Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
relay.c
Go to the documentation of this file.
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi ([email protected]), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour ([email protected])
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35  struct rchan_buf *buf = vma->vm_private_data;
36  buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44  struct page *page;
45  struct rchan_buf *buf = vma->vm_private_data;
46  pgoff_t pgoff = vmf->pgoff;
47 
48  if (!buf)
49  return VM_FAULT_OOM;
50 
51  page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52  if (!page)
53  return VM_FAULT_SIGBUS;
54  get_page(page);
55  vmf->page = page;
56 
57  return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64  .fault = relay_buf_fault,
65  .close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73  const size_t pa_size = n_pages * sizeof(struct page *);
74  if (pa_size > PAGE_SIZE)
75  return vzalloc(pa_size);
76  return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84  if (is_vmalloc_addr(array))
85  vfree(array);
86  else
87  kfree(array);
88 }
89 
99 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
100 {
101  unsigned long length = vma->vm_end - vma->vm_start;
102  struct file *filp = vma->vm_file;
103 
104  if (!buf)
105  return -EBADF;
106 
107  if (length != (unsigned long)buf->chan->alloc_size)
108  return -EINVAL;
109 
110  vma->vm_ops = &relay_file_mmap_ops;
111  vma->vm_flags |= VM_DONTEXPAND;
112  vma->vm_private_data = buf;
113  buf->chan->cb->buf_mapped(buf, filp);
114 
115  return 0;
116 }
117 
126 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
127 {
128  void *mem;
129  unsigned int i, j, n_pages;
130 
131  *size = PAGE_ALIGN(*size);
132  n_pages = *size >> PAGE_SHIFT;
133 
134  buf->page_array = relay_alloc_page_array(n_pages);
135  if (!buf->page_array)
136  return NULL;
137 
138  for (i = 0; i < n_pages; i++) {
140  if (unlikely(!buf->page_array[i]))
141  goto depopulate;
142  set_page_private(buf->page_array[i], (unsigned long)buf);
143  }
144  mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
145  if (!mem)
146  goto depopulate;
147 
148  memset(mem, 0, *size);
149  buf->page_count = n_pages;
150  return mem;
151 
152 depopulate:
153  for (j = 0; j < i; j++)
154  __free_page(buf->page_array[j]);
155  relay_free_page_array(buf->page_array);
156  return NULL;
157 }
158 
165 static struct rchan_buf *relay_create_buf(struct rchan *chan)
166 {
167  struct rchan_buf *buf;
168 
169  if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
170  return NULL;
171 
172  buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
173  if (!buf)
174  return NULL;
175  buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
176  if (!buf->padding)
177  goto free_buf;
178 
179  buf->start = relay_alloc_buf(buf, &chan->alloc_size);
180  if (!buf->start)
181  goto free_buf;
182 
183  buf->chan = chan;
184  kref_get(&buf->chan->kref);
185  return buf;
186 
187 free_buf:
188  kfree(buf->padding);
189  kfree(buf);
190  return NULL;
191 }
192 
199 static void relay_destroy_channel(struct kref *kref)
200 {
201  struct rchan *chan = container_of(kref, struct rchan, kref);
202  kfree(chan);
203 }
204 
209 static void relay_destroy_buf(struct rchan_buf *buf)
210 {
211  struct rchan *chan = buf->chan;
212  unsigned int i;
213 
214  if (likely(buf->start)) {
215  vunmap(buf->start);
216  for (i = 0; i < buf->page_count; i++)
217  __free_page(buf->page_array[i]);
218  relay_free_page_array(buf->page_array);
219  }
220  chan->buf[buf->cpu] = NULL;
221  kfree(buf->padding);
222  kfree(buf);
223  kref_put(&chan->kref, relay_destroy_channel);
224 }
225 
234 static void relay_remove_buf(struct kref *kref)
235 {
236  struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
237  buf->chan->cb->remove_buf_file(buf->dentry);
238  relay_destroy_buf(buf);
239 }
240 
247 static int relay_buf_empty(struct rchan_buf *buf)
248 {
249  return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
250 }
251 
258 int relay_buf_full(struct rchan_buf *buf)
259 {
260  size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
261  return (ready >= buf->chan->n_subbufs) ? 1 : 0;
262 }
264 
265 /*
266  * High-level relay kernel API and associated functions.
