Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtas-proc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2000 Tilmann Bitterberg
4  *
5  * RTAS (Runtime Abstraction Services) stuff
6  * Intention is to provide a clean user interface
7  * to use the RTAS.
8  *
9  * TODO:
10  * Split off a header file and maybe move it to a different
11  * location. Write Documentation on what the /proc/rtas/ entries
12  * actually do.
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
26 
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34 
35 /* Token for Sensors */
36 #define KEY_SWITCH 0x0001
37 #define ENCLOSURE_SWITCH 0x0002
38 #define THERMAL_SENSOR 0x0003
39 #define LID_STATUS 0x0004
40 #define POWER_SOURCE 0x0005
41 #define BATTERY_VOLTAGE 0x0006
42 #define BATTERY_REMAINING 0x0007
43 #define BATTERY_PERCENTAGE 0x0008
44 #define EPOW_SENSOR 0x0009
45 #define BATTERY_CYCLESTATE 0x000a
46 #define BATTERY_CHARGING 0x000b
47 
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE 0x2328 /* 9000 */
50 #define IBM_FANRPM 0x2329 /* 9001 */
51 #define IBM_VOLTAGE 0x232a /* 9002 */
52 #define IBM_DRCONNECTOR 0x232b /* 9003 */
53 #define IBM_POWERSUPPLY 0x232c /* 9004 */
54 
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH 13
57 #define SENSOR_WARNING_HIGH 12
58 #define SENSOR_NORMAL 11
59 #define SENSOR_WARNING_LOW 10
60 #define SENSOR_CRITICAL_LOW 9
61 #define SENSOR_SUCCESS 0
62 #define SENSOR_HW_ERROR -1
63 #define SENSOR_BUSY -2
64 #define SENSOR_NOT_EXIST -3
65 #define SENSOR_DR_ENTITY -9000
66 
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR 'A'
69 #define LOC_SCSI_DEV_LOC 'B'
70 #define LOC_CPU 'C'
71 #define LOC_DISKETTE 'D'
72 #define LOC_ETHERNET 'E'
73 #define LOC_FAN 'F'
74 #define LOC_GRAPHICS 'G'
75 /* reserved / not used 'H' */
76 #define LOC_IO_ADAPTER 'I'
77 /* reserved / not used 'J' */
78 #define LOC_KEYBOARD 'K'
79 #define LOC_LCD 'L'
80 #define LOC_MEMORY 'M'
81 #define LOC_NV_MEMORY 'N'
82 #define LOC_MOUSE 'O'
83 #define LOC_PLANAR 'P'
84 #define LOC_OTHER_IO 'Q'
85 #define LOC_PARALLEL 'R'
86 #define LOC_SERIAL 'S'
87 #define LOC_DEAD_RING 'T'
88 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE 'V'
90 #define LOC_SWITCH_ADAPTER 'W'
91 #define LOC_OTHER 'X'
92 #define LOC_FIRMWARE 'Y'
93 #define LOC_SCSI 'Z'
94 
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE 0x0003
99 #define WARNING_LIGHT 0x0004
100 #define DISK_ACTIVITY_LIGHT 0x0005
101 #define HEX_DISPLAY_UNIT 0x0006
102 #define BATTERY_WARNING_TIME 0x0007
103 #define CONDITION_CYCLE_REQUEST 0x0008
104 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
105 #define DR_ACTION 0x2329 /* 9001 */
106 #define DR_INDICATOR 0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
109 
110 /* other */
111 #define MAX_SENSORS 17 /* I only know of 17 sensors */
112 #define MAX_LINELENGTH 256
113 #define SENSOR_PREFIX "ibm,sensor-"
114 #define cel_to_fahr(x) ((x*9/5)+32)
115 
116 
117 /* Globals */
118 static struct rtas_sensors sensors;
119 static struct device_node *rtas_node = NULL;
120 static unsigned long power_on_time = 0; /* Save the time the user set */
121 static char progress_led[MAX_LINELENGTH];
122 
123 static unsigned long rtas_tone_frequency = 1000;
124 static unsigned long rtas_tone_volume = 0;
125 
126 /* ****************STRUCTS******************************************* */
128  unsigned int token;
129  unsigned int quant;
130 };
131 
132 struct rtas_sensors {
134  unsigned int quant;
135 };
136 
137 /* ****************************************************************** */
138 /* Declarations */
139 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
140 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
141 static ssize_t ppc_rtas_clock_write(struct file *file,
142  const char __user *buf, size_t count, loff_t *ppos);
143 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
144 static ssize_t ppc_rtas_progress_write(struct file *file,
