Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtmutex.c
Go to the documentation of this file.
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <[email protected]>
7  * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <[email protected]>
8  * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  * Copyright (C) 2006 Esben Nielsen
10  *
11  * See Documentation/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/timer.h>
17 
18 #include "rtmutex_common.h"
19 
20 /*
21  * lock->owner state tracking:
22  *
23  * lock->owner holds the task_struct pointer of the owner. Bit 0
24  * is used to keep track of the "lock has waiters" state.
25  *
26  * owner bit0
27  * NULL 0 lock is free (fast acquire possible)
28  * NULL 1 lock is free and has waiters and the top waiter
29  * is going to take the lock*
30  * taskpointer 0 lock is held (fast release possible)
31  * taskpointer 1 lock is held and has waiters**
32  *
33  * The fast atomic compare exchange based acquire and release is only
34  * possible when bit 0 of lock->owner is 0.
35  *
36  * (*) It also can be a transitional state when grabbing the lock
37  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
38  * we need to set the bit0 before looking at the lock, and the owner may be
39  * NULL in this small time, hence this can be a transitional state.
40  *
41  * (**) There is a small time when bit 0 is set but there are no
42  * waiters. This can happen when grabbing the lock in the slow path.
43  * To prevent a cmpxchg of the owner releasing the lock, we need to
44  * set this bit before looking at the lock.
45  */
46 
47 static void
48 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
49 {
50  unsigned long val = (unsigned long)owner;
51 
52  if (rt_mutex_has_waiters(lock))
53  val |= RT_MUTEX_HAS_WAITERS;
54 
55  lock->owner = (struct task_struct *)val;
56 }
57 
58 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
59 {
60  lock->owner = (struct task_struct *)
61  ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
62 }
63 
64 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
65 {
66  if (!rt_mutex_has_waiters(lock))
67  clear_rt_mutex_waiters(lock);
68 }
69 
70 /*
71  * We can speed up the acquire/release, if the architecture
72  * supports cmpxchg and if there's no debugging state to be set up
73  */
74 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
75 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
76 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
77 {
78  unsigned long owner, *p = (unsigned long *) &lock->owner;
79 
80  do {
81  owner = *p;
82  } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
83 }
84 #else
85 # define rt_mutex_cmpxchg(l,c,n) (0)
86 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
87 {
88  lock->owner = (struct task_struct *)
89  ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
90 }
91 #endif
92 
93 /*
94  * Calculate task priority from the waiter list priority
95  *
96  * Return task->normal_prio when the waiter list is empty or when
97  * the waiter is not allowed to do priority boosting
98  */
100 {
101  if (likely(!task_has_pi_waiters(task)))
102  return task->normal_prio;
103 
104  return min(task_top_pi_waiter(task)->pi_list_entry.prio,
105  task->normal_prio);
106 }
107 
108 /*
109  * Adjust the priority of a task, after its pi_waiters got modified.
110  *
111  * This can be both boosting and unboosting. task->pi_lock must be held.
112  */
113 static void __rt_mutex_adjust_prio(struct task_struct *task)
114 {
115  int prio = rt_mutex_getprio(task);
116 
117  if (task->prio != prio)
118  rt_mutex_setprio(task, prio);
119 }
120 
121 /*
122  * Adjust task priority (undo boosting). Called from the exit path of
123  * rt_mutex_slowunlock() and rt_mutex_slowlock().
124  *
125  * (Note: We do this outside of the protection of lock->wait_lock to
126  * allow the lock to be taken while or before we readjust the priority
127  * of task. We do not use the spin_xx_mutex() variants here as we are
128  * outside of the debug path.)
129  */
130 static void rt_mutex_adjust_prio(struct task_struct *task)
131 {
132  unsigned long flags;
133 
134  raw_spin_lock_irqsave(&task->pi_lock, flags);
135  __rt_mutex_adjust_prio(task);
136  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
137 }
138 
139 /*
140  * Max number of times we'll walk the boosting chain:
141  */
142 int max_lock_depth = 1024;
143 
144 /*
145  * Adjust the priority chain. Also used for deadlock detection.
146  * Decreases task's usage by one - may thus free the task.
147  * Returns 0 or -EDEADLK.
148  */
149 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
150  int deadlock_detect,
151  struct rt_mutex *orig_lock,
152  struct rt_mutex_waiter *orig_waiter,
153  struct task_struct *top_task)
154 {
155  struct rt_mutex *lock;
156  struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
157  int detect_deadlock, ret = 0, depth = 0;
158  unsigned long flags;
159 
160  detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
161  deadlock_detect);
162 
163  /*
164  * The (de)boosting is a step by step approach with a lot of
165  * pitfalls. We want this to be preemptible and we want hold a
166  * maximum of two locks per step. So we have to check
167  * carefully whether things change under us.
168  */
169  again:
170  if (++depth > max_lock_depth) {
171  static int prev_max;
172 
173  /*
174  * Print this only once. If the admin changes the limit,
175  * print a new message when reaching the limit again.
176  */
177  if (prev_max != max_lock_depth) {
178  prev_max = max_lock_depth;
179  printk(KERN_WARNING "Maximum lock depth %d reached "
180  "task: %s (%d)\n", max_lock_depth,
181  top_task->comm, task_pid_nr(top_task));
182  }
183  put_task_struct(task);
184 
185  return deadlock_detect ? -EDEADLK : 0;
186  }
187  retry:
188  /*
189  * Task can not go away as we did a get_task() before !