267  */
268 
269 /*
270  * rchan_callback implementations defining default channel behavior. Used
271  * in place of corresponding NULL values in client callback struct.
272  */
273 
274 /*
275  * subbuf_start() default callback. Does nothing.
276  */
277 static int subbuf_start_default_callback (struct rchan_buf *buf,
278  void *subbuf,
279  void *prev_subbuf,
280  size_t prev_padding)
281 {
282  if (relay_buf_full(buf))
283  return 0;
284 
285  return 1;
286 }
287 
288 /*
289  * buf_mapped() default callback. Does nothing.
290  */
291 static void buf_mapped_default_callback(struct rchan_buf *buf,
292  struct file *filp)
293 {
294 }
295 
296 /*
297  * buf_unmapped() default callback. Does nothing.
298  */
299 static void buf_unmapped_default_callback(struct rchan_buf *buf,
300  struct file *filp)
301 {
302 }
303 
304 /*
305  * create_buf_file_create() default callback. Does nothing.
306  */
307 static struct dentry *create_buf_file_default_callback(const char *filename,
308  struct dentry *parent,
309  umode_t mode,
310  struct rchan_buf *buf,
311  int *is_global)
312 {
313  return NULL;
314 }
315 
316 /*
317  * remove_buf_file() default callback. Does nothing.
318  */
319 static int remove_buf_file_default_callback(struct dentry *dentry)
320 {
321  return -EINVAL;
322 }
323 
324 /* relay channel default callbacks */
325 static struct rchan_callbacks default_channel_callbacks = {
326  .subbuf_start = subbuf_start_default_callback,
327  .buf_mapped = buf_mapped_default_callback,
328  .buf_unmapped = buf_unmapped_default_callback,
329  .create_buf_file = create_buf_file_default_callback,
330  .remove_buf_file = remove_buf_file_default_callback,
331 };
332 
339 static void wakeup_readers(unsigned long data)
340 {
341  struct rchan_buf *buf = (struct rchan_buf *)data;
343 }
344 
352 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
353 {
354  size_t i;
355 
356  if (init) {
358  kref_init(&buf->kref);
359  setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
360  } else
361  del_timer_sync(&buf->timer);
362 
363  buf->subbufs_produced = 0;
364  buf->subbufs_consumed = 0;
365  buf->bytes_consumed = 0;
366  buf->finalized = 0;
367  buf->data = buf->start;
368  buf->offset = 0;
369 
370  for (i = 0; i < buf->chan->n_subbufs; i++)
371  buf->padding[i] = 0;
372 
373  buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
374 }
375 
387 void relay_reset(struct rchan *chan)
388 {
389  unsigned int i;
390 
391  if (!chan)
392  return;
393 
394  if (chan->is_global && chan->buf[0]) {
395  __relay_reset(chan->buf[0], 0);
396  return;
397  }
398 
399  mutex_lock(&relay_channels_mutex);
401  if (chan->buf[i])
402  __relay_reset(chan->buf[i], 0);
403  mutex_unlock(&relay_channels_mutex);
404 }
406 
407 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
408  struct dentry *dentry)
409 {
410  buf->dentry = dentry;
411  buf->dentry->d_inode->i_size = buf->early_bytes;
412 }
413 
414 static struct dentry *relay_create_buf_file(struct rchan *chan,
415  struct rchan_buf *buf,
416  unsigned int cpu)
417 {
418  struct dentry *dentry;
419  char *tmpname;
420 
421  tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
422  if (!tmpname)
423  return NULL;
424  snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
425 
426  /* Create file in fs */
427  dentry = chan->cb->create_buf_file(tmpname, chan->parent,
428  S_IRUSR, buf,
429  &chan->is_global);
430 
431  kfree(tmpname);
432 
433  return dentry;
434 }
435 
436 /*
437  * relay_open_buf - create a new relay channel buffer
438  *
439  * used by relay_open() and CPU hotplug.
