Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtc-sh.c
Go to the documentation of this file.
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006 - 2009 Paul Mundt
5  * Copyright (C) 2006 Jamie Lenehan
6  * Copyright (C) 2008 Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  * Copyright (C) 2000 Philipp Rumpf <[email protected]>
11  * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License. See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <linux/slab.h>
30 #include <asm/rtc.h>
31 
32 #define DRV_NAME "sh-rtc"
33 #define DRV_VERSION "0.2.3"
34 
35 #define RTC_REG(r) ((r) * rtc_reg_size)
36 
37 #define R64CNT RTC_REG(0)
38 
39 #define RSECCNT RTC_REG(1) /* RTC sec */
40 #define RMINCNT RTC_REG(2) /* RTC min */
41 #define RHRCNT RTC_REG(3) /* RTC hour */
42 #define RWKCNT RTC_REG(4) /* RTC week */
43 #define RDAYCNT RTC_REG(5) /* RTC day */
44 #define RMONCNT RTC_REG(6) /* RTC month */
45 #define RYRCNT RTC_REG(7) /* RTC year */
46 #define RSECAR RTC_REG(8) /* ALARM sec */
47 #define RMINAR RTC_REG(9) /* ALARM min */
48 #define RHRAR RTC_REG(10) /* ALARM hour */
49 #define RWKAR RTC_REG(11) /* ALARM week */
50 #define RDAYAR RTC_REG(12) /* ALARM day */
51 #define RMONAR RTC_REG(13) /* ALARM month */
52 #define RCR1 RTC_REG(14) /* Control */
53 #define RCR2 RTC_REG(15) /* Control */
54 
55 /*
56  * Note on RYRAR and RCR3: Up until this point most of the register
57  * definitions are consistent across all of the available parts. However,
58  * the placement of the optional RYRAR and RCR3 (the RYRAR control
59  * register used to control RYRCNT/RYRAR compare) varies considerably
60  * across various parts, occasionally being mapped in to a completely
61  * unrelated address space. For proper RYRAR support a separate resource
62  * would have to be handed off, but as this is purely optional in
63  * practice, we simply opt not to support it, thereby keeping the code
64  * quite a bit more simplified.
65  */
66 
67 /* ALARM Bits - or with BCD encoded value */
68 #define AR_ENB 0x80 /* Enable for alarm cmp */
69 
70 /* Period Bits */
71 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
72 #define PF_COUNT 0x200 /* Half periodic counter */
73 #define PF_OXS 0x400 /* Periodic One x Second */
74 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
75 #define PF_MASK 0xf00
76 
77 /* RCR1 Bits */
78 #define RCR1_CF 0x80 /* Carry Flag */
79 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
80 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
81 #define RCR1_AF 0x01 /* Alarm Flag */
82 
83 /* RCR2 Bits */
84 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
85 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
86 #define RCR2_RTCEN 0x08 /* ENable RTC */
87 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
88 #define RCR2_RESET 0x02 /* Reset bit */
89 #define RCR2_START 0x01 /* Start bit */
90 
91 struct sh_rtc {
93  unsigned long regsize;
94  struct resource *res;
95  int alarm_irq;
97  int carry_irq;
98  struct clk *clk;
101  unsigned long capabilities; /* See asm/rtc.h for cap bits */
102  unsigned short periodic_freq;
103 };
104 
105 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106 {
107  unsigned int tmp, pending;
108 
109  tmp = readb(rtc->regbase + RCR1);
110  pending = tmp & RCR1_CF;
111  tmp &= ~RCR1_CF;
112  writeb(tmp, rtc->regbase + RCR1);
113 
114  /* Users have requested One x Second IRQ */
115  if (pending && rtc->periodic_freq & PF_OXS)
117 
118  return pending;
119 }
120 
121 static int __sh_rtc_alarm(struct sh_rtc *rtc)
122 {
123  unsigned int tmp, pending;
124 
125  tmp = readb(rtc->regbase + RCR1);
126  pending = tmp & RCR1_AF;
127  tmp &= ~(RCR1_AF | RCR1_AIE);
128  writeb(tmp, rtc->regbase + RCR1);
129 
130  if (pending)
