Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtc_from4.c
Go to the documentation of this file.
1 /*
2  * drivers/mtd/nand/rtc_from4.c
3  *
4  * Copyright (C) 2004 Red Hat, Inc.
5  *
6  * Derived from drivers/mtd/nand/spia.c
7  * Copyright (C) 2000 Steven J. Hill ([email protected])
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * Overview:
14  * This is a device driver for the AG-AND flash device found on the
15  * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
16  * which utilizes the Renesas HN29V1G91T-30 part.
17  * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/slab.h>
24 #include <linux/rslib.h>
25 #include <linux/bitrev.h>
26 #include <linux/module.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand.h>
29 #include <linux/mtd/partitions.h>
30 #include <asm/io.h>
31 
32 /*
33  * MTD structure for Renesas board
34  */
35 static struct mtd_info *rtc_from4_mtd = NULL;
36 
37 #define RTC_FROM4_MAX_CHIPS 2
38 
39 /* HS77x9 processor register defines */
40 #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
41 #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
42 #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
43 #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
44 #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
45 #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
46 #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
47 
48 /*
49  * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
50  */
51 /* Address where flash is mapped */
52 #define RTC_FROM4_FIO_BASE 0x14000000
53 
54 /* CLE and ALE are tied to address lines 5 & 4, respectively */
55 #define RTC_FROM4_CLE (1 << 5)
56 #define RTC_FROM4_ALE (1 << 4)
57 
58 /* address lines A24-A22 used for chip selection */
59 #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
60 #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
61 #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
62 /* mask address lines A24-A22 used for chip selection */
63 #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
64 
65 /* FPGA status register for checking device ready (bit zero) */
66 #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
67 #define RTC_FROM4_DEVICE_READY 0x0001
68 
69 /* FPGA Reed-Solomon ECC Control register */
70 
71 #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
72 #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
73 #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
74 #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
75 
76 /* FPGA Reed-Solomon ECC code base */
77 #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
78 #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
79 
80 /* FPGA Reed-Solomon ECC check register */
81 #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
82 #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
83 
84 #define ERR_STAT_ECC_AVAILABLE 0x20
85 
86 /* Undefine for software ECC */
87 #define RTC_FROM4_HWECC 1
88 
89 /* Define as 1 for no virtual erase blocks (in JFFS2) */
90 #define RTC_FROM4_NO_VIRTBLOCKS 0
91 
92 /*
93  * Module stuff
94  */
95 static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
96 
97 static const struct mtd_partition partition_info[] = {
98  {
99  .name = "Renesas flash partition 1",
100  .offset = 0,
101  .size = MTDPART_SIZ_FULL},
102 };
103 
104 #define NUM_PARTITIONS 1
105 
106 /*
107  * hardware specific flash bbt decriptors
108  * Note: this is to allow debugging by disabling
109  * NAND_BBT_CREATE and/or NAND_BBT_WRITE
110  *
111  */
112 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
113 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
114 
115 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
118  .offs = 40,
119  .len = 4,
120  .veroffs = 44,
121  .maxblocks = 4,
122  .pattern = bbt_pattern
123 };
124 
125 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
128  .offs = 40,
129  .len = 4,
130  .veroffs = 44,
131  .maxblocks = 4,
132  .pattern = mirror_pattern
133 };
134 
135 #ifdef RTC_FROM4_HWECC
136 
137 /* the Reed Solomon control structure */
138 static struct rs_control *rs_decoder;
139 
140 /*
141  * hardware specific Out Of Band information
142  */
143 static struct nand_ecclayout rtc_from4_nand_oobinfo = {
144  .eccbytes = 32,
145  .eccpos = {
146  0, 1, 2, 3, 4, 5, 6, 7,
147  8, 9, 10, 11, 12, 13, 14, 15,
148  16, 17, 18, 19, 20, 21, 22, 23,
149  24, 25, 26, 27, 28, 29, 30, 31},
150  .oobfree = {{32, 32}}
151 };
152 
153 #endif
154 
155 /*
156  * rtc_from4_hwcontrol - hardware specific access to control-lines
157  * @mtd: MTD device structure
158  * @cmd: hardware control command
159  *
160  * Address lines (A5 and A4) are used to control Command and Address Latch
161  * Enable on this board, so set the read/write address appropriately.
162  *
163  * Chip Enable is also controlled by the Chip Select (CS5) and
164  * Address lines (A24-A22), so no action is required here.
165  *
166  */
167 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
168  unsigned int ctrl)
169 {
170  struct nand_chip *chip = (mtd->priv);
171 
172  if (cmd == NAND_CMD_NONE)
173  return;
174 
175  if (ctrl & NAND_CLE)
176  writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
177  else
178  writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
179 }
180 
181 /*
182  * rtc_from4_nand_select_chip - hardware specific chip select
183  * @mtd: MTD device structure
184  * @chip: Chip to select (0 == slot 3, 1 == slot 4)
185  *
186  * The chip select is based on address lines A24-A22.
187  * This driver uses flash slots 3 and 4 (A23-A22).
188  *
189  */
190 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
191 {
192  struct nand_chip *this = mtd->priv;
193 
194  this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
195  this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
196 
197  switch (chip) {
198 
199  case 0: /* select slot 3 chip */
200  this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
201  this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
202  break;
203  case 1: /* select slot 4 chip */
204  this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
205  this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
206  break;
207 
208  }
209 }
210 
211 /*
212  * rtc_from4_nand_device_ready - hardware specific ready/busy check
213  * @mtd: MTD device structure
214  *
215  * This board provides the Ready/Busy state in the status register
216  * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
217  *
218  */
219 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
220 {
221  unsigned short status;
222 
223  status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
224 
225  return (status & RTC_FROM4_DEVICE_READY);
226 
227 }
228 
229 /*
230  * deplete - code to perform device recovery in case there was a power loss
231  * @mtd: MTD device structure
232  * @chip: Chip to select (0 == slot 3, 1 == slot 4)
233  *
234  * If there was a sudden loss of power during an erase operation, a
235  * "device recovery" operation must be performed when power is restored
236  * to ensure correct operation. This routine performs the required steps
237  * for the requested chip.
238  *
239  * See page 86 of the data sheet for details.
240  *
241  */
242 static void deplete(struct mtd_info *mtd, int chip)
243 {
244  struct nand_chip *this = mtd->priv;
245 
246  /* wait until device is ready */
247  while (!this->dev_ready(mtd)) ;
248 
249  this->select_chip(mtd, chip);
250 
251  /* Send the commands for device recovery, phase 1 */
252  this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
253  this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
254 
255  /* Send the commands for device recovery, phase 2 */
256  this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
257  this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
258 
259 }
260 
261 #ifdef RTC_FROM4_HWECC
262 /*
263  * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
264  * @mtd: MTD device structure
265  * @mode: I/O mode; read or write
266  *
267  * enable hardware ECC for data read or write
268  *
269  */
270 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
271 {
272  volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
273  unsigned short status;
274 
275  switch (mode) {
276  case NAND_ECC_READ:
278 
279  *rs_ecc_ctl = status;
280  break;
281 
282  case NAND_ECC_READSYN:
283  status = 0x00;
284 
285  *rs_ecc_ctl = status;
286  break;
287 
288  case NAND_ECC_WRITE:
290 
291  *rs_ecc_ctl = status;
292  break;
293 
294  default:
295  BUG();
296  break;
297  }
298 
299 }
300 
301 /*
302  * rtc_from4_calculate_ecc - hardware specific code to read ECC code
303  * @mtd: MTD device structure
304  * @dat: buffer containing the data to generate ECC codes
305  * @ecc_code ECC codes calculated
306  *
307  * The ECC code is calculated by the FPGA. All we have to do is read the values
308  * from the FPGA registers.
309  *
310  * Note: We read from the inverted registers, since data is inverted before
311  * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
312  *
313  */
314 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
315 {
316  volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
317  unsigned short value;
318  int i;
319 
320  for (i = 0; i < 8; i++) {
321  value = *rs_eccn;
322  ecc_code[i] = (unsigned char)value;
323  rs_eccn++;
324  }
325  ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
326 }
327 
328 /*
329  * rtc_from4_correct_data - hardware specific code to correct data using ECC code
330  * @mtd: MTD device structure
331  * @buf: buffer containing the data to generate ECC codes
332  * @ecc1 ECC codes read
333  * @ecc2 ECC codes calculated
334  *
335  * The FPGA tells us fast, if there's an error or not. If no, we go back happy
336  * else we read the ecc results from the fpga and call the rs library to decode
337  * and hopefully correct the error.
