *newpool, *oldpool;
2950  struct pool_info *newpoolinfo;
2951  struct raid1_info *newmirrors;
2952  struct r1conf *conf = mddev->private;
2953  int cnt, raid_disks;
2954  unsigned long flags;
2955  int d, d2, err;
2956 
2957  /* Cannot change chunk_size, layout, or level */
2958  if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2959  mddev->layout != mddev->new_layout ||
2960  mddev->level != mddev->new_level) {
2961  mddev->new_chunk_sectors = mddev->chunk_sectors;
2962  mddev->new_layout = mddev->layout;
2963  mddev->new_level = mddev->level;
2964  return -EINVAL;
2965  }
2966 
2967  err = md_allow_write(mddev);
2968  if (err)
2969  return err;
2970 
2971  raid_disks = mddev->raid_disks + mddev->delta_disks;
2972 
2973  if (raid_disks < conf->raid_disks) {
2974  cnt=0;
2975  for (d= 0; d < conf->raid_disks; d++)
2976  if (conf->mirrors[d].rdev)
2977  cnt++;
2978  if (cnt > raid_disks)
2979  return -EBUSY;
2980  }
2981 
2982  newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2983  if (!newpoolinfo)
2984  return -ENOMEM;
2985  newpoolinfo->mddev = mddev;
2986  newpoolinfo->raid_disks = raid_disks * 2;
2987 
2988  newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2989  r1bio_pool_free, newpoolinfo);
2990  if (!newpool) {
2991  kfree(newpoolinfo);
2992  return -ENOMEM;
2993  }
2994  newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2995  GFP_KERNEL);
2996  if (!newmirrors) {
2997  kfree(newpoolinfo);
2998  mempool_destroy(newpool);
2999  return -ENOMEM;
3000  }
3001 
3002  raise_barrier(conf);
3003 
3004  /* ok, everything is stopped */
3005  oldpool = conf->r1bio_pool;
3006  conf->r1bio_pool = newpool;
3007 
3008  for (d = d2 = 0; d < conf->raid_disks; d++) {
3009  struct md_rdev *rdev = conf->mirrors[d].rdev;
3010  if (rdev && rdev->raid_disk != d2) {
3011  sysfs_unlink_rdev(mddev, rdev);
3012  rdev->raid_disk = d2;
3013  sysfs_unlink_rdev(mddev, rdev);
3014  if (sysfs_link_rdev(mddev, rdev))
3016  "md/raid1:%s: cannot register rd%d\n",
3017  mdname(mddev), rdev->raid_disk);
3018  }
3019  if (rdev)
3020  newmirrors[d2++].rdev = rdev;
3021  }
3022  kfree(conf->mirrors);
3023  conf->mirrors = newmirrors;
3024  kfree(conf->poolinfo);
3025  conf->poolinfo = newpoolinfo;
3026 
3027  spin_lock_irqsave(&conf->device_lock, flags);
3028  mddev->degraded += (raid_disks - conf->raid_disks);
3029  spin_unlock_irqrestore(&conf->device_lock, flags);
3030  conf->raid_disks = mddev->raid_disks = raid_disks;
3031  mddev->delta_disks = 0;
3032 
3033  lower_barrier(conf);
3034 
3036  md_wakeup_thread(mddev->thread);
3037 
3038  mempool_destroy(oldpool);
3039  return 0;
3040 }
3041 
3042 static void raid1_quiesce(struct mddev *mddev, int state)
3043 {
3044  struct r1conf *conf = mddev->private;
3045 
3046  switch(state) {
3047  case 2: /* wake for suspend */
3048  wake_up(&conf->wait_barrier);
3049  break;
3050  case 1:
3051  raise_barrier(conf);
3052  break;
3053  case 0:
3054  lower_barrier(conf);
3055  break;
3056  }
3057 }
3058 
3059 static void *raid1_takeover(struct mddev *mddev)
3060 {
3061  /* raid1 can take over:
3062  * raid5 with 2 devices, any layout or chunk size
3063  */
3064  if (mddev->level == 5 && mddev->raid_disks == 2) {
3065  struct r1conf *conf;
3066  mddev->new_level = 1;
3067  mddev->new_layout = 0;
3068  mddev->new_chunk_sectors = 0;
3069  conf = setup_conf(mddev);
3070  if (!IS_ERR(conf))
3071  conf->barrier = 1;
3072  return conf;
3073  }
3074  return ERR_PTR(-EINVAL);
3075 }
3076 
3077 static struct md_personality raid1_personality =
3078 {
3079  .name = "raid1",
3080  .level = 1,
3081  .owner = THIS_MODULE,
3082  .make_request = make_request,
3083  .run = run,
3084  .stop = stop,
3085  .status = status,
3086  .error_handler = error,
3087  .hot_add_disk = raid1_add_disk,
3088  .hot_remove_disk= raid1_remove_disk,
3089  .spare_active = raid1_spare_active,
3090  .sync_request = sync_request,
3091  .resize = raid1_resize,
3092  .size = raid1_size,
3093  .check_reshape = raid1_reshape,
3094  .quiesce = raid1_quiesce,
3095  .takeover = raid1_takeover,
3096 };
3097 
3098 static int __init raid_init(void)
3099 {
3100  return register_md_personality(&raid1_personality);
3101 }
3102 
3103 static void raid_exit(void)
3104 {
3105  unregister_md_personality(&raid1_personality);
3106 }
3107 
3108 module_init(raid_init);
3109 module_exit(raid_exit);
3110 MODULE_LICENSE("GPL");
3111 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3112 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3113 MODULE_ALIAS("md-raid1");
3114 MODULE_ALIAS("md-level-1");
3115 
3116 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);