132 
133  return pending;
134 }
135 
136 static int __sh_rtc_periodic(struct sh_rtc *rtc)
137 {
138  struct rtc_device *rtc_dev = rtc->rtc_dev;
139  struct rtc_task *irq_task;
140  unsigned int tmp, pending;
141 
142  tmp = readb(rtc->regbase + RCR2);
143  pending = tmp & RCR2_PEF;
144  tmp &= ~RCR2_PEF;
145  writeb(tmp, rtc->regbase + RCR2);
146 
147  if (!pending)
148  return 0;
149 
150  /* Half period enabled than one skipped and the next notified */
151  if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152  rtc->periodic_freq &= ~PF_COUNT;
153  else {
154  if (rtc->periodic_freq & PF_HP)
155  rtc->periodic_freq |= PF_COUNT;
156  if (rtc->periodic_freq & PF_KOU) {
157  spin_lock(&rtc_dev->irq_task_lock);
158  irq_task = rtc_dev->irq_task;
159  if (irq_task)
160  irq_task->func(irq_task->private_data);
161  spin_unlock(&rtc_dev->irq_task_lock);
162  } else
164  }
165 
166  return pending;
167 }
168 
169 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170 {
171  struct sh_rtc *rtc = dev_id;
172  int ret;
173 
174  spin_lock(&rtc->lock);
175  ret = __sh_rtc_interrupt(rtc);
176  spin_unlock(&rtc->lock);
177 
178  return IRQ_RETVAL(ret);
179 }
180 
181 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182 {
183  struct sh_rtc *rtc = dev_id;
184  int ret;
185 
186  spin_lock(&rtc->lock);
187  ret = __sh_rtc_alarm(rtc);
188  spin_unlock(&rtc->lock);
189 
190  return IRQ_RETVAL(ret);
191 }
192 
193 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194 {
195  struct sh_rtc *rtc = dev_id;
196  int ret;
197 
198  spin_lock(&rtc->lock);
199  ret = __sh_rtc_periodic(rtc);
200  spin_unlock(&rtc->lock);
201 
202  return IRQ_RETVAL(ret);
203 }
204 
205 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206 {
207  struct sh_rtc *rtc = dev_id;
208  int ret;
209 
210  spin_lock(&rtc->lock);
211  ret = __sh_rtc_interrupt(rtc);
212  ret |= __sh_rtc_alarm(rtc);
213  ret |= __sh_rtc_periodic(rtc);
214  spin_unlock(&rtc->lock);
215 
216  return IRQ_RETVAL(ret);
217 }
218 
219 static int sh_rtc_irq_set_state(struct device *dev, int enable)
220 {
221  struct sh_rtc *rtc = dev_get_drvdata(dev);
222  unsigned int tmp;
223 
224  spin_lock_irq(&rtc->lock);
225 
226  tmp = readb(rtc->regbase + RCR2);
227 
228  if (enable) {
229  rtc->periodic_freq |= PF_KOU;
230  tmp &= ~RCR2_PEF; /* Clear PES bit */
231  tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
232  } else {
233  rtc->periodic_freq &= ~PF_KOU;
234  tmp &= ~(RCR2_PESMASK | RCR2_PEF);
235  }
236 
237  writeb(tmp, rtc->regbase + RCR2);
238 
239  spin_unlock_irq(&rtc->lock);
240 
241  return 0;
242 }
243 
244 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245 {
246  struct sh_rtc *rtc = dev_get_drvdata(dev);
247  int tmp, ret = 0;
248 
249  spin_lock_irq(&rtc->lock);
250  tmp = rtc->periodic_freq & PF_MASK;
251 
252  switch (freq) {
253  case 0:
254  rtc->periodic_freq = 0x00;
255  break;
256  case 1:
257  rtc->periodic_freq = 0x60;
258  break;
259  case 2:
260  rtc->periodic_freq = 0x50;
261  break;
262  case 4:
263  rtc->periodic_freq = 0x40;
264  break;
265  case 8:
266  rtc->periodic_freq = 0x30 | PF_HP;
267  break;
268  case 16:
269  rtc->periodic_freq = 0x30;
270  break;
271  case 32:
272  rtc->periodic_freq = 0x20 | PF_HP;
273  break;
274  case 64:
275  rtc->periodic_freq = 0x20;
276  break;
277  case 128:
278  rtc->periodic_freq = 0x10 | PF_HP;
279  break;
280  case 256:
281  rtc->periodic_freq = 0x10;
282  break;
283  default:
284  ret = -ENOTSUPP;
285  }
286 
287  if (ret == 0)
288  rtc->periodic_freq |= tmp;
289 
290  spin_unlock_irq(&rtc->lock);
291  return ret;
292 }
293 
294 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295 {
296  struct sh_rtc *rtc = dev_get_drvdata(dev);
297  unsigned int tmp;