440  */
441 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
442 {
443  struct rchan_buf *buf = NULL;
444  struct dentry *dentry;
445 
446  if (chan->is_global)
447  return chan->buf[0];
448 
449  buf = relay_create_buf(chan);
450  if (!buf)
451  return NULL;
452 
453  if (chan->has_base_filename) {
454  dentry = relay_create_buf_file(chan, buf, cpu);
455  if (!dentry)
456  goto free_buf;
457  relay_set_buf_dentry(buf, dentry);
458  }
459 
460  buf->cpu = cpu;
461  __relay_reset(buf, 1);
462 
463  if(chan->is_global) {
464  chan->buf[0] = buf;
465  buf->cpu = 0;
466  }
467 
468  return buf;
469 
470 free_buf:
471  relay_destroy_buf(buf);
472  return NULL;
473 }
474 
483 static void relay_close_buf(struct rchan_buf *buf)
484 {
485  buf->finalized = 1;
486  del_timer_sync(&buf->timer);
487  kref_put(&buf->kref, relay_remove_buf);
488 }
489 
490 static void setup_callbacks(struct rchan *chan,
491  struct rchan_callbacks *cb)
492 {
493  if (!cb) {
494  chan->cb = &default_channel_callbacks;
495  return;
496  }
497 
498  if (!cb->subbuf_start)
499  cb->subbuf_start = subbuf_start_default_callback;
500  if (!cb->buf_mapped)
501  cb->buf_mapped = buf_mapped_default_callback;
502  if (!cb->buf_unmapped)
503  cb->buf_unmapped = buf_unmapped_default_callback;
504  if (!cb->create_buf_file)
505  cb->create_buf_file = create_buf_file_default_callback;
506  if (!cb->remove_buf_file)
507  cb->remove_buf_file = remove_buf_file_default_callback;
508  chan->cb = cb;
509 }
510 
519 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
520  unsigned long action,
521  void *hcpu)
522 {
523  unsigned int hotcpu = (unsigned long)hcpu;
524  struct rchan *chan;
525 
526  switch(action) {
527  case CPU_UP_PREPARE:
529  mutex_lock(&relay_channels_mutex);
530  list_for_each_entry(chan, &relay_channels, list) {
531  if (chan->buf[hotcpu])
532  continue;
533  chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
534  if(!chan->buf[hotcpu]) {
536  "relay_hotcpu_callback: cpu %d buffer "
537  "creation failed\n", hotcpu);
538  mutex_unlock(&relay_channels_mutex);
539  return notifier_from_errno(-ENOMEM);
540  }
541  }
542  mutex_unlock(&relay_channels_mutex);
543  break;
544  case CPU_DEAD:
545  case CPU_DEAD_FROZEN:
546  /* No need to flush the cpu : will be flushed upon
547  * final relay_flush() call. */
548  break;
549  }
550  return NOTIFY_OK;
551 }
552 
569 struct rchan *relay_open(const char *base_filename,
570  struct dentry *parent,
571  size_t subbuf_size,
572  size_t n_subbufs,
573  struct rchan_callbacks *cb,
574  void *private_data)
575 {
576  unsigned int i;
577  struct rchan *chan;
578 
579  if (!(subbuf_size && n_subbufs))
580  return NULL;
581  if (subbuf_size > UINT_MAX / n_subbufs)
582  return NULL;
583 
584  chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
585  if (!chan)
586  return NULL;
587 
589  chan->n_subbufs = n_subbufs;
590  chan->subbuf_size = subbuf_size;
591  chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
592  chan->parent = parent;
593  chan->private_data = private_data;
594  if (base_filename) {
595  chan->has_base_filename = 1;
596  strlcpy(chan->base_filename, base_filename, NAME_MAX);
597  }
598  setup_callbacks(chan, cb);
599  kref_init(&chan->kref);
600 