338  *
339  */
340 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
341 {
342  int i, j, res;
343  unsigned short status;
344  uint16_t par[6], syn[6];
345  uint8_t ecc[8];
346  volatile unsigned short *rs_ecc;
347 
348  status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
349 
350  if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
351  return 0;
352  }
353 
354  /* Read the syndrome pattern from the FPGA and correct the bitorder */
355  rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
356  for (i = 0; i < 8; i++) {
357  ecc[i] = bitrev8(*rs_ecc);
358  rs_ecc++;
359  }
360 
361  /* convert into 6 10bit syndrome fields */
362  par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
363  par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
364  par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
365  par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
366  par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
367  par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
368 
369  /* Convert to computable syndrome */
370  for (i = 0; i < 6; i++) {
371  syn[i] = par[0];
372  for (j = 1; j < 6; j++)
373  if (par[j] != rs_decoder->nn)
374  syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
375 
376  /* Convert to index form */
377  syn[i] = rs_decoder->index_of[syn[i]];
378  }
379 
380  /* Let the library code do its magic. */
381  res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
382  if (res > 0) {
383  pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
384  }
385  return res;
386 }
387 
403 static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
404  int state, int status, int page)
405 {
406  int er_stat = 0;
407  int rtn, retlen;
408  size_t len;
409  uint8_t *buf;
410  int i;
411 
412  this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
413 
414  if (state == FL_ERASING) {
415 
416  for (i = 0; i < 4; i++) {
417  if (!(status & 1 << (i + 1)))
418  continue;
419  this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
420  -1, -1);
421  rtn = this->read_byte(mtd);
422  this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
423 
424  /* err_ecc_not_avail */
425  if (!(rtn & ERR_STAT_ECC_AVAILABLE))
426  er_stat |= 1 << (i + 1);
427  }
428 
429  } else if (state == FL_WRITING) {
430 
431  unsigned long corrected = mtd->ecc_stats.corrected;
432 
433  /* single bank write logic */
434  this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
435  rtn = this->read_byte(mtd);
436  this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
437 
438  if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
439  /* err_ecc_not_avail */
440  er_stat |= 1 << 1;
441  goto out;
442  }
443 
444  len = mtd->writesize;
445  buf = kmalloc(len, GFP_KERNEL);
446  if (!buf) {
447  er_stat = 1;
448  goto out;
449  }
450 
451  /* recovery read */
452  rtn = nand_do_read(mtd, page, len, &retlen, buf);
453 
454  /* if read failed or > 1-bit error corrected */
455  if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
456  er_stat |= 1 << 1;
457  kfree(buf);
458  }
459 out:
460  rtn = status;
461  if (er_stat == 0) { /* if ECC is available */
462  rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
463  }
464 
465  return rtn;
466 }
467 #endif
468 
469 /*
470  * Main initialization routine
471  */
472 static int __init rtc_from4_init(void)
473 {
474  struct nand_chip *this;
475  unsigned short bcr1, bcr2, wcr2;
476  int i;
477  int ret;
478 
479  /* Allocate memory for MTD device structure and private data */
480  rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
481  if (!rtc_from4_mtd) {
482  printk("Unable to allocate Renesas NAND MTD device structure.\n");
483  return -ENOMEM;
484  }
485 
486  /* Get pointer to private data */
487  this = (struct nand_chip *)(&rtc_from4_mtd[1]);
488 
489  /* Initialize structures */
490  memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
491  memset(this, 0, sizeof(struct nand_chip));
492 