145  const char __user *buf, size_t count, loff_t *ppos);
146 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
147 static ssize_t ppc_rtas_poweron_write(struct file *file,
148  const char __user *buf, size_t count, loff_t *ppos);
149 
150 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
151  const char __user *buf, size_t count, loff_t *ppos);
152 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
153 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
154  const char __user *buf, size_t count, loff_t *ppos);
155 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
156 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
157 
158 static int sensors_open(struct inode *inode, struct file *file)
159 {
160  return single_open(file, ppc_rtas_sensors_show, NULL);
161 }
162 
163 static const struct file_operations ppc_rtas_sensors_operations = {
164  .open = sensors_open,
165  .read = seq_read,
166  .llseek = seq_lseek,
167  .release = single_release,
168 };
169 
170 static int poweron_open(struct inode *inode, struct file *file)
171 {
172  return single_open(file, ppc_rtas_poweron_show, NULL);
173 }
174 
175 static const struct file_operations ppc_rtas_poweron_operations = {
176  .open = poweron_open,
177  .read = seq_read,
178  .llseek = seq_lseek,
179  .write = ppc_rtas_poweron_write,
180  .release = single_release,
181 };
182 
183 static int progress_open(struct inode *inode, struct file *file)
184 {
185  return single_open(file, ppc_rtas_progress_show, NULL);
186 }
187 
188 static const struct file_operations ppc_rtas_progress_operations = {
189  .open = progress_open,
190  .read = seq_read,
191  .llseek = seq_lseek,
192  .write = ppc_rtas_progress_write,
193  .release = single_release,
194 };
195 
196 static int clock_open(struct inode *inode, struct file *file)
197 {
198  return single_open(file, ppc_rtas_clock_show, NULL);
199 }
200 
201 static const struct file_operations ppc_rtas_clock_operations = {
202  .open = clock_open,
203  .read = seq_read,
204  .llseek = seq_lseek,
205  .write = ppc_rtas_clock_write,
206  .release = single_release,
207 };
208 
209 static int tone_freq_open(struct inode *inode, struct file *file)
210 {
211  return single_open(file, ppc_rtas_tone_freq_show, NULL);
212 }
213 
214 static const struct file_operations ppc_rtas_tone_freq_operations = {
215  .open = tone_freq_open,
216  .read = seq_read,
217  .llseek = seq_lseek,
218  .write = ppc_rtas_tone_freq_write,
219  .release = single_release,
220 };
221 
222 static int tone_volume_open(struct inode *inode, struct file *file)
223 {
224  return single_open(file, ppc_rtas_tone_volume_show, NULL);
225 }
226 
227 static const struct file_operations ppc_rtas_tone_volume_operations = {
228  .open = tone_volume_open,
229  .read = seq_read,
230  .llseek = seq_lseek,
231  .write = ppc_rtas_tone_volume_write,
232  .release = single_release,
233 };
234 
235 static int rmo_buf_open(struct inode *inode, struct file *file)
236 {
237  return single_open(file, ppc_rtas_rmo_buf_show, NULL);
238 }
239 
240 static const struct file_operations ppc_rtas_rmo_buf_ops = {
241  .open = rmo_buf_open,
242  .read = seq_read,
243  .llseek = seq_lseek,
244  .release = single_release,
245 };
246 
247 static int ppc_rtas_find_all_sensors(void);
248 static void ppc_rtas_process_sensor(struct seq_file *m,
249  struct individual_sensor *s, int state, int error, const char *loc);
250 static char *ppc_rtas_process_error(int error);
251 static void get_location_code(struct seq_file *m,
252  struct individual_sensor *s, const char *loc);
253 static void check_location_string(struct seq_file *m, const char *c);
254 static void check_location(struct seq_file *m, const char *c);
255 
256 static int __init proc_rtas_init(void)
257 {
258  if (!machine_is(pseries))
259  return -ENODEV;
260 
261  rtas_node = of_find_node_by_name(NULL, "rtas");
262  if (rtas_node == NULL)
263  return -ENODEV;
264 