190  */
191  raw_spin_lock_irqsave(&task->pi_lock, flags);
192 
193  waiter = task->pi_blocked_on;
194  /*
195  * Check whether the end of the boosting chain has been
196  * reached or the state of the chain has changed while we
197  * dropped the locks.
198  */
199  if (!waiter)
200  goto out_unlock_pi;
201 
202  /*
203  * Check the orig_waiter state. After we dropped the locks,
204  * the previous owner of the lock might have released the lock.
205  */
206  if (orig_waiter && !rt_mutex_owner(orig_lock))
207  goto out_unlock_pi;
208 
209  /*
210  * Drop out, when the task has no waiters. Note,
211  * top_waiter can be NULL, when we are in the deboosting
212  * mode!
213  */
214  if (top_waiter && (!task_has_pi_waiters(task) ||
215  top_waiter != task_top_pi_waiter(task)))
216  goto out_unlock_pi;
217 
218  /*
219  * When deadlock detection is off then we check, if further
220  * priority adjustment is necessary.
221  */
222  if (!detect_deadlock && waiter->list_entry.prio == task->prio)
223  goto out_unlock_pi;
224 
225  lock = waiter->lock;
226  if (!raw_spin_trylock(&lock->wait_lock)) {
227  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
228  cpu_relax();
229  goto retry;
230  }
231 
232  /* Deadlock detection */
233  if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
234  debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
235  raw_spin_unlock(&lock->wait_lock);
236  ret = deadlock_detect ? -EDEADLK : 0;
237  goto out_unlock_pi;
238  }
239 
240  top_waiter = rt_mutex_top_waiter(lock);
241 
242  /* Requeue the waiter */
243  plist_del(&waiter->list_entry, &lock->wait_list);
244  waiter->list_entry.prio = task->prio;
245  plist_add(&waiter->list_entry, &lock->wait_list);
246 
247  /* Release the task */
248  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
249  if (!rt_mutex_owner(lock)) {
250  /*
251  * If the requeue above changed the top waiter, then we need
252  * to wake the new top waiter up to try to get the lock.
253  */
254 
255  if (top_waiter != rt_mutex_top_waiter(lock))
256  wake_up_process(rt_mutex_top_waiter(lock)->task);
257  raw_spin_unlock(&lock->wait_lock);
258  goto out_put_task;
259  }
260  put_task_struct(task);
261 
262  /* Grab the next task */
263  task = rt_mutex_owner(lock);
264  get_task_struct(task);
265  raw_spin_lock_irqsave(&task->pi_lock, flags);
266 
267  if (waiter == rt_mutex_top_waiter(lock)) {
268  /* Boost the owner */
269  plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
270  waiter->pi_list_entry.prio = waiter->list_entry.prio;
271  plist_add(&waiter->pi_list_entry, &task->pi_waiters);
272  __rt_mutex_adjust_prio(task);
273 
274  } else if (top_waiter == waiter) {
275  /* Deboost the owner */
276  plist_del(&waiter->pi_list_entry, &task->pi_waiters);
277  waiter = rt_mutex_top_waiter(lock);
278  waiter->pi_list_entry.prio = waiter->list_entry.prio;
279  plist_add(&waiter->pi_list_entry, &task->pi_waiters);
280  __rt_mutex_adjust_prio(task);
281  }
282 
283  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
284 
285  top_waiter = rt_mutex_top_waiter(lock);
286  raw_spin_unlock(&lock->wait_lock);
287 
288  if (!detect_deadlock && waiter != top_waiter)
289  goto out_put_task;
290 
291  goto again;
292 
293  out_unlock_pi:
294  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
295  out_put_task:
296  put_task_struct(task);
297 
298  return ret;
299 }
300 
301 /*
302  * Try to take an rt-mutex
303  *
304  * Must be called with lock->wait_lock held.
305  *
306  * @lock: the lock to be acquired.
307  * @task: the task which wants to acquire the lock
308  * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
309  */
310 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
311  struct rt_mutex_waiter *waiter)
312 {
313  /*
314  * We have to be careful here if the atomic speedups are
315  * enabled, such that, when
316  * - no other waiter is on the lock
317  * - the lock has been released since we did the cmpxchg
318  * the lock can be released or taken while we are doing the
319  * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
320  *
321  * The atomic acquire/release aware variant of
322  * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
323  * the WAITERS bit, the atomic release / acquire can not
324  * happen anymore and lock->wait_lock protects us from the
325  * non-atomic case.
326  *
327  * Note, that this might set lock->owner =
328  * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
329  * any more. This is fixed up when we take the ownership.
330  * This is the transitional state explained at the top of this file.
331  */
332  mark_rt_mutex_waiters(lock);
333 
334  if (rt_mutex_owner(lock))
335  return 0;
336 
337  /*
338  * It will get the lock because of one of these conditions:
339  * 1) there is no waiter
340  * 2) higher priority than waiters
341  * 3) it is top waiter
342  */
343  if (rt_mutex_has_waiters(lock)) {
344  if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
345  if (!waiter || waiter != rt_mutex_top_waiter(lock))
346  return 0;
347  }
348  }
349 
350  if (waiter || rt_mutex_has_waiters(lock)) {
351  unsigned long flags;
352  struct rt_mutex_waiter *top;
353 
354  raw_spin_lock_irqsave(&task->pi_lock, flags);
355 
356  /* remove the queued waiter. */
357  if (waiter) {
358  plist_del(&waiter->list_entry, &lock->wait_list);
359  task->pi_blocked_on = NULL;
360  }
361 
362  /*
363  * We have to enqueue the top waiