Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rcutiny_plugin.h
Go to the documentation of this file.
1 /*
2  * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  *
20  * Copyright (c) 2010 Linaro
21  *
22  * Author: Paul E. McKenney <[email protected]>
23  */
24 
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/debugfs.h>
28 #include <linux/seq_file.h>
29 
30 /* Global control variables for rcupdate callback mechanism. */
31 struct rcu_ctrlblk {
32  struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
33  struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
34  struct rcu_head **curtail; /* ->next pointer of last CB. */
35  RCU_TRACE(long qlen); /* Number of pending CBs. */
36  RCU_TRACE(char *name); /* Name of RCU type. */
37 };
38 
39 /* Definition for rcupdate control block. */
40 static struct rcu_ctrlblk rcu_sched_ctrlblk = {
41  .donetail = &rcu_sched_ctrlblk.rcucblist,
42  .curtail = &rcu_sched_ctrlblk.rcucblist,
43  RCU_TRACE(.name = "rcu_sched")
44 };
45 
46 static struct rcu_ctrlblk rcu_bh_ctrlblk = {
47  .donetail = &rcu_bh_ctrlblk.rcucblist,
48  .curtail = &rcu_bh_ctrlblk.rcucblist,
49  RCU_TRACE(.name = "rcu_bh")
50 };
51 
52 #ifdef CONFIG_DEBUG_LOCK_ALLOC
53 int rcu_scheduler_active __read_mostly;
54 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
55 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
56 
57 #ifdef CONFIG_TINY_PREEMPT_RCU
58 
59 #include <linux/delay.h>
60 
61 /* Global control variables for preemptible RCU. */
62 struct rcu_preempt_ctrlblk {
63  struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
64  struct rcu_head **nexttail;
65  /* Tasks blocked in a preemptible RCU */
66  /* read-side critical section while an */
67  /* preemptible-RCU grace period is in */
68  /* progress must wait for a later grace */
69  /* period. This pointer points to the */
70  /* ->next pointer of the last task that */
71  /* must wait for a later grace period, or */
72  /* to &->rcb.rcucblist if there is no */
73  /* such task. */
74  struct list_head blkd_tasks;
75  /* Tasks blocked in RCU read-side critical */
76  /* section. Tasks are placed at the head */
77  /* of this list and age towards the tail. */
78  struct list_head *gp_tasks;
79  /* Pointer to the first task blocking the */
80  /* current grace period, or NULL if there */
81  /* is no such task. */
82  struct list_head *exp_tasks;
83  /* Pointer to first task blocking the */
84  /* current expedited grace period, or NULL */
85  /* if there is no such task. If there */
86  /* is no current expedited grace period, */
87  /* then there cannot be any such task. */
88 #ifdef CONFIG_RCU_BOOST
89  struct list_head *boost_tasks;
90  /* Pointer to first task that needs to be */
91  /* priority-boosted, or NULL if no priority */
92  /* boosting is needed. If there is no */
93  /* current or expedited grace period, there */
94  /* can be no such task. */
95 #endif /* #ifdef CONFIG_RCU_BOOST */
96  u8 gpnum; /* Current grace period. */
97  u8 gpcpu; /* Last grace period blocked by the CPU. */
98  u8 completed; /* Last grace period completed. */
99  /* If all three are equal, RCU is idle. */
100 #ifdef CONFIG_RCU_BOOST
101  unsigned long boost_time; /* When to start boosting (jiffies) */
102 #endif /* #ifdef CONFIG_RCU_BOOST */
103 #ifdef CONFIG_RCU_TRACE
104  unsigned long n_grace_periods;
105 #ifdef CONFIG_RCU_BOOST
106  unsigned long n_tasks_boosted;
107  /* Total number of tasks boosted. */
108  unsigned long n_exp_boosts;
109  /* Number of tasks boosted for expedited GP. */
110  unsigned long n_normal_boosts;
111  /* Number of tasks boosted for normal GP. */
112  unsigned long n_balk_blkd_tasks;
113  /* Refused to boost: no blocked tasks. */
114  unsigned long n_balk_exp_gp_tasks;
115  /* Refused to boost: nothing blocking GP. */
116  unsigned long n_balk_boost_tasks;
117  /* Refused to boost: already boosting. */
118  unsigned long n_balk_notyet;
119  /* Refused to boost: not yet time. */
120  unsigned long n_balk_nos;
121  /* Refused to boost: not sure why, though. */
122  /* This can happen due to race conditions. */
123 #endif /* #ifdef CONFIG_RCU_BOOST */
124 #endif /* #ifdef CONFIG_RCU_TRACE */
125 };
126 
127 static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
128  .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
129  .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
130  .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
131  .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
132  RCU_TRACE(.rcb.name = "rcu_preempt")
133 };
134 
135 static int rcu_preempted_readers_exp(void);
136 static void rcu_report_exp_done(void);
137 
138 /*
139  * Return true if the CPU has not yet responded to the current grace period.