601  mutex_lock(&relay_channels_mutex);
603  chan->buf[i] = relay_open_buf(chan, i);
604  if (!chan->buf[i])
605  goto free_bufs;
606  }
607  list_add(&chan->list, &relay_channels);
608  mutex_unlock(&relay_channels_mutex);
609 
610  return chan;
611 
612 free_bufs:
614  if (chan->buf[i])
615  relay_close_buf(chan->buf[i]);
616  }
617 
618  kref_put(&chan->kref, relay_destroy_channel);
619  mutex_unlock(&relay_channels_mutex);
620  return NULL;
621 }
623 
625  struct rchan_buf *buf;
626  struct dentry *dentry;
627 };
628 
629 /* Called in atomic context. */
630 static void __relay_set_buf_dentry(void *info)
631 {
633 
634  relay_set_buf_dentry(p->buf, p->dentry);
635 }
636 
648 int relay_late_setup_files(struct rchan *chan,
649  const char *base_filename,
650  struct dentry *parent)
651 {
652  int err = 0;
653  unsigned int i, curr_cpu;
654  unsigned long flags;
655  struct dentry *dentry;
656  struct rchan_percpu_buf_dispatcher disp;
657 
658  if (!chan || !base_filename)
659  return -EINVAL;
660 
661  strlcpy(chan->base_filename, base_filename, NAME_MAX);
662 
663  mutex_lock(&relay_channels_mutex);
664  /* Is chan already set up? */
665  if (unlikely(chan->has_base_filename)) {
666  mutex_unlock(&relay_channels_mutex);
667  return -EEXIST;
668  }
669  chan->has_base_filename = 1;
670  chan->parent = parent;
671  curr_cpu = get_cpu();
672  /*
673  * The CPU hotplug notifier ran before us and created buffers with
674  * no files associated. So it's safe to call relay_setup_buf_file()
675  * on all currently online CPUs.
676  */
678  if (unlikely(!chan->buf[i])) {
679  WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
680  err = -EINVAL;
681  break;
682  }
683 
684  dentry = relay_create_buf_file(chan, chan->buf[i], i);
685  if (unlikely(!dentry)) {
686  err = -EINVAL;
687  break;
688  }
689 
690  if (curr_cpu == i) {
691  local_irq_save(flags);
692  relay_set_buf_dentry(chan->buf[i], dentry);
693  local_irq_restore(flags);
694  } else {
695  disp.buf = chan->buf[i];
696  disp.dentry = dentry;
697  smp_mb();
698  /* relay_channels_mutex must be held, so wait. */
699  err = smp_call_function_single(i,
700  __relay_set_buf_dentry,
701  &disp, 1);
702  }
703  if (unlikely(err))
704  break;
705  }
706  put_cpu();
707  mutex_unlock(&relay_channels_mutex);
708 
709  return err;
710 }
711 
722 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
723 {
724  void *old, *new;
725  size_t old_subbuf, new_subbuf;
726 
727  if (unlikely(length > buf->chan->subbuf_size))
728  goto toobig;
729 
730  if (buf->offset != buf->chan->subbuf_size + 1) {
731  buf->prev_padding = buf->chan->subbuf_size - buf->offset;
732  old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
733  buf->padding[old_subbuf] = buf->prev_padding;
734  buf->subbufs_produced++;
735  if (buf->dentry)
736  buf->dentry->d_inode->i_size +=
737  buf->chan->subbuf_size -
738  buf->padding[old_subbuf];
739  else
740  buf->early_bytes += buf->chan->subbuf_size -
741  buf->padding[old_subbuf];
742  smp_mb();
743  if (waitqueue_active(&buf->read_wait))
744  /*
745  * Calling wake_up_interruptible() from here
746  * will deadlock if we happen to be logging
747  * from the scheduler (trying to re-grab
748  * rq->lock), so defer it.
