Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtc-pxa.c
Go to the documentation of this file.
1 /*
2  * Real Time Clock interface for XScale PXA27x and PXA3xx
3  *
4  * Copyright (C) 2008 Robert Jarzmik
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  */
21 
22 #include <linux/init.h>
23 #include <linux/platform_device.h>
24 #include <linux/module.h>
25 #include <linux/rtc.h>
26 #include <linux/seq_file.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 
33 #include <mach/hardware.h>
34 
35 #define TIMER_FREQ CLOCK_TICK_RATE
36 #define RTC_DEF_DIVIDER (32768 - 1)
37 #define RTC_DEF_TRIM 0
38 #define MAXFREQ_PERIODIC 1000
39 
40 /*
41  * PXA Registers and bits definitions
42  */
43 #define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
44 #define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
45 #define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
46 #define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
47 #define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
48 #define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
49 #define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
50 #define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
51 #define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
52 #define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
53 #define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
54 #define RTSR_HZE (1 << 3) /* HZ interrupt enable */
55 #define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
56 #define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
57 #define RTSR_AL (1 << 0) /* RTC alarm detected */
58 #define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
59  | RTSR_SWAL1 | RTSR_SWAL2)
60 #define RYxR_YEAR_S 9
61 #define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
62 #define RYxR_MONTH_S 5
63 #define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
64 #define RYxR_DAY_MASK 0x1f
65 #define RDxR_HOUR_S 12
66 #define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
67 #define RDxR_MIN_S 6
68 #define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
69 #define RDxR_SEC_MASK 0x3f
70 
71 #define RTSR 0x08
72 #define RTTR 0x0c
73 #define RDCR 0x10
74 #define RYCR 0x14
75 #define RDAR1 0x18
76 #define RYAR1 0x1c
77 #define RTCPICR 0x34
78 #define PIAR 0x38
79 
80 #define rtc_readl(pxa_rtc, reg) \
81  __raw_readl((pxa_rtc)->base + (reg))
82 #define rtc_writel(pxa_rtc, reg, value) \
83  __raw_writel((value), (pxa_rtc)->base + (reg))
84 
85 struct pxa_rtc {
86  struct resource *ress;
87  void __iomem *base;
88  int irq_1Hz;
89  int irq_Alrm;
90  struct rtc_device *rtc;
91  spinlock_t lock; /* Protects this structure */
92 };
93 
94 static u32 ryxr_calc(struct rtc_time *tm)
95 {
96  return ((tm->tm_year + 1900) << RYxR_YEAR_S)
97  | ((tm->tm_mon + 1) << RYxR_MONTH_S)
98  | tm->tm_mday;
99 }
100 
101 static u32 rdxr_calc(struct rtc_time *tm)
102 {
103  return (tm->tm_hour << RDxR_HOUR_S) | (tm->tm_min << RDxR_MIN_S)
104  | tm->tm_sec;
105 }
106 
107 static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
108 {
109  tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
110  tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
111  tm->tm_mday = (rycr & RYxR_DAY_MASK);
112  tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
113  tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
114  tm->tm_sec = rdcr & RDxR_SEC_MASK;
115 }
116 
117 static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
118 {
119  u32 rtsr;
120 
121  rtsr = rtc_readl(pxa_rtc, RTSR);
122  rtsr &= ~RTSR_TRIG_MASK;
123  rtsr &= ~mask;
124  rtc_writel(pxa_rtc, RTSR, rtsr);
125 }
126 
127 static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
128 {
129  u32 rtsr;
130 
131  rtsr = rtc_readl(pxa_rtc, RTSR);
132  rtsr &= ~RTSR_TRIG_MASK;
133  rtsr |= mask;
134  rtc_writel(pxa_rtc, RTSR, rtsr);
135 }
136 
137 static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
138 {
139  struct platform_device *pdev = to_platform_device(dev_id);
140  struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
141  u32 rtsr;
142  unsigned long events = 0;
143 
144  spin_lock(&pxa_rtc->lock);
145 
146  /* clear interrupt sources */
147  rtsr = rtc_readl(pxa_rtc, RTSR);
148  rtc_writel(pxa_rtc, RTSR, rtsr);
149 
150  /* temporary disable rtc interrupts */
151  rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
152 
153  /* clear alarm interrupt if it has occurred */
154  if (rtsr & RTSR_RDAL1)
155  rtsr &= ~RTSR_RDALE1;
156 
157  /* update irq data & counter */
158  if (rtsr & RTSR_RDAL1)
159  events |= RTC_AF | RTC_IRQF;
160  if (rtsr & RTSR_HZ)
161  events |= RTC_UF | RTC_IRQF;
162  if (rtsr & RTSR_PIAL)
163  events |= RTC_PF | RTC_IRQF;
164 
165  rtc_update_irq(pxa_rtc->rtc, 1, events);
166 
167  /* enable back rtc interrupts */
168  rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
169 
170  spin_unlock(&pxa_rtc->lock);
171  return IRQ_HANDLED;
172 }
173 
174 static int pxa_rtc_open(struct device *dev)
175 {