298 
299  spin_lock_irq(&rtc->lock);
300 
301  tmp = readb(rtc->regbase + RCR1);
302 
303  if (enable)
304  tmp |= RCR1_AIE;
305  else
306  tmp &= ~RCR1_AIE;
307 
308  writeb(tmp, rtc->regbase + RCR1);
309 
310  spin_unlock_irq(&rtc->lock);
311 }
312 
313 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314 {
315  struct sh_rtc *rtc = dev_get_drvdata(dev);
316  unsigned int tmp;
317 
318  tmp = readb(rtc->regbase + RCR1);
319  seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320 
321  tmp = readb(rtc->regbase + RCR2);
322  seq_printf(seq, "periodic_IRQ\t: %s\n",
323  (tmp & RCR2_PESMASK) ? "yes" : "no");
324 
325  return 0;
326 }
327 
328 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329 {
330  struct sh_rtc *rtc = dev_get_drvdata(dev);
331  unsigned int tmp;
332 
333  spin_lock_irq(&rtc->lock);
334 
335  tmp = readb(rtc->regbase + RCR1);
336 
337  if (!enable)
338  tmp &= ~RCR1_CIE;
339  else
340  tmp |= RCR1_CIE;
341 
342  writeb(tmp, rtc->regbase + RCR1);
343 
344  spin_unlock_irq(&rtc->lock);
345 }
346 
347 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
348 {
349  sh_rtc_setaie(dev, enabled);
350  return 0;
351 }
352 
353 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
354 {
355  struct platform_device *pdev = to_platform_device(dev);
356  struct sh_rtc *rtc = platform_get_drvdata(pdev);
357  unsigned int sec128, sec2, yr, yr100, cf_bit;
358 
359  do {
360  unsigned int tmp;
361 
362  spin_lock_irq(&rtc->lock);
363 
364  tmp = readb(rtc->regbase + RCR1);
365  tmp &= ~RCR1_CF; /* Clear CF-bit */
366  tmp |= RCR1_CIE;
367  writeb(tmp, rtc->regbase + RCR1);
368 
369  sec128 = readb(rtc->regbase + R64CNT);
370 
371  tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
372  tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
373  tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
374  tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
375  tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
376  tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
377 
378  if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
379  yr = readw(rtc->regbase + RYRCNT);
380  yr100 = bcd2bin(yr >> 8);
381  yr &= 0xff;
382  } else {
383  yr = readb(rtc->regbase + RYRCNT);
384  yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
385  }
386 
387  tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
388 
389  sec2 = readb(rtc->regbase + R64CNT);
390  cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
391 
392  spin_unlock_irq(&rtc->lock);
393  } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
394 
395 #if RTC_BIT_INVERTED != 0
396  if ((sec128 & RTC_BIT_INVERTED))
397  tm->tm_sec--;
398 #endif
399 
400  /* only keep the carry interrupt enabled if UIE is on */
401  if (!(rtc->periodic_freq & PF_OXS))
402  sh_rtc_setcie(dev, 0);
403 
404  dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
405  "mday=%d, mon=%d, year=%d, wday=%d\n",
406  __func__,
407  tm->tm_sec, tm->tm_min, tm->tm_hour,
408  tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
409 
410  return rtc_valid_tm(tm);
411 }
412 
413 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
414 {
415  struct platform_device *pdev = to_platform_device(dev);
416  struct sh_rtc *rtc = platform_get_drvdata(pdev);
417  unsigned int tmp;
418  int year;
419 
420  spin_lock_irq(&rtc->lock);
421 
422  /* Reset pre-scaler & stop RTC */
423  tmp = readb(rtc->regbase + RCR2);
424  tmp |= RCR2_RESET;
425  tmp &= ~RCR2_START;
426  writeb(tmp, rtc->regbase + RCR2);
427 
428  writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
429  writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
430  writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
431  writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
432  writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
433  writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
434 
435  if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
436  year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
437  bin2bcd(tm->tm_year % 100);
438  writew(year, rtc->regbase + RYRCNT);
439  } else {
440  year = tm->tm_year % 100;
441  writeb(bin2bcd(year), rtc->regbase + RYRCNT);
442  }
443 
444  /* Start RTC */
445  tmp = readb(rtc->regbase + RCR2);
446  tmp &= ~RCR2_RESET;
447  tmp |= RCR2_RTCEN | RCR2_START;
448  writeb(tmp, rtc->regbase + RCR2);
449 
450  spin_unlock_irq(&rtc->lock);
451 
452  return 0;
453 }
454 
455 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
456 {
457  unsigned int byte;
458  int value = 0xff; /* return 0xff for ignored values */
459 
460  byte = readb(rtc->regbase + reg_off);
461  if (byte & AR_ENB) {
462  byte &= ~AR_ENB; /* strip the enable bit */
463  value = bcd2bin(byte);
464  }
465 
466  return value;
467 }
468 
469 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
470 {
471  struct platform_device *pdev = to_platform_device(dev);
472  struct sh_rtc *rtc = platform_get_drvdata(pdev);
473  struct rtc_time *tm = &wkalrm->time;
474 
475  spin_lock_irq(&rtc->lock);
476 
477  tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
478  tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
479  tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
480  tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
481  tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
482  tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
483  if (tm->tm_mon > 0)
484  tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
485  tm->tm_year = 0xffff;
486 
487  wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
488 
489  spin_unlock_irq(&rtc->lock);
490 
491  return 0;
492 }
493 
494 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
495  int value, int reg_off)
496 {
497  /* < 0 for a value that is ignored */
498  if (value < 0)
499  writeb(0, rtc->regbase + reg_off);
500  else
501  writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
502 }
503 
504 static int sh_rtc_check_alarm(struct rtc_time *tm)
505 {
506  /*
507  * The original rtc says anything > 0xc0 is "don't care" or "match
508  * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
509  * The original rtc doesn't support years - some things use -1 and
510  * some 0xffff. We use -1 to make out tests easier.
511  */
512  if (tm->tm_year == 0xffff)
513  tm->tm_year = -1;
514  if (tm->tm_mon >= 0xff)
515  tm->tm_mon = -1;
516  if (tm->tm_mday >= 0xff)
517  tm->tm_mday = -1;
518  if (tm->tm_wday >= 0xff)
519  tm->tm_wday = -1;
520  if (tm->tm_hour >= 0xff)
521  tm->tm_hour = -1;
522  if (tm->tm_min >= 0xff)
523  tm->tm_min = -1;
524  if (tm->tm_sec >= 0xff)
525  tm->tm_sec = -1;
526 
527  if (tm->tm_year > 9999 ||
528  tm->tm_mon >= 12 ||
529  tm->tm_mday == 0 || tm->tm_mday >= 32 ||
530  tm->tm_wday >= 7 ||
531  tm->tm_hour >= 24 ||
532  tm->tm_min >= 60 ||
533  tm->tm_sec >= 60)
534  return -EINVAL;
535 
536  return 0;
537 }
538 
539 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
540 {
541  struct platform_device *pdev = to_platform_device(dev);
542  struct sh_rtc *rtc = platform_get_drvdata(pdev);
543  unsigned int rcr1;
544  struct rtc_time *tm = &wkalrm->time;
545  int mon, err;
546 
547  err = sh_rtc_check_alarm(tm);
548  if (unlikely(err < 0))
549  return err;
550 
551  spin_lock_irq(&rtc->lock);
552 
553  /* disable alarm interrupt and clear the alarm flag */
554  rcr1 = readb(rtc->regbase + RCR1);
555  rcr1 &= ~(RCR1_AF | RCR1_AIE);
556  writeb(rcr1, rtc->regbase + RCR1);
557 
558  /* set alarm time */
559  sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
560  sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
561  sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
562  sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
563  sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
564  mon = tm->tm_mon;
565  if (mon >= 0)
566  mon += 1;
567  sh_rtc_write_alarm_value(rtc, mon, RMONAR);
568 
569  if (wkalrm->enabled) {
570  rcr1 |= RCR1_AIE;
571  writeb(rcr1, rtc->regbase + RCR1);
572  }
573 
574  spin_unlock_irq(&rtc->lock);
575 
576  return 0;
577 }
578 
579 static struct rtc_class_ops sh_rtc_ops = {
580  .read_time = sh_rtc_read_time,
581  .set_time = sh_rtc_set_time,
582  .read_alarm = sh_rtc_read_alarm,
583  .set_alarm = sh_rtc_set_alarm,
584  .proc = sh_rtc_proc,
585  .alarm_irq_enable = sh_rtc_alarm_irq_enable,
586 };
587 
588 static int __init sh_rtc_probe(struct platform_device *pdev)
589 {
590  struct sh_rtc *rtc;
591  struct resource *res;
592  struct rtc_time r;
593  char clk_name[6];
594  int clk_id, ret;
595 
596  rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
597  if (unlikely(!rtc))
598  return -ENOMEM;
599 
600  spin_lock_init(&rtc->lock);
601 
602  /* get periodic/carry/alarm irqs */
603  ret = platform_get_irq(pdev, 0);
604  if (unlikely(ret <= 0)) {
605  ret = -ENOENT;
606  dev_err(&pdev->dev, "No IRQ resource\n");
607  goto err_badres;
608  }
609 
610  rtc->periodic_irq = ret;
611  rtc->carry_irq = platform_get_irq(pdev, 1);
612  rtc->alarm_irq = platform_get_irq(pdev, 2);
613 
614  res = platform_get_resource(pdev, IORESOURCE_IO, 0);
615  if (unlikely(res == NULL)) {
616  ret = -ENOENT;
617  dev_err(&pdev->dev, "No IO resource\n");
618  goto err_badres;
619  }
620 
621  rtc->regsize = resource_size(res);
622 
623  rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
624  if (unlikely(!rtc->res)) {
625  ret = -EBUSY;
626  goto err_badres;
627  }
628 
629  rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
630  if (unlikely(!rtc->regbase)) {
631  ret = -EINVAL;
632  goto err_badmap;
633  }
634 
635  clk_id = pdev->id;
636  /* With a single device, the clock id is still "rtc0" */
637  if (clk_id < 0)
638  clk_id = 0;
639 
640  snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
641 
642  rtc->clk = clk_get(&pdev->dev, clk_name);
643  if (IS_ERR(rtc->clk)) {
644  /*
645  * No error handling for rtc->clk intentionally, not all
646  * platforms will have a unique clock for the RTC, and
647  * the clk API can handle the struct clk pointer being
648  * NULL.
649  */
650  rtc->clk = NULL;
651  }
652 
653  clk_enable(rtc->clk);
654 
656  if (pdev->dev.platform_data) {
657  struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
658 
659  /*
660  * Some CPUs have special capabilities in addition to the
661  * default set. Add those in here.
662  */
663  rtc->capabilities |= pinfo->capabilities;
664  }
665 
666  if (rtc->carry_irq <= 0) {
667  /* register shared periodic/carry/alarm irq */
668  ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
669  0, "sh-rtc", rtc);
670  if (unlikely(ret)) {
671  dev_err(&pdev->dev,
672  "request IRQ failed with %d, IRQ %d\n", ret,
673  rtc->periodic_irq);
674  goto err_unmap;
675  }
676  } else {
677  /* register periodic/carry/alarm irqs */
678  ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
679  0, "sh-rtc period", rtc);
680  if (unlikely(ret)) {
681  dev_err(&pdev->dev,
682  "request period IRQ failed with %d, IRQ %d\n",
683  ret, rtc->periodic_irq);
684  goto err_unmap;
685  }
686 
687  ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
688  0, "sh-rtc carry", rtc);
689  if (unlikely(ret)) {
690  dev_err(&pdev->dev,
691  "request carry IRQ failed with %d, IRQ %d\n",
692  ret, rtc->carry_irq);