749  */
750  mod_timer(&buf->timer, jiffies + 1);
751  }
752 
753  old = buf->data;
754  new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
755  new = buf->start + new_subbuf * buf->chan->subbuf_size;
756  buf->offset = 0;
757  if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
758  buf->offset = buf->chan->subbuf_size + 1;
759  return 0;
760  }
761  buf->data = new;
762  buf->padding[new_subbuf] = 0;
763 
764  if (unlikely(length + buf->offset > buf->chan->subbuf_size))
765  goto toobig;
766 
767  return length;
768 
769 toobig:
770  buf->chan->last_toobig = length;
771  return 0;
772 }
774 
788 void relay_subbufs_consumed(struct rchan *chan,
789  unsigned int cpu,
790  size_t subbufs_consumed)
791 {
792  struct rchan_buf *buf;
793 
794  if (!chan)
795  return;
796 
797  if (cpu >= NR_CPUS || !chan->buf[cpu] ||
798  subbufs_consumed > chan->n_subbufs)
799  return;
800 
801  buf = chan->buf[cpu];
802  if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
804  else
806 }
808 
815 void relay_close(struct rchan *chan)
816 {
817  unsigned int i;
818 
819  if (!chan)
820  return;
821 
822  mutex_lock(&relay_channels_mutex);
823  if (chan->is_global && chan->buf[0])
824  relay_close_buf(chan->buf[0]);
825  else
827  if (chan->buf[i])
828  relay_close_buf(chan->buf[i]);
829 
830  if (chan->last_toobig)
831  printk(KERN_WARNING "relay: one or more items not logged "
832  "[item size (%Zd) > sub-buffer size (%Zd)]\n",
833  chan->last_toobig, chan->subbuf_size);
834 
835  list_del(&chan->list);
836  kref_put(&chan->kref, relay_destroy_channel);
837  mutex_unlock(&relay_channels_mutex);
838 }
840 
847 void relay_flush(struct rchan *chan)
848 {
849  unsigned int i;
850 
851  if (!chan)
852  return;
853 
854  if (chan->is_global && chan->buf[0]) {
855  relay_switch_subbuf(chan->buf[0], 0);
856  return;
857  }
858 
859  mutex_lock(&relay_channels_mutex);
861  if (chan->buf[i])
862  relay_switch_subbuf(chan->buf[i], 0);
863  mutex_unlock(&relay_channels_mutex);
864 }
866 
874 static int relay_file_open(struct inode *inode, struct file *filp)
875 {
876  struct rchan_buf *buf = inode->i_private;
877  kref_get(&buf->kref);
878  filp->private_data = buf;
879 
880  return nonseekable_open(inode, filp);
881 }
882 
890 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
891 {
892  struct rchan_buf *buf = filp->private_data;
893  return relay_mmap_buf(buf, vma);
894 }
895 
903 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
904 {
905  unsigned int mask = 0;
906  struct rchan_buf *buf = filp->private_data;
907 
908  if (buf->finalized)
909  return POLLERR;
910 
911  if (filp->f_mode & FMODE_READ) {
912  poll_wait(filp, &buf->read_wait, wait);
913  if (!relay_buf_empty(buf))
914  mask |= POLLIN | POLLRDNORM;
915  }
916 
917  return mask;
918 }
919 
928 static int relay_file_release(struct inode *inode, struct file *filp)
929 {
930  struct rchan_buf *buf = filp->private_data;
931  kref_put(&buf->kref, relay_remove_buf);
932 
933  return 0;
934 }
935 
936 /*
937  * relay_file_read_consume - update the consumed count for the buffer
938  */
939 static void relay_file_read_consume(struct rchan_buf *buf,
940  size_t read_pos,
941  size_t bytes_consumed)
942 {
943  size_t subbuf_size = buf->chan->subbuf_size;
944  size_t n_subbufs = buf->chan->n_subbufs;
945  size_t read_subbuf;
946 
947  if (buf->subbufs_produced == buf->subbufs_consumed &&
948  buf->offset == buf->bytes_consumed)
949  return;
950 
951  if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
952  relay_subbufs_consumed(buf->chan, buf->cpu, 1);
953  buf->bytes_consumed = 0;
954  }
955 
957  if (!read_pos)
958  read_subbuf = buf->subbufs_consumed % n_subbufs;
959  else
960  read_subbuf = read_pos / buf->chan->subbuf_size;
961  if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
962  if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
963  (buf->offset == subbuf_size))
964  return;
965  relay_subbufs_consumed(buf->chan, buf->cpu, 1);
966  buf->bytes_consumed = 0;
967  }
968 }
969 
970 /*
971  * relay_file_read_avail - boolean, are there unconsumed bytes available?