265  proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
266  &ppc_rtas_progress_operations);
267  proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
268  &ppc_rtas_clock_operations);
269  proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
270  &ppc_rtas_poweron_operations);
271  proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
272  &ppc_rtas_sensors_operations);
273  proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
274  &ppc_rtas_tone_freq_operations);
275  proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
276  &ppc_rtas_tone_volume_operations);
277  proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
278  &ppc_rtas_rmo_buf_ops);
279  return 0;
280 }
281 
282 __initcall(proc_rtas_init);
283 
284 static int parse_number(const char __user *p, size_t count, unsigned long *val)
285 {
286  char buf[40];
287  char *end;
288 
289  if (count > 39)
290  return -EINVAL;
291 
292  if (copy_from_user(buf, p, count))
293  return -EFAULT;
294 
295  buf[count] = 0;
296 
297  *val = simple_strtoul(buf, &end, 10);
298  if (*end && *end != '\n')
299  return -EINVAL;
300 
301  return 0;
302 }
303 
304 /* ****************************************************************** */
305 /* POWER-ON-TIME */
306 /* ****************************************************************** */
307 static ssize_t ppc_rtas_poweron_write(struct file *file,
308  const char __user *buf, size_t count, loff_t *ppos)
309 {
310  struct rtc_time tm;
311  unsigned long nowtime;
312  int error = parse_number(buf, count, &nowtime);
313  if (error)
314  return error;
315 
316  power_on_time = nowtime; /* save the time */
317 
318  to_tm(nowtime, &tm);
319 
320  error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
322  tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
323  if (error)
324  printk(KERN_WARNING "error: setting poweron time returned: %s\n",
325  ppc_rtas_process_error(error));
326  return count;
327 }
328 /* ****************************************************************** */
329 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
330 {
331  if (power_on_time == 0)
332  seq_printf(m, "Power on time not set\n");
333  else
334  seq_printf(m, "%lu\n",power_on_time);
335  return 0;
336 }
337 
338 /* ****************************************************************** */
339 /* PROGRESS */
340 /* ****************************************************************** */
341 static ssize_t ppc_rtas_progress_write(struct file *file,
342  const char __user *buf, size_t count, loff_t *ppos)
343 {
344  unsigned long hex;
345 
346  if (count >= MAX_LINELENGTH)
347  count = MAX_LINELENGTH -1;
348  if (copy_from_user(progress_led, buf, count)) { /* save the string */
349  return -EFAULT;
350  }
351  progress_led[count] = 0;
352 
353  /* Lets see if the user passed hexdigits */
354  hex = simple_strtoul(progress_led, NULL, 10);
355 
356  rtas_progress ((char *)progress_led, hex);
357  return count;
358 
359  /* clear the line */
360  /* rtas_progress(" ", 0xffff);*/
361 }
362 /* ****************************************************************** */
363 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
364 {
365  if (progress_led[0])
366  seq_printf(m, "%s\n", progress_led);
367  return 0;
368 }
369 
370 /* ****************************************************************** */
371 /* CLOCK */
372 /* ****************************************************************** */
373 static ssize_t ppc_rtas_clock_write(struct file *file,
374  const char __user *buf, size_t count, loff_t *ppos)
375 {
376  struct rtc_time tm;
377  unsigned long nowtime;
378  int error = parse_number(buf, count, &nowtime);
379  if (error)
380  return error;
381 
382  to_tm(nowtime, &tm);
383  error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
385  tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
386  if (error)
387  printk(KERN_WARNING "error: setting the clock returned: %s\n",