140  */
141 static int rcu_cpu_blocking_cur_gp(void)
142 {
143  return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
144 }
145 
146 /*
147  * Check for a running RCU reader. Because there is only one CPU,
148  * there can be but one running RCU reader at a time. ;-)
149  *
150  * Returns zero if there are no running readers. Returns a positive
151  * number if there is at least one reader within its RCU read-side
152  * critical section. Returns a negative number if an outermost reader
153  * is in the midst of exiting from its RCU read-side critical section
154  *
155  * Returns zero if there are no running readers. Returns a positive
156  * number if there is at least one reader within its RCU read-side
157  * critical section. Returns a negative number if an outermost reader
158  * is in the midst of exiting from its RCU read-side critical section.
159  */
160 static int rcu_preempt_running_reader(void)
161 {
162  return current->rcu_read_lock_nesting;
163 }
164 
165 /*
166  * Check for preempted RCU readers blocking any grace period.
167  * If the caller needs a reliable answer, it must disable hard irqs.
168  */
169 static int rcu_preempt_blocked_readers_any(void)
170 {
171  return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
172 }
173 
174 /*
175  * Check for preempted RCU readers blocking the current grace period.
176  * If the caller needs a reliable answer, it must disable hard irqs.
177  */
178 static int rcu_preempt_blocked_readers_cgp(void)
179 {
180  return rcu_preempt_ctrlblk.gp_tasks != NULL;
181 }
182 
183 /*
184  * Return true if another preemptible-RCU grace period is needed.
185  */
186 static int rcu_preempt_needs_another_gp(void)
187 {
188  return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
189 }
190 
191 /*
192  * Return true if a preemptible-RCU grace period is in progress.
193  * The caller must disable hardirqs.
194  */
195 static int rcu_preempt_gp_in_progress(void)
196 {
197  return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
198 }
199 
200 /*
201  * Advance a ->blkd_tasks-list pointer to the next entry, instead
202  * returning NULL if at the end of the list.
203  */
204 static struct list_head *rcu_next_node_entry(struct task_struct *t)
205 {
206  struct list_head *np;
207 
208  np = t->rcu_node_entry.next;
209  if (np == &rcu_preempt_ctrlblk.blkd_tasks)
210  np = NULL;
211  return np;
212 }
213 
214 #ifdef CONFIG_RCU_TRACE
215 
216 #ifdef CONFIG_RCU_BOOST
217 static void rcu_initiate_boost_trace(void);
218 #endif /* #ifdef CONFIG_RCU_BOOST */
219 
220 /*
221  * Dump additional statistice for TINY_PREEMPT_RCU.
222  */
223 static void show_tiny_preempt_stats(struct seq_file *m)
224 {
225  seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
226  rcu_preempt_ctrlblk.rcb.qlen,
227  rcu_preempt_ctrlblk.n_grace_periods,
228  rcu_preempt_ctrlblk.gpnum,
229  rcu_preempt_ctrlblk.gpcpu,
230  rcu_preempt_ctrlblk.completed,
231  "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
232  "N."[!rcu_preempt_ctrlblk.gp_tasks],
233  "E."[!rcu_preempt_ctrlblk.exp_tasks]);
234 #ifdef CONFIG_RCU_BOOST
235  seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
236  " ",
237  "B."[!rcu_preempt_ctrlblk.boost_tasks],
238  rcu_preempt_ctrlblk.n_tasks_boosted,
239  rcu_preempt_ctrlblk.n_exp_boosts,
240  rcu_preempt_ctrlblk.n_normal_boosts,
241  (int)(jiffies & 0xffff),
242  (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
243  seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
244  " balk",
245  rcu_preempt_ctrlblk.n_balk_blkd_tasks,
246  rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
247  rcu_preempt_ctrlblk.n_balk_boost_tasks,
248  rcu_preempt_ctrlblk.n_balk_notyet,
249  rcu_preempt_ctrlblk.n_balk_nos);
250 #endif /* #ifdef CONFIG_RCU_BOOST */
251 }
252 
253 #endif /* #ifdef CONFIG_RCU_TRACE */
254 
255 #ifdef CONFIG_RCU_BOOST
256 
257 #include "rtmutex_common.h"
258 
259 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
260 
261 /* Controls for rcu_kthread() kthread. */
262 static struct task_struct *rcu_kthread_task;
263 static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
264 static unsigned long have_rcu_kthread_work;
265 
266 /*
267  * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
268  * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
269  */
270 static int rcu_boost(void)
271 {
272  unsigned long flags;
273  struct rt_mutex mtx;
274  struct task_struct *t;
275  struct list_head *tb;
276 
277  if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
278  rcu_preempt_ctrlblk.exp_tasks == NULL)
279  return 0; /* Nothing to boost. */
280 
281  local_irq_save(flags);
282 
283  /*
284  * Recheck with irqs disabled: all tasks in need of boosting
285  * might exit their RCU read-side critical sections on their own
286  * if we are preempted just before disabling irqs.
287  */
288  if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
289  rcu_preempt_ctrlblk.exp_tasks == NULL) {
290  local_irq_restore(flags);
291  return 0;
292  }
293 
294  /*
295  * Preferentially boost tasks blocking expedited grace periods.
296  * This cannot starve the normal grace periods because a second
297  * expedited grace period must boost all blocked tasks, including
298  * those blocking the pre-existing normal grace period.
299  */
300  if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
301  tb = rcu_preempt_ctrlblk.exp_tasks;
302  RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
303  } else {
304  tb = rcu_preempt_ctrlblk.boost_tasks;
305  RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
306  }
307  RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
308 
309  /*
310  * We boost task t by manufacturing an rt_mutex that appears to
311  * be held by task t. We leave a pointer to that rt_mutex where
312  * task t can find it, and task t will release the mutex when it
313  * exits its outermost RCU read-side critical section. Then
314  * simply acquiring this artificial rt_mutex will boost task
315  * t's priority. (Thanks to tglx for suggesting this approach!)
316  */
317  t = container_of(tb, struct task_struct, rcu_node_entry);
319  t->rcu_boost_mutex = &mtx;
320  local_irq_restore(flags);
321  rt_mutex_lock(&mtx);
322  rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
323 
324  return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
325  ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
326 }
327 
328 /*
329  * Check to see if it is now time to start boosting RCU readers blocking
330  * the current grace period, and, if so, tell the rcu_kthread_task to
331  * start boosting them. If there is an expedited boost in progress,
332  * we wait for it to complete.
333  *
334  * If there are no blocked readers blocking the current grace period,
335  * return 0 to let the caller know, otherwise return 1. Note that this
336  * return value is independent of whether or not boosting was done.
337  */
338 static int rcu_initiate_boost(void)
339 {
340  if (!rcu_preempt_blocked_readers_cgp() &&
341  rcu_preempt_ctrlblk.exp_tasks == NULL) {
342  RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
343  return 0;
344  }
345  if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
346  (rcu_preempt_ctrlblk.gp_tasks != NULL &&
347  rcu_preempt_ctrlblk.boost_tasks == NULL &&
348  ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
349  if (rcu_preempt_ctrlblk.exp_tasks == NULL)
350  rcu_preempt_ctrlblk.boost_tasks =
351  rcu_preempt_ctrlblk.gp_tasks;
353  } else {
354  RCU_TRACE(rcu_initiate_boost_trace());
355  }
356  return 1;
357 }
358 
359 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
360 
361 /*
362  * Do priority-boost accounting for the start of a new grace period.
363  */
364 static void rcu_preempt_boost_start_gp(void)
365 {
366  rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
367 }
368 
369 #else /* #ifdef CONFIG_RCU_BOOST */
370 
371 /*
372  * If there is no RCU priority boosting, we don't initiate boosting,
373  * but we do indicate whether there are blocked readers blocking the
374  * current grace period.
375  */
376 static int rcu_initiate_boost(void)
377 {
378  return rcu_preempt_blocked_readers_cgp();
379 }
380 
381 /*
382  * If there is no RCU priority boosting, nothing to do at grace-period start.
383  */
384 static void rcu_preempt_boost_start_gp(void)
385 {
386 }
387 
388 #endif /* else #ifdef CONFIG_RCU_BOOST */
389 
390 /*
391  * Record a preemptible-RCU quiescent state for the specified CPU. Note
392  * that this just means that the task currently running on the CPU is
393  * in a quiescent state. There might be any number of tasks blocked
394  * while in an RCU read-side critical section.
395  *
396  * Unlike the other rcu_*_qs() functions, callers to this function
397  * must disable irqs in order to protect the assignment to
398  * ->rcu_read_unlock_special.
399  *
400  * Because this is a single-CPU implementation, the only way a grace
401  * period can end is if the CPU is in a quiescent state. The reason is
402  * that a blocked preemptible-RCU reader can exit its critical section
403  * only if the CPU is running it at the time. Therefore, when the
404  * last task blocking the current grace period exits its RCU read-side
405  * critical section, neither the CPU nor blocked tasks will be stopping
406  * the current grace period. (In contrast, SMP implementations
407  * might have CPUs running in RCU read-side critical sections that
408  * block later grace periods -- but this is not possible given only
409  * one CPU.)
410  */
411 static void rcu_preempt_cpu_qs(void)
412 {
413  /* Record both CPU and task as having responded to current GP. */
414  rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
415  current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
416 
417  /* If there is no GP then there is nothing more to do. */
418  if (!rcu_preempt_gp_in_progress())
419  return;
420  /*
421  * Check up on boosting. If there are readers blocking the
422  * current grace period, leave.
423  */
424  if (rcu_initiate_boost())
425  return;
426 
427  /* Advance callbacks. */
428  rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
429  rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
430  rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
431 
432  /* If there are no blocked readers, next GP is done instantly. */
433  if (!rcu_preempt_blocked_readers_any())
434  rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
435 
436  /* If there are done callbacks, cause them to be invoked. */
437  if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
439 }
440 
441 /*
442  * Start a new RCU grace period if warranted. Hard irqs must be disabled.
443  */
444 static void rcu_preempt_start_gp(void)
445 {
446  if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
447 
448  /* Official start of GP. */
449  rcu_preempt_ctrlblk.gpnum++;
450  RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
451 
452  /* Any blocked RCU readers block new GP. */
453  if (rcu_preempt_blocked_readers_any())
454  rcu_preempt_ctrlblk.gp_tasks =
455  rcu_preempt_ctrlblk.blkd_tasks.next;
456 
457  /* Set up for RCU priority boosting. */
458  rcu_preempt_boost_start_gp();
459 
460  /* If there is no running reader, CPU is done with GP. */
461  if (!rcu_preempt_running_reader())
462  rcu_preempt_cpu_qs();
463  }
464 }
465 
466 /*
467  * We have entered the scheduler, and the current task might soon be
468  * context-switched away from. If this task is in an RCU read-side
469  * critical section, we will no longer be able to rely on the CPU to
470  * record that fact, so we enqueue the task on the blkd_tasks list.
471  * If the task started after the current grace period began, as recorded
472  * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
473  * before the element referenced by ->gp_tasks (or at the tail if
474  * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
475  * The task will dequeue itself when it exits the outermost enclosing
476  * RCU read-side critical section. Therefore, the current grace period
477  * cannot be permitted to complete until the ->gp_tasks pointer becomes
478  * NULL.
479  *
480  * Caller must disable preemption.
481  */
483 {
484  struct task_struct *t = current;
485  unsigned long flags;
486 
487  local_irq_save(flags); /* must exclude scheduler_tick(). */
488  if (rcu_preempt_running_reader() > 0 &&
489  (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
490 
491  /* Possibly blocking in an RCU read-side critical section. */
492  t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
493 
494  /*
495  * If this CPU has already checked in, then this task
496  * will hold up the next grace period rather than the
497  * current grace period. Queue the task accordingly.
498  * If the task is queued for the current grace period
499  * (i.e., this CPU has not yet passed through a quiescent
500  * state for the current grace period), then as long
501  * as that task remains queued, the current grace period
502  * cannot end.
503  */
504  list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
505  if (rcu_cpu_blocking_cur_gp())
506  rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
507  } else if (rcu_preempt_running_reader() < 0 &&
508  t->rcu_read_unlock_special) {
509  /*
510  * Complete exit from RCU read-side critical section on
511  * behalf of preempted instance of __rcu_read_unlock().
512  */
513  rcu_read_unlock_special(t);
514  }
515 
516  /*
517  * Either we were not in an RCU read-side critical section to
518  * begin with, or we have now recorded that critical section
519  * globally. Either way, we can now note a quiescent state
520  * for this CPU. Again, if we were in an RCU read-side critical
521  * section, and if that critical section was blocking the current
522  * grace period, then the fact that the task has been enqueued
523  * means that current grace period continues to be blocked.
524  */
525  rcu_preempt_cpu_qs();
526  local_irq_restore(flags);
527 }
528 
529 /*
530  * Handle special cases during rcu_read_unlock(), such as needing to
531  * notify RCU core processing or task having blocked during the RCU
532  * read-side critical section.
533  */
534 void rcu_read_unlock_special(struct task_struct *t)
535 {
536  int empty;
537  int empty_exp;
538  unsigned long flags;
539  struct list_head *np;
540 #ifdef CONFIG_RCU_BOOST
541  struct rt_mutex *rbmp = NULL;
542 #endif /* #ifdef CONFIG_RCU_BOOST */
543  int special;
544 
545  /*
546  * NMI handlers cannot block and cannot safely manipulate state.
547  * They therefore cannot possibly be special, so just leave.
548  */
549  if (in_nmi())
550  return;
551 
552  local_irq_save(flags);
553 
554  /*
555  * If RCU core is waiting for this CPU to exit critical section,
556  * let it know that we have done so.
557  */
558  special = t->rcu_read_unlock_special;
559  if (special & RCU_READ_UNLOCK_NEED_QS)
560  rcu_preempt_cpu_qs();
561 
562  /* Hardware IRQ handlers cannot block. */
563  if (in_irq() || in_serving_softirq()) {
564  local_irq_restore(flags);
565  return;
566  }
567 
568  /* Clean up if blocked during RCU read-side critical section. */
569  if (special & RCU_READ_UNLOCK_BLOCKED) {
570  t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
571 
572  /*
573  * Remove this task from the ->blkd_tasks list and adjust
574  * any pointers that might have been referencing it.
575  */
576  empty = !rcu_preempt_blocked_readers_cgp();
577  empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
578  np = rcu_next_node_entry(t);
579  list_del_init(&t->rcu_node_entry);
580  if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
581  rcu_preempt_ctrlblk.gp_tasks = np;
582  if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
583  rcu_preempt_ctrlblk.exp_tasks = np;
584 #ifdef CONFIG_RCU_BOOST
585  if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
586  rcu_preempt_ctrlblk.boost_tasks = np;
587 #endif /* #ifdef CONFIG_RCU_BOOST */
588 
589  /*
590  * If this was the last task on the current list, and if
591  * we aren't waiting on the CPU, report the quiescent state
592  * and start a new grace period if needed.
593  */
594  if (!empty && !rcu_preempt_blocked_readers_cgp()) {
595  rcu_preempt_cpu_qs();
596  rcu_preempt_start_gp();
597  }
598 
599  /*
600  * If this was the last task on the expedited lists,
601  * then we need wake up the waiting task.
602  */
603  if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
604  rcu_report_exp_done();
605  }
606 #ifdef CONFIG_RCU_BOOST
607  /* Unboost self if was boosted. */
608  if (t->rcu_boost_mutex != NULL) {
609  rbmp = t->rcu_boost_mutex;
610  t->rcu_boost_mutex = NULL;
611  rt_mutex_unlock(rbmp);
612  }
613 #endif /* #ifdef CONFIG_RCU_BOOST */
614  local_irq_restore(flags);
615 }
616 
617 /*
618  * Check for a quiescent state from the current CPU. When a task blocks,
619  * the task is recorded in the rcu_preempt_ctrlblk structure, which is
620  * checked elsewhere. This is called from the scheduling-clock interrupt.
621  *
622  * Caller must disable hard irqs.