972  */
973 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
974 {
975  size_t subbuf_size = buf->chan->subbuf_size;
976  size_t n_subbufs = buf->chan->n_subbufs;
977  size_t produced = buf->subbufs_produced;
978  size_t consumed = buf->subbufs_consumed;
979 
980  relay_file_read_consume(buf, read_pos, 0);
981 
982  consumed = buf->subbufs_consumed;
983 
984  if (unlikely(buf->offset > subbuf_size)) {
985  if (produced == consumed)
986  return 0;
987  return 1;
988  }
989 
990  if (unlikely(produced - consumed >= n_subbufs)) {
991  consumed = produced - n_subbufs + 1;
992  buf->subbufs_consumed = consumed;
993  buf->bytes_consumed = 0;
994  }
995 
996  produced = (produced % n_subbufs) * subbuf_size + buf->offset;
997  consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
998 
999  if (consumed > produced)
1000  produced += n_subbufs * subbuf_size;
1001 
1002  if (consumed == produced) {
1003  if (buf->offset == subbuf_size &&
1004  buf->subbufs_produced > buf->subbufs_consumed)
1005  return 1;
1006  return 0;
1007  }
1008 
1009  return 1;
1010 }
1011 
1017 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1018  struct rchan_buf *buf)
1019 {
1020  size_t padding, avail = 0;
1021  size_t read_subbuf, read_offset, write_subbuf, write_offset;
1022  size_t subbuf_size = buf->chan->subbuf_size;
1023 
1024  write_subbuf = (buf->data - buf->start) / subbuf_size;
1025  write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1026  read_subbuf = read_pos / subbuf_size;
1027  read_offset = read_pos % subbuf_size;
1028  padding = buf->padding[read_subbuf];
1029 
1030  if (read_subbuf == write_subbuf) {
1031  if (read_offset + padding < write_offset)
1032  avail = write_offset - (read_offset + padding);
1033  } else
1034  avail = (subbuf_size - padding) - read_offset;
1035 
1036  return avail;
1037 }
1038 
1048 static size_t relay_file_read_start_pos(size_t read_pos,
1049  struct rchan_buf *buf)
1050 {
1051  size_t read_subbuf, padding, padding_start, padding_end;
1052  size_t subbuf_size = buf->chan->subbuf_size;
1053  size_t n_subbufs = buf->chan->n_subbufs;
1054  size_t consumed = buf->subbufs_consumed % n_subbufs;
1055 
1056  if (!read_pos)
1057  read_pos = consumed * subbuf_size + buf->bytes_consumed;
1058  read_subbuf = read_pos / subbuf_size;
1059  padding = buf->padding[read_subbuf];
1060  padding_start = (read_subbuf + 1) * subbuf_size - padding;
1061  padding_end = (read_subbuf + 1) * subbuf_size;
1062  if (read_pos >= padding_start && read_pos < padding_end) {
1063  read_subbuf = (read_subbuf + 1) % n_subbufs;
1064  read_pos = read_subbuf * subbuf_size;
1065  }
1066 
1067  return read_pos;
1068 }
1069 
1076 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1077  size_t read_pos,
1078  size_t count)
1079 {
1080  size_t read_subbuf, padding, end_pos;
1081  size_t subbuf_size = buf->chan->subbuf_size;
1082  size_t n_subbufs = buf->chan->n_subbufs;
1083 
1084  read_subbuf = read_pos / subbuf_size;
1085  padding = buf->padding[read_subbuf];
1086  if (read_pos % subbuf_size + count + padding == subbuf_size)
1087  end_pos = (read_subbuf + 1) * subbuf_size;
1088  else
1089  end_pos = read_pos + count;
1090  if (end_pos >= subbuf_size * n_subbufs)
1091  end_pos = 0;
1092 
1093  return end_pos;
1094 }
1095 
1096 /*
1097  * subbuf_read_actor - read up to one subbuf's worth of data
1098  */
1099 static int subbuf_read_actor(size_t read_start,
1100  struct rchan_buf *buf,
1101  size_t avail,
1103  read_actor_t actor)
1104 {
1105  void *from;