493  /* Link the private data with the MTD structure */
494  rtc_from4_mtd->priv = this;
495  rtc_from4_mtd->owner = THIS_MODULE;
496 
497  /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
498  bcr1 = *SH77X9_BCR1 & ~0x0002;
499  bcr1 |= 0x0002;
500  *SH77X9_BCR1 = bcr1;
501 
502  /* set */
503  bcr2 = *SH77X9_BCR2 & ~0x0c00;
504  bcr2 |= 0x0800;
505  *SH77X9_BCR2 = bcr2;
506 
507  /* set area 5 wait states */
508  wcr2 = *SH77X9_WCR2 & ~0x1c00;
509  wcr2 |= 0x1c00;
510  *SH77X9_WCR2 = wcr2;
511 
512  /* Set address of NAND IO lines */
513  this->IO_ADDR_R = rtc_from4_fio_base;
514  this->IO_ADDR_W = rtc_from4_fio_base;
515  /* Set address of hardware control function */
516  this->cmd_ctrl = rtc_from4_hwcontrol;
517  /* Set address of chip select function */
518  this->select_chip = rtc_from4_nand_select_chip;
519  /* command delay time (in us) */
520  this->chip_delay = 100;
521  /* return the status of the Ready/Busy line */
522  this->dev_ready = rtc_from4_nand_device_ready;
523 
524 #ifdef RTC_FROM4_HWECC
525  printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
526 
527  this->ecc.mode = NAND_ECC_HW_SYNDROME;
528  this->ecc.size = 512;
529  this->ecc.bytes = 8;
530  this->ecc.strength = 3;
531  /* return the status of extra status and ECC checks */
532  this->errstat = rtc_from4_errstat;
533  /* set the nand_oobinfo to support FPGA H/W error detection */
534  this->ecc.layout = &rtc_from4_nand_oobinfo;
535  this->ecc.hwctl = rtc_from4_enable_hwecc;
536  this->ecc.calculate = rtc_from4_calculate_ecc;
537  this->ecc.correct = rtc_from4_correct_data;
538 
539  /* We could create the decoder on demand, if memory is a concern.
540  * This way we have it handy, if an error happens
541  *
542  * Symbolsize is 10 (bits)
543  * Primitve polynomial is x^10+x^3+1
544  * first consecutive root is 0
545  * primitve element to generate roots = 1
546  * generator polinomial degree = 6
547  */
548  rs_decoder = init_rs(10, 0x409, 0, 1, 6);
549  if (!rs_decoder) {
550  printk(KERN_ERR "Could not create a RS decoder\n");
551  ret = -ENOMEM;
552  goto err_1;
553  }
554 #else
555  printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
556 
557  this->ecc.mode = NAND_ECC_SOFT;
558 #endif
559 
560  /* set the bad block tables to support debugging */
561  this->bbt_td = &rtc_from4_bbt_main_descr;
562  this->bbt_md = &rtc_from4_bbt_mirror_descr;
563 
564  /* Scan to find existence of the device */
565  if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
566  ret = -ENXIO;
567  goto err_2;
568  }
569 
570  /* Perform 'device recovery' for each chip in case there was a power loss. */
571  for (i = 0; i < this->numchips; i++) {
572  deplete(rtc_from4_mtd, i);
573  }
574 
575 #if RTC_FROM4_NO_VIRTBLOCKS
576  /* use a smaller erase block to minimize wasted space when a block is bad */
577  /* note: this uses eight times as much RAM as using the default and makes */
578  /* mounts take four times as long. */
579  rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
580 #endif
581 
582  /* Register the partitions */
583  ret = mtd_device_register(rtc_from4_mtd, partition_info,
585  if (ret)
586  goto err_3;
587 
588  /* Return happy */
589  return 0;
590 err_3:
591  nand_release(rtc_from4_mtd);
592 err_2:
593  free_rs(rs_decoder);
594 err_1:
595  kfree(rtc_from4_mtd);
596  return ret;
597 }
598 
599 module_init(rtc_from4_init);
600 
601 /*
602  * Clean up routine
603  */
604 static void __exit rtc_from4_cleanup(void)
605 {
606  /* Release resource, unregister partitions */
607  nand_release(rtc_from4_mtd);
608 
609  /* Free the MTD device structure */
610  kfree(rtc_from4_mtd);
611 
612 #ifdef RTC_FROM4_HWECC
613  /* Free the reed solomon resources */
614  if (rs_decoder) {
615  free_rs(rs_decoder);
616  }
617 #endif
618 }
619 
620 module_exit(rtc_from4_cleanup);
621 
622 MODULE_LICENSE("GPL");
623 MODULE_AUTHOR("d.marlin <[email protected]");
624 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");