388  ppc_rtas_process_error(error));
389  return count;
390 }
391 /* ****************************************************************** */
392 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
393 {
394  int ret[8];
395  int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
396 
397  if (error) {
398  printk(KERN_WARNING "error: reading the clock returned: %s\n",
399  ppc_rtas_process_error(error));
400  seq_printf(m, "0");
401  } else {
402  unsigned int year, mon, day, hour, min, sec;
403  year = ret[0]; mon = ret[1]; day = ret[2];
404  hour = ret[3]; min = ret[4]; sec = ret[5];
405  seq_printf(m, "%lu\n",
406  mktime(year, mon, day, hour, min, sec));
407  }
408  return 0;
409 }
410 
411 /* ****************************************************************** */
412 /* SENSOR STUFF */
413 /* ****************************************************************** */
414 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
415 {
416  int i,j;
417  int state, error;
418  int get_sensor_state = rtas_token("get-sensor-state");
419 
420  seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
421  seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
422  seq_printf(m, "********************************************************\n");
423 
424  if (ppc_rtas_find_all_sensors() != 0) {
425  seq_printf(m, "\nNo sensors are available\n");
426  return 0;
427  }
428 
429  for (i=0; i<sensors.quant; i++) {
430  struct individual_sensor *p = &sensors.sensor[i];
431  char rstr[64];
432  const char *loc;
433  int llen, offs;
434 
435  sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
436  loc = of_get_property(rtas_node, rstr, &llen);
437 
438  /* A sensor may have multiple instances */
439  for (j = 0, offs = 0; j <= p->quant; j++) {
440  error = rtas_call(get_sensor_state, 2, 2, &state,
441  p->token, j);
442 
443  ppc_rtas_process_sensor(m, p, state, error, loc);
444  seq_putc(m, '\n');
445  if (loc) {
446  offs += strlen(loc) + 1;
447  loc += strlen(loc) + 1;
448  if (offs >= llen)
449  loc = NULL;
450  }
451  }
452  }
453  return 0;
454 }
455 
456 /* ****************************************************************** */
457 
458 static int ppc_rtas_find_all_sensors(void)
459 {
460  const unsigned int *utmp;
461  int len, i;
462 
463  utmp = of_get_property(rtas_node, "rtas-sensors", &len);
464  if (utmp == NULL) {
465  printk (KERN_ERR "error: could not get rtas-sensors\n");
466  return 1;
467  }
468 
469  sensors.quant = len / 8; /* int + int */
470 
471  for (i=0; i<sensors.quant; i++) {
472  sensors.sensor[i].token = *utmp++;
473  sensors.sensor[i].quant = *utmp++;
474  }
475  return 0;
476 }
477 
478 /* ****************************************************************** */
479 /*
480  * Builds a string of what rtas returned
481  */
482 static char *ppc_rtas_process_error(int error)
483 {
484  switch (error) {
486  return "(critical high)";
487  case SENSOR_WARNING_HIGH:
488  return "(warning high)";
489  case SENSOR_NORMAL:
490  return "(normal)";
491  case SENSOR_WARNING_LOW:
492  return "(warning low)";
493  case SENSOR_CRITICAL_LOW:
494  return "(critical low)";
495  case SENSOR_SUCCESS:
496  return "(read ok)";
497  case SENSOR_HW_ERROR:
498  return "(hardware error)";
499  case SENSOR_BUSY:
500  return "(busy)";
501  case SENSOR_NOT_EXIST:
502  return "(non existent)";
503  case SENSOR_DR_ENTITY:
504  return "(dr entity removed)";
505  default:
506  return "(UNKNOWN)";
507  }
508 }
509 
510 /* ****************************************************************** */
511 /*
512  * Builds a string out of what the sensor said
513  */
514 
515 static void ppc_rtas_process_sensor(struct seq_file *m,
516  struct individual_sensor *s, int state, int error, const char *loc)
517 {
518  /* Defined return vales */
519  const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
520  "Maintenance" };
521  const char * enclosure_switch[] = { "Closed", "Open" };