1106  int ret = 0;
1107 
1108  from = buf->start + read_start;
1109  ret = avail;
1110  if (copy_to_user(desc->arg.buf, from, avail)) {
1111  desc->error = -EFAULT;
1112  ret = 0;
1113  }
1114  desc->arg.data += ret;
1115  desc->written += ret;
1116  desc->count -= ret;
1117 
1118  return ret;
1119 }
1120 
1121 typedef int (*subbuf_actor_t) (size_t read_start,
1122  struct rchan_buf *buf,
1123  size_t avail,
1124  read_descriptor_t *desc,
1125  read_actor_t actor);
1126 
1127 /*
1128  * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1129  */
1130 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1131  subbuf_actor_t subbuf_actor,
1132  read_actor_t actor,
1133  read_descriptor_t *desc)
1134 {
1135  struct rchan_buf *buf = filp->private_data;
1136  size_t read_start, avail;
1137  int ret;
1138 
1139  if (!desc->count)
1140  return 0;
1141 
1142  mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1143  do {
1144  if (!relay_file_read_avail(buf, *ppos))
1145  break;
1146 
1147  read_start = relay_file_read_start_pos(*ppos, buf);
1148  avail = relay_file_read_subbuf_avail(read_start, buf);
1149  if (!avail)
1150  break;
1151 
1152  avail = min(desc->count, avail);
1153  ret = subbuf_actor(read_start, buf, avail, desc, actor);
1154  if (desc->error < 0)
1155  break;
1156 
1157  if (ret) {
1158  relay_file_read_consume(buf, read_start, ret);
1159  *ppos = relay_file_read_end_pos(buf, read_start, ret);
1160  }
1161  } while (desc->count && ret);
1162  mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1163 
1164  return desc->written;
1165 }
1166 
1167 static ssize_t relay_file_read(struct file *filp,
1168  char __user *buffer,
1169  size_t count,
1170  loff_t *ppos)
1171 {
1172  read_descriptor_t desc;
1173  desc.written = 0;
1174  desc.count = count;
1175  desc.arg.buf = buffer;
1176  desc.error = 0;
1177  return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1178  NULL, &desc);
1179 }
1180 
1181 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1182 {
1183  rbuf->bytes_consumed += bytes_consumed;
1184 
1185  if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1186  relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1187  rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1188  }
1189 }
1190 
1191 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1192  struct pipe_buffer *buf)
1193 {
1194  struct rchan_buf *rbuf;
1195 
1196  rbuf = (struct rchan_buf *)page_private(buf->page);
1197  relay_consume_bytes(rbuf, buf->private);
1198 }
1199 
1200 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1201  .can_merge = 0,
1202  .map = generic_pipe_buf_map,
1203  .unmap = generic_pipe_buf_unmap,
1204  .confirm = generic_pipe_buf_confirm,
1205  .release = relay_pipe_buf_release,
1206  .steal = generic_pipe_buf_steal,
1207  .get = generic_pipe_buf_get,
1208 };
1209 
1210 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1211 {
1212 }
1213 
1214 /*
1215  * subbuf_splice_actor - splice up to one subbuf's worth of data
1216  */
1217 static ssize_t subbuf_splice_actor(struct file *in,
1218  loff_t *ppos,
1219  struct pipe_inode_info *pipe,
1220  size_t len,
1221  unsigned int flags,
1222  int *nonpad_ret)
1223 {
1224  unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1225  struct rchan_buf *rbuf = in->private_data;
1226  unsigned int subbuf_size = rbuf->chan->subbuf_size;
1227  uint64_t pos = (uint64_t) *ppos;
1228  uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1229  size_t read_start = (size_t) do_div(pos, alloc_size);