176  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
177  int ret;
178 
179  ret = request_irq(pxa_rtc->irq_1Hz, pxa_rtc_irq, 0,
180  "rtc 1Hz", dev);
181  if (ret < 0) {
182  dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_1Hz,
183  ret);
184  goto err_irq_1Hz;
185  }
186  ret = request_irq(pxa_rtc->irq_Alrm, pxa_rtc_irq, 0,
187  "rtc Alrm", dev);
188  if (ret < 0) {
189  dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_Alrm,
190  ret);
191  goto err_irq_Alrm;
192  }
193 
194  return 0;
195 
196 err_irq_Alrm:
197  free_irq(pxa_rtc->irq_1Hz, dev);
198 err_irq_1Hz:
199  return ret;
200 }
201 
202 static void pxa_rtc_release(struct device *dev)
203 {
204  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
205 
206  spin_lock_irq(&pxa_rtc->lock);
207  rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
208  spin_unlock_irq(&pxa_rtc->lock);
209 
210  free_irq(pxa_rtc->irq_Alrm, dev);
211  free_irq(pxa_rtc->irq_1Hz, dev);
212 }
213 
214 static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled)
215 {
216  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
217 
218  spin_lock_irq(&pxa_rtc->lock);
219 
220  if (enabled)
221  rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
222  else
223  rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
224 
225  spin_unlock_irq(&pxa_rtc->lock);
226  return 0;
227 }
228 
229 static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
230 {
231  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
232  u32 rycr, rdcr;
233 
234  rycr = rtc_readl(pxa_rtc, RYCR);
235  rdcr = rtc_readl(pxa_rtc, RDCR);
236 
237  tm_calc(rycr, rdcr, tm);
238  return 0;
239 }
240 
241 static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
242 {
243  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
244 
245  rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
246  rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
247 
248  return 0;
249 }
250 
251 static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
252 {
253  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
254  u32 rtsr, ryar, rdar;
255 
256  ryar = rtc_readl(pxa_rtc, RYAR1);
257  rdar = rtc_readl(pxa_rtc, RDAR1);
258  tm_calc(ryar, rdar, &alrm->time);
259 
260  rtsr = rtc_readl(pxa_rtc, RTSR);
261  alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
262  alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
263  return 0;
264 }
265 
266 static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
267 {
268  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
269  u32 rtsr;
270 
271  spin_lock_irq(&pxa_rtc->lock);
272 
273  rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
274  rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
275 
276  rtsr = rtc_readl(pxa_rtc, RTSR);
277  if (alrm->enabled)
278  rtsr |= RTSR_RDALE1;
279  else
280  rtsr &= ~RTSR_RDALE1;
281  rtc_writel(pxa_rtc, RTSR, rtsr);
282 
283  spin_unlock_irq(&pxa_rtc->lock);
284 
285  return 0;
286 }
287 
288 static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
289 {
290  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
291 
292  seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
293  seq_printf(seq, "update_IRQ\t: %s\n",
294  (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
295  seq_printf(seq, "periodic_IRQ\t: %s\n",
296  (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
297  seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
298 
299  return 0;
300 }
301 
302 static const struct rtc_class_ops pxa_rtc_ops = {
303  .open = pxa_rtc_open,
304  .release = pxa_rtc_release,
305  .read_time = pxa_rtc_read_time,
306  .set_time = pxa_rtc_set_time,
307  .read_alarm = pxa_rtc_read_alarm,
308  .set_alarm = pxa_rtc_set_alarm,
309  .alarm_irq_enable = pxa_alarm_irq_enable,
310  .proc = pxa_rtc_proc,
311 };
312 
313 static int __init pxa_rtc_probe(struct platform_device *pdev)
314 {
315  struct device *dev = &pdev->dev;
316  struct pxa_rtc *pxa_rtc;
317  int ret;
318  u32 rttr;
319 
320  pxa_rtc = kzalloc(sizeof(struct pxa_rtc), GFP_KERNEL);
321  if (!pxa_rtc)
322  return -ENOMEM;
323 
324  spin_lock_init(&pxa_rtc->lock);
325  platform_set_drvdata(pdev, pxa_rtc);
326 
327  ret = -ENXIO;
328  pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
329  if (!pxa_rtc->ress) {
330  dev_err(dev, "No I/O memory resource defined\n");
331  goto err_ress;
332  }
333 
334  pxa_rtc->irq_1Hz = platform_get_irq(pdev, 0);
335  if (pxa_rtc->irq_1Hz < 0) {
336  dev_err(dev, "No 1Hz IRQ resource defined\n");
337  goto err_ress;
338  }
339  pxa_rtc->irq_Alrm = platform_get_irq(pdev, 1);
340  if (pxa_rtc->irq_Alrm < 0) {
341  dev_err(dev, "No alarm IRQ resource defined\n");
342  goto err_ress;
343  }
344 
345  ret = -ENOMEM;
346  pxa_rtc->base = ioremap(pxa_rtc->ress->start,
347  resource_size(pxa_rtc->ress));
348  if (!pxa_rtc->base) {
349  dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
350  goto err_map;
351  }
352 
353  /*
354  * If the clock divider is uninitialized then reset it to the
355  * default value to get the 1Hz clock.
356  */
357  if (rtc_readl(pxa_rtc, RTTR) == 0) {
358  rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
359  rtc_writel(pxa_rtc, RTTR, rttr);
360  dev_warn(dev, "warning: initializing default clock"
361  " divider/trim value\n");
362  }
363 
364  rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
365 
366  pxa_rtc->rtc = rtc_device_register("pxa-rtc", &pdev->dev, &pxa_rtc_ops,
367  THIS_MODULE);
368  ret = PTR_ERR(pxa_rtc->rtc);
369  if (IS_ERR(pxa_rtc->rtc)) {
370  dev_err(dev, "Failed to register RTC device -> %d\n", ret);
371  goto err_rtc_reg;
372  }
373 
374  device_init_wakeup(dev, 1);
375 
376  return 0;
377 
378 err_rtc_reg:
379  iounmap(pxa_rtc->base);
380 err_ress:
381 err_map:
382  kfree(pxa_rtc);
383  return ret;
384 }
385 
386 static int __exit pxa_rtc_remove(struct platform_device *pdev)
387 {
388  struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
389 
390  rtc_device_unregister(pxa_rtc->rtc);
391 
392  spin_lock_irq(&pxa_rtc->lock);
393  iounmap(pxa_rtc->base);
394  spin_unlock_irq(&pxa_rtc->lock);
395 
396  kfree(pxa_rtc);
397 
398  return 0;
399 }
400 
401 #ifdef CONFIG_OF
402 static struct of_device_id pxa_rtc_dt_ids[] = {
403  { .compatible = "marvell,pxa-rtc" },
404  {}
405 };
406 MODULE_DEVICE_TABLE(of, pxa_rtc_dt_ids);
407 #endif
408 
409 #ifdef CONFIG_PM
410 static int pxa_rtc_suspend(struct device *dev)
411 {
412  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
413 
414  if (device_may_wakeup(dev))
415  enable_irq_wake(pxa_rtc->irq_Alrm);
416  return 0;
417 }
418 
419 static int pxa_rtc_resume(struct device *dev)
420 {
421  struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
422 
423  if (device_may_wakeup(dev))
424  disable_irq_wake(pxa_rtc->irq_Alrm);
425  return 0;
426 }
427 
428 static const struct dev_pm_ops pxa_rtc_pm_ops = {
429  .suspend = pxa_rtc_suspend,
430  .resume = pxa_rtc_resume,
431 };
432 #endif
433 
434 static struct platform_driver pxa_rtc_driver = {
435  .remove = __exit_p(pxa_rtc_remove),
436  .driver = {
437  .name = "pxa-rtc",
438  .of_match_table = of_match_ptr(pxa_rtc_dt_ids),
439 #ifdef CONFIG_PM
440  .pm = &pxa_rtc_pm_ops,
441 #endif
442  },
443 };
444 
445 static int __init pxa_rtc_init(void)
446 {
447  if (cpu_is_pxa27x() || cpu_is_pxa3xx())
448  return platform_driver_probe(&pxa_rtc_driver, pxa_rtc_probe);
449 
450  return -ENODEV;
451 }
452 
453 static void __exit pxa_rtc_exit(void)
454 {
455  platform_driver_unregister(&pxa_rtc_driver);
456 }
457 
458 module_init(pxa_rtc_init);
459 module_exit(pxa_rtc_exit);
460 
461 MODULE_AUTHOR("Robert Jarzmik <[email protected]>");
462 MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
463 MODULE_LICENSE("GPL");
464 MODULE_ALIAS("platform:pxa-rtc");