623  */
624 static void rcu_preempt_check_callbacks(void)
625 {
626  struct task_struct *t = current;
627 
628  if (rcu_preempt_gp_in_progress() &&
629  (!rcu_preempt_running_reader() ||
630  !rcu_cpu_blocking_cur_gp()))
631  rcu_preempt_cpu_qs();
632  if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
633  rcu_preempt_ctrlblk.rcb.donetail)
635  if (rcu_preempt_gp_in_progress() &&
636  rcu_cpu_blocking_cur_gp() &&
637  rcu_preempt_running_reader() > 0)
638  t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
639 }
640 
641 /*
642  * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
643  * update, so this is invoked from rcu_process_callbacks() to
644  * handle that case. Of course, it is invoked for all flavors of
645  * RCU, but RCU callbacks can appear only on one of the lists, and
646  * neither ->nexttail nor ->donetail can possibly be NULL, so there
647  * is no need for an explicit check.
648  */
649 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
650 {
651  if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
652  rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
653 }
654 
655 /*
656  * Process callbacks for preemptible RCU.
657  */
658 static void rcu_preempt_process_callbacks(void)
659 {
660  __rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
661 }
662 
663 /*
664  * Queue a preemptible -RCU callback for invocation after a grace period.
665  */
666 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
667 {
668  unsigned long flags;
669 
670  debug_rcu_head_queue(head);
671  head->func = func;
672  head->next = NULL;
673 
674  local_irq_save(flags);
675  *rcu_preempt_ctrlblk.nexttail = head;
676  rcu_preempt_ctrlblk.nexttail = &head->next;
677  RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
678  rcu_preempt_start_gp(); /* checks to see if GP needed. */
679  local_irq_restore(flags);
680 }
682 
683 /*
684  * synchronize_rcu - wait until a grace period has elapsed.
685  *
686  * Control will return to the caller some time after a full grace
687  * period has elapsed, in other words after all currently executing RCU
688  * read-side critical sections have completed. RCU read-side critical
689  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
690  * and may be nested.
691  */
692 void synchronize_rcu(void)
693 {
694  rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
695  !lock_is_held(&rcu_lock_map) &&
696  !lock_is_held(&rcu_sched_lock_map),
697  "Illegal synchronize_rcu() in RCU read-side critical section");
698 
699 #ifdef CONFIG_DEBUG_LOCK_ALLOC
700  if (!rcu_scheduler_active)
701  return;
702 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
703 
704  WARN_ON_ONCE(rcu_preempt_running_reader());
705  if (!rcu_preempt_blocked_readers_any())
706  return;
707 
708  /* Once we get past the fastpath checks, same code as rcu_barrier(). */
709  rcu_barrier();
710 }
711 EXPORT_SYMBOL_GPL(synchronize_rcu);
712 
713 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
714 static unsigned long sync_rcu_preempt_exp_count;
715 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
716 
717 /*
718  * Return non-zero if there are any tasks in RCU read-side critical
719  * sections blocking the current preemptible-RCU expedited grace period.
720  * If there is no preemptible-RCU expedited grace period currently in
721  * progress, returns zero unconditionally.
722  */
723 static int rcu_preempted_readers_exp(void)
724 {
725  return rcu_preempt_ctrlblk.exp_tasks != NULL;
726 }
727 
728 /*
729  * Report the exit from RCU read-side critical section for the last task
730  * that queued itself during or before the current expedited preemptible-RCU
731  * grace period.
732  */
733 static void rcu_report_exp_done(void)
734 {
735  wake_up(&sync_rcu_preempt_exp_wq);
736 }
737 
738 /*
739  * Wait for an rcu-preempt grace period, but expedite it. The basic idea
740  * is to rely in the fact that there is but one CPU, and that it is
741  * illegal for a task to invoke synchronize_rcu_expedited() while in a
742  * preemptible-RCU read-side critical section. Therefore, any such
743  * critical sections must correspond to blocked tasks, which must therefore
744  * be on the ->blkd_tasks list. So just record the current head of the
745  * list in the ->exp_tasks pointer, and wait for all tasks including and
746  * after the task pointed to by ->exp_tasks to drain.
747  */
748 void synchronize_rcu_expedited(void)
749 {
750  unsigned long flags;
751  struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
752  unsigned long snap;
753 
754  barrier(); /* ensure prior action seen before grace period. */
755 
756  WARN_ON_ONCE(rcu_preempt_running_reader());
757 
758  /*
759  * Acquire lock so that there is only one preemptible RCU grace
760  * period in flight. Of course, if someone does the expedited
761  * grace period for us while we are acquiring the lock, just leave.
762  */
763  snap = sync_rcu_preempt_exp_count + 1;
764  mutex_lock(&sync_rcu_preempt_exp_mutex);
765  if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
766  goto unlock_mb_ret; /* Others did our work for us. */
767 
768  local_irq_save(flags);
769 
770  /*
771  * All RCU readers have to already be on blkd_tasks because
772  * we cannot legally be executing in an RCU read-side critical
773  * section.
774  */
775 
776  /* Snapshot current head of ->blkd_tasks list. */
777  rpcp->exp_tasks = rpcp->blkd_tasks.next;
778  if (rpcp->exp_tasks == &rpcp->blkd_tasks)
779  rpcp->exp_tasks = NULL;
780 
781  /* Wait for tail of ->blkd_tasks list to drain. */
782  if (!rcu_preempted_readers_exp()) {
783  local_irq_restore(flags);
784  } else {
785  rcu_initiate_boost();
786  local_irq_restore(flags);
787  wait_event(sync_rcu_preempt_exp_wq,
788  !rcu_preempted_readers_exp());
789  }
790 
791  /* Clean up and exit. */
792  barrier(); /* ensure expedited GP seen before counter increment. */
793  sync_rcu_preempt_exp_count++;
794 unlock_mb_ret:
795  mutex_unlock(&sync_rcu_preempt_exp_mutex);
796  barrier(); /* ensure subsequent action seen after grace period. */
797 }
799 
800 /*
801  * Does preemptible RCU need the CPU to stay out of dynticks mode?
802  */
803 int rcu_preempt_needs_cpu(void)
804 {
805  return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
806 }
807 
808 #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
809 
810 #ifdef CONFIG_RCU_TRACE
811 
812 /*
813  * Because preemptible RCU does not exist, it is not necessary to
814  * dump out its statistics.
815  */
816 static void show_tiny_preempt_stats(struct seq_file *m)
817 {
818 }
819 
820 #endif /* #ifdef CONFIG_RCU_TRACE */
821 
822 /*
823  * Because preemptible RCU does not exist, it never has any callbacks
824  * to check.
825  */
826 static void rcu_preempt_check_callbacks(void)
827 {
828 }
829 
830 /*
831  * Because preemptible RCU does not exist, it never has any callbacks
832  * to remove.
833  */
834 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
835 {
836 }
837 
838 /*
839  * Because preemptible RCU does not exist, it never has any callbacks
840  * to process.
841  */
842 static void rcu_preempt_process_callbacks(void)
843 {
844 }
845 
846 #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
847 
848 #ifdef CONFIG_RCU_BOOST
849 
850 /*
851  * Wake up rcu_kthread() to process callbacks now eligible for invocation
852  * or to boost readers.
853  */
854 static void invoke_rcu_callbacks(void)
855 {
856  have_rcu_kthread_work = 1;
857  if (rcu_kthread_task != NULL)
858  wake_up(&rcu_kthread_wq);
859 }
860 
861 #ifdef CONFIG_RCU_TRACE
862 
863 /*
864  * Is the current CPU running the RCU-callbacks kthread?
865  * Caller must have preemption disabled.
866  */
867 static bool rcu_is_callbacks_kthread(void)
868 {
869  return rcu_kthread_task == current;
870 }
871 
872 #endif /* #ifdef CONFIG_RCU_TRACE */
873 
874 /*
875  * This kthread invokes RCU callbacks whose grace periods have
876  * elapsed. It is awakened as needed, and takes the place of the
877  * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
878  * This is a kthread, but it is never stopped, at least not until
879  * the system goes down.
880  */
881 static int rcu_kthread(void *arg)
882 {
883  unsigned long work;
884  unsigned long morework;
885  unsigned long flags;
886 
887  for (;;) {
888  wait_event_interruptible(rcu_kthread_wq,
889  have_rcu_kthread_work != 0);
890  morework = rcu_boost();
891  local_irq_save(flags);
892  work = have_rcu_kthread_work;
893  have_rcu_kthread_work = morework;
894  local_irq_restore(flags);
895  if (work)
896  rcu_process_callbacks(NULL);
897  schedule_timeout_interruptible(1); /* Leave CPU for others. */
898  }
899 
900  return 0; /* Not reached, but needed to shut gcc up. */
901 }
902 
903 /*
904  * Spawn the kthread that invokes RCU callbacks.
905  */
906 static int __init rcu_spawn_kthreads(void)
907 {
908  struct sched_param sp;
909 
910  rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
911  sp.sched_priority = RCU_BOOST_PRIO;
912  sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
913  return 0;
914 }
915 early_initcall(rcu_spawn_kthreads);
916 
917 #else /* #ifdef CONFIG_RCU_BOOST */
918 
919 /* Hold off callback invocation until early_initcall() time. */
920 static int rcu_scheduler_fully_active __read_mostly;
921 
922 /*
923  * Start up softirq processing of callbacks.
924  */
926 {
927  if (rcu_scheduler_fully_active)
929 }
930 
931 #ifdef CONFIG_RCU_TRACE
932 
933 /*
934  * There is no callback kthread, so this thread is never it.
935  */
936 static bool rcu_is_callbacks_kthread(void)
937 {
938  return false;
939 }
940 
941 #endif /* #ifdef CONFIG_RCU_TRACE */
942 
943 static int __init rcu_scheduler_really_started(void)
944 {
945  rcu_scheduler_fully_active = 1;
946  open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
947  raise_softirq(RCU_SOFTIRQ); /* Invoke any callbacks from early boot. */
948  return 0;
949 }
950 early_initcall(rcu_scheduler_really_started);
951 
952 #endif /* #else #ifdef CONFIG_RCU_BOOST */
953 
954 #ifdef CONFIG_DEBUG_LOCK_ALLOC
955 #include <linux/kernel_stat.h>
956 
957 /*
958  * During boot, we forgive RCU lockdep issues. After this function is
959  * invoked, we start taking RCU lockdep issues seriously.
960  */
962 {
964  rcu_scheduler_active = 1;
965 }
966 
967 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
968 
969 #ifdef CONFIG_RCU_TRACE
970 
971 #ifdef CONFIG_RCU_BOOST
972 
973 static void rcu_initiate_boost_trace(void)
974 {
975  if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
976  rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
977  else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
978  rcu_preempt_ctrlblk.exp_tasks == NULL)
979  rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
980  else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
981  rcu_preempt_ctrlblk.n_balk_boost_tasks++;
982  else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
983  rcu_preempt_ctrlblk.n_balk_notyet++;
984  else
985  rcu_preempt_ctrlblk.n_balk_nos++;
986 }
987 
988 #endif /* #ifdef CONFIG_RCU_BOOST */
989 
990 static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
991 {
992  unsigned long flags;
993 
994  local_irq_save(flags);
995  rcp->qlen -= n;
996  local_irq_restore(flags);
997 }
998 
999 /*
1000  * Dump statistics for TINY_RCU, such as they are.
1001  */
1002 static int show_tiny_stats(struct seq_file *m, void *unused)
1003 {
1004  show_tiny_preempt_stats(m);
1005  seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
1006  seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
1007  return 0;
1008 }
1009 
1010 static int show_tiny_stats_open(struct inode *inode, struct file *file)
1011 {
1012  return single_open(file, show_tiny_stats, NULL);
1013 }
1014 
1015 static const struct file_operations show_tiny_stats_fops = {
1016  .owner = THIS_MODULE,
1017  .open = show_tiny_stats_open,
1018  .read = seq_read,
1019  .llseek = seq_lseek,
1020  .release = single_release,
1021 };
1022 
1023 static struct dentry *rcudir;
1024 
1025 static int __init rcutiny_trace_init(void)
1026 {
1027  struct dentry *retval;
1028 
1029  rcudir = debugfs_create_dir("rcu", NULL);
1030  if (!rcudir)
1031  goto free_out;
1032  retval = debugfs_create_file("rcudata", 0444, rcudir,
1033  NULL, &show_tiny_stats_fops);
1034  if (!retval)
1035  goto free_out;
1036  return 0;
1037 free_out:
1038  debugfs_remove_recursive(rcudir);
1039  return 1;
1040 }
1041 
1042 static void __exit rcutiny_trace_cleanup(void)
1043 {
1044  debugfs_remove_recursive(rcudir);
1045 }
1046 
1047 module_init(rcutiny_trace_init);
1048 module_exit(rcutiny_trace_cleanup);
1049 
1050 MODULE_AUTHOR("Paul E. McKenney");
1051 MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1052 MODULE_LICENSE("GPL");
1053 
1054 #endif /* #ifdef CONFIG_RCU_TRACE */