522  const char * lid_status[] = { " ", "Open", "Closed" };
523  const char * power_source[] = { "AC\t", "Battery",
524  "AC & Battery" };
525  const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
526  const char * epow_sensor[] = {
527  "EPOW Reset", "Cooling warning", "Power warning",
528  "System shutdown", "System halt", "EPOW main enclosure",
529  "EPOW power off" };
530  const char * battery_cyclestate[] = { "None", "In progress",
531  "Requested" };
532  const char * battery_charging[] = { "Charging", "Discharching",
533  "No current flow" };
534  const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
535  "Exchange" };
536 
537  int have_strings = 0;
538  int num_states = 0;
539  int temperature = 0;
540  int unknown = 0;
541 
542  /* What kind of sensor do we have here? */
543 
544  switch (s->token) {
545  case KEY_SWITCH:
546  seq_printf(m, "Key switch:\t");
547  num_states = sizeof(key_switch) / sizeof(char *);
548  if (state < num_states) {
549  seq_printf(m, "%s\t", key_switch[state]);
550  have_strings = 1;
551  }
552  break;
553  case ENCLOSURE_SWITCH:
554  seq_printf(m, "Enclosure switch:\t");
555  num_states = sizeof(enclosure_switch) / sizeof(char *);
556  if (state < num_states) {
557  seq_printf(m, "%s\t",
558  enclosure_switch[state]);
559  have_strings = 1;
560  }
561  break;
562  case THERMAL_SENSOR:
563  seq_printf(m, "Temp. (C/F):\t");
564  temperature = 1;
565  break;
566  case LID_STATUS:
567  seq_printf(m, "Lid status:\t");
568  num_states = sizeof(lid_status) / sizeof(char *);
569  if (state < num_states) {
570  seq_printf(m, "%s\t", lid_status[state]);
571  have_strings = 1;
572  }
573  break;
574  case POWER_SOURCE:
575  seq_printf(m, "Power source:\t");
576  num_states = sizeof(power_source) / sizeof(char *);
577  if (state < num_states) {
578  seq_printf(m, "%s\t",
579  power_source[state]);
580  have_strings = 1;
581  }
582  break;
583  case BATTERY_VOLTAGE:
584  seq_printf(m, "Battery voltage:\t");
585  break;
586  case BATTERY_REMAINING:
587  seq_printf(m, "Battery remaining:\t");
588  num_states = sizeof(battery_remaining) / sizeof(char *);
589  if (state < num_states)
590  {
591  seq_printf(m, "%s\t",
592  battery_remaining[state]);
593  have_strings = 1;
594  }
595  break;
596  case BATTERY_PERCENTAGE:
597  seq_printf(m, "Battery percentage:\t");
598  break;
599  case EPOW_SENSOR:
600  seq_printf(m, "EPOW Sensor:\t");
601  num_states = sizeof(epow_sensor) / sizeof(char *);
602  if (state < num_states) {
603  seq_printf(m, "%s\t", epow_sensor[state]);
604  have_strings = 1;
605  }
606  break;
607  case BATTERY_CYCLESTATE:
608  seq_printf(m, "Battery cyclestate:\t");
609  num_states = sizeof(battery_cyclestate) /
610  sizeof(char *);
611  if (state < num_states) {
612  seq_printf(m, "%s\t",
613  battery_cyclestate[state]);
614  have_strings = 1;
615  }
616  break;
617  case BATTERY_CHARGING:
618  seq_printf(m, "Battery Charging:\t");
619  num_states = sizeof(battery_charging) / sizeof(char *);
620  if (state < num_states) {
621  seq_printf(m, "%s\t",
622  battery_charging[state]);
623  have_strings = 1;
624  }
625  break;
626  case IBM_SURVEILLANCE:
627  seq_printf(m, "Surveillance:\t");
628  break;
629  case IBM_FANRPM:
630  seq_printf(m, "Fan (rpm):\t");
631  break;
632  case IBM_VOLTAGE:
633  seq_printf(m, "Voltage (mv):\t");
634  break;
635  case IBM_DRCONNECTOR:
636  seq_printf(m, "DR connector:\t");
637  num_states = sizeof(ibm_drconnector) / sizeof(char *);
638  if (state < num_states) {
639  seq_printf(m, "%s\t",
640  ibm_drconnector[state]);
641  have_strings = 1;
642  }
643  break;
644  case IBM_POWERSUPPLY:
645  seq_printf(m, "Powersupply:\t");
646  break;
647  default:
648  seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
649  s->token);
650  unknown = 1;
651  have_strings = 1;
652  break;
653  }
654  if (have_strings == 0) {
655  if (temperature) {