1230  size_t read_subbuf = read_start / subbuf_size;
1231  size_t padding = rbuf->padding[read_subbuf];
1232  size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1233  struct page *pages[PIPE_DEF_BUFFERS];
1234  struct partial_page partial[PIPE_DEF_BUFFERS];
1235  struct splice_pipe_desc spd = {
1236  .pages = pages,
1237  .nr_pages = 0,
1238  .nr_pages_max = PIPE_DEF_BUFFERS,
1239  .partial = partial,
1240  .flags = flags,
1241  .ops = &relay_pipe_buf_ops,
1242  .spd_release = relay_page_release,
1243  };
1244  ssize_t ret;
1245 
1246  if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1247  return 0;
1248  if (splice_grow_spd(pipe, &spd))
1249  return -ENOMEM;
1250 
1251  /*
1252  * Adjust read len, if longer than what is available
1253  */
1254  if (len > (subbuf_size - read_start % subbuf_size))
1255  len = subbuf_size - read_start % subbuf_size;
1256 
1257  subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1258  pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1259  poff = read_start & ~PAGE_MASK;
1260  nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1261 
1262  for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1263  unsigned int this_len, this_end, private;
1264  unsigned int cur_pos = read_start + total_len;
1265 
1266  if (!len)
1267  break;
1268 
1269  this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1270  private = this_len;
1271 
1272  spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1273  spd.partial[spd.nr_pages].offset = poff;
1274 
1275  this_end = cur_pos + this_len;
1276  if (this_end >= nonpad_end) {
1277  this_len = nonpad_end - cur_pos;
1278  private = this_len + padding;
1279  }
1280  spd.partial[spd.nr_pages].len = this_len;
1281  spd.partial[spd.nr_pages].private = private;
1282 
1283  len -= this_len;
1284  total_len += this_len;
1285  poff = 0;
1286  pidx = (pidx + 1) % subbuf_pages;
1287 
1288  if (this_end >= nonpad_end) {
1289  spd.nr_pages++;
1290  break;
1291  }
1292  }
1293 
1294  ret = 0;
1295  if (!spd.nr_pages)
1296  goto out;
1297 
1298  ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1299  if (ret < 0 || ret < total_len)
1300  goto out;
1301 
1302  if (read_start + ret == nonpad_end)
1303  ret += padding;
1304 
1305 out:
1306  splice_shrink_spd(&spd);
1307  return ret;
1308 }
1309 
1310 static ssize_t relay_file_splice_read(struct file *in,
1311  loff_t *ppos,
1312  struct pipe_inode_info *pipe,
1313  size_t len,
1314  unsigned int flags)
1315 {
1316  ssize_t spliced;
1317  int ret;
1318  int nonpad_ret = 0;
1319 
1320  ret = 0;
1321  spliced = 0;
1322 
1323  while (len && !spliced) {
1324  ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1325  if (ret < 0)
1326  break;
1327  else if (!ret) {
1328  if (flags & SPLICE_F_NONBLOCK)
1329  ret = -EAGAIN;
1330  break;
1331  }
1332 
1333  *ppos += ret;
1334  if (ret > len)
1335  len = 0;
1336  else
1337  len -= ret;
1338  spliced += nonpad_ret;
1339  nonpad_ret = 0;
1340  }
1341 
1342  if (spliced)
1343  return spliced;
1344 
1345  return ret;
1346 }
1347 
1349  .open = relay_file_open,
1350  .poll = relay_file_poll,
1351  .mmap = relay_file_mmap,
1352  .read = relay_file_read,
1353  .llseek = no_llseek,
1354  .release = relay_file_release,
1355  .splice_read = relay_file_splice_read,
1356 };
1357 EXPORT_SYMBOL_GPL(relay_file_operations);
1358 
1359 static __init int relay_init(void)
1360 {
1361 
1362  hotcpu_notifier(relay_hotcpu_callback, 0);
1363  return 0;
1364 }
1365 
1366 early_initcall(relay_init);