693  free_irq(rtc->periodic_irq, rtc);
694  goto err_unmap;
695  }
696 
697  ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
698  0, "sh-rtc alarm", rtc);
699  if (unlikely(ret)) {
700  dev_err(&pdev->dev,
701  "request alarm IRQ failed with %d, IRQ %d\n",
702  ret, rtc->alarm_irq);
703  free_irq(rtc->carry_irq, rtc);
704  free_irq(rtc->periodic_irq, rtc);
705  goto err_unmap;
706  }
707  }
708 
709  platform_set_drvdata(pdev, rtc);
710 
711  /* everything disabled by default */
712  sh_rtc_irq_set_freq(&pdev->dev, 0);
713  sh_rtc_irq_set_state(&pdev->dev, 0);
714  sh_rtc_setaie(&pdev->dev, 0);
715  sh_rtc_setcie(&pdev->dev, 0);
716 
717  rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
718  &sh_rtc_ops, THIS_MODULE);
719  if (IS_ERR(rtc->rtc_dev)) {
720  ret = PTR_ERR(rtc->rtc_dev);
721  free_irq(rtc->periodic_irq, rtc);
722  free_irq(rtc->carry_irq, rtc);
723  free_irq(rtc->alarm_irq, rtc);
724  goto err_unmap;
725  }
726 
727  rtc->rtc_dev->max_user_freq = 256;
728 
729  /* reset rtc to epoch 0 if time is invalid */
730  if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
731  rtc_time_to_tm(0, &r);
732  rtc_set_time(rtc->rtc_dev, &r);
733  }
734 
735  device_init_wakeup(&pdev->dev, 1);
736  return 0;
737 
738 err_unmap:
739  clk_disable(rtc->clk);
740  clk_put(rtc->clk);
741  iounmap(rtc->regbase);
742 err_badmap:
743  release_mem_region(rtc->res->start, rtc->regsize);
744 err_badres:
745  kfree(rtc);
746 
747  return ret;
748 }
749 
750 static int __exit sh_rtc_remove(struct platform_device *pdev)
751 {
752  struct sh_rtc *rtc = platform_get_drvdata(pdev);
753 
755  sh_rtc_irq_set_state(&pdev->dev, 0);
756 
757  sh_rtc_setaie(&pdev->dev, 0);
758  sh_rtc_setcie(&pdev->dev, 0);
759 
760  free_irq(rtc->periodic_irq, rtc);
761 
762  if (rtc->carry_irq > 0) {
763  free_irq(rtc->carry_irq, rtc);
764  free_irq(rtc->alarm_irq, rtc);
765  }
766 
767  iounmap(rtc->regbase);
768  release_mem_region(rtc->res->start, rtc->regsize);
769 
770  clk_disable(rtc->clk);
771  clk_put(rtc->clk);
772 
773  platform_set_drvdata(pdev, NULL);
774 
775  kfree(rtc);
776 
777  return 0;
778 }
779 
780 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
781 {
782  struct platform_device *pdev = to_platform_device(dev);
783  struct sh_rtc *rtc = platform_get_drvdata(pdev);
784 
785  irq_set_irq_wake(rtc->periodic_irq, enabled);
786 
787  if (rtc->carry_irq > 0) {
788  irq_set_irq_wake(rtc->carry_irq, enabled);
789  irq_set_irq_wake(rtc->alarm_irq, enabled);
790  }
791 }
792 
793 static int sh_rtc_suspend(struct device *dev)
794 {
795  if (device_may_wakeup(dev))
796  sh_rtc_set_irq_wake(dev, 1);
797 
798  return 0;
799 }
800 
801 static int sh_rtc_resume(struct device *dev)
802 {
803  if (device_may_wakeup(dev))
804  sh_rtc_set_irq_wake(dev, 0);
805 
806  return 0;
807 }
808 
809 static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
810  .suspend = sh_rtc_suspend,
811  .resume = sh_rtc_resume,
812 };
813 
814 static struct platform_driver sh_rtc_platform_driver = {
815  .driver = {
816  .name = DRV_NAME,
817  .owner = THIS_MODULE,
818  .pm = &sh_rtc_dev_pm_ops,
819  },
820  .remove = __exit_p(sh_rtc_remove),
821 };
822 
823 static int __init sh_rtc_init(void)
824 {
825  return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
826 }
827 
828 static void __exit sh_rtc_exit(void)
829 {
830  platform_driver_unregister(&sh_rtc_platform_driver);
831 }
832 
833 module_init(sh_rtc_init);
834 module_exit(sh_rtc_exit);
835 
836 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
838 MODULE_AUTHOR("Paul Mundt <[email protected]>, "
839  "Jamie Lenehan <[email protected]>, "
840  "Angelo Castello <[email protected]>");
841 MODULE_LICENSE("GPL");
842 MODULE_ALIAS("platform:" DRV_NAME);