656  seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
657  } else
658  seq_printf(m, "%10d\t", state);
659  }
660  if (unknown == 0) {
661  seq_printf(m, "%s\t", ppc_rtas_process_error(error));
662  get_location_code(m, s, loc);
663  }
664 }
665 
666 /* ****************************************************************** */
667 
668 static void check_location(struct seq_file *m, const char *c)
669 {
670  switch (c[0]) {
671  case LOC_PLANAR:
672  seq_printf(m, "Planar #%c", c[1]);
673  break;
674  case LOC_CPU:
675  seq_printf(m, "CPU #%c", c[1]);
676  break;
677  case LOC_FAN:
678  seq_printf(m, "Fan #%c", c[1]);
679  break;
680  case LOC_RACKMOUNTED:
681  seq_printf(m, "Rack #%c", c[1]);
682  break;
683  case LOC_VOLTAGE:
684  seq_printf(m, "Voltage #%c", c[1]);
685  break;
686  case LOC_LCD:
687  seq_printf(m, "LCD #%c", c[1]);
688  break;
689  case '.':
690  seq_printf(m, "- %c", c[1]);
691  break;
692  default:
693  seq_printf(m, "Unknown location");
694  break;
695  }
696 }
697 
698 
699 /* ****************************************************************** */
700 /*
701  * Format:
702  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
703  * the '.' may be an abbrevation
704  */
705 static void check_location_string(struct seq_file *m, const char *c)
706 {
707  while (*c) {
708  if (isalpha(*c) || *c == '.')
709  check_location(m, c);
710  else if (*c == '/' || *c == '-')
711  seq_printf(m, " at ");
712  c++;
713  }
714 }
715 
716 
717 /* ****************************************************************** */
718 
719 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
720  const char *loc)
721 {
722  if (!loc || !*loc) {
723  seq_printf(m, "---");/* does not have a location */
724  } else {
725  check_location_string(m, loc);
726  }
727  seq_putc(m, ' ');
728 }
729 /* ****************************************************************** */
730 /* INDICATORS - Tone Frequency */
731 /* ****************************************************************** */
732 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
733  const char __user *buf, size_t count, loff_t *ppos)
734 {
735  unsigned long freq;
736  int error = parse_number(buf, count, &freq);
737  if (error)
738  return error;
739 
740  rtas_tone_frequency = freq; /* save it for later */
741  error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
742  TONE_FREQUENCY, 0, freq);
743  if (error)
744  printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
745  ppc_rtas_process_error(error));
746  return count;
747 }
748 /* ****************************************************************** */
749 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
750 {
751  seq_printf(m, "%lu\n", rtas_tone_frequency);
752  return 0;
753 }
754 /* ****************************************************************** */
755 /* INDICATORS - Tone Volume */
756 /* ****************************************************************** */
757 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
758  const char __user *buf, size_t count, loff_t *ppos)
759 {
760  unsigned long volume;
761  int error = parse_number(buf, count, &volume);
762  if (error)
763  return error;
764 
765  if (volume > 100)
766  volume = 100;
767 
768  rtas_tone_volume = volume; /* save it for later */
769  error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
770  TONE_VOLUME, 0, volume);
771  if (error)
772  printk(KERN_WARNING "error: setting tone volume returned: %s\n",
773  ppc_rtas_process_error(error));
774  return count;
775 }
776 /* ****************************************************************** */
777 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
778 {
779  seq_printf(m, "%lu\n", rtas_tone_volume);
780  return 0;
781 }
782 
783 #define RMO_READ_BUF_MAX 30
784 
785 /* RTAS Userspace access */
786 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
787 {
788  seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
789  return 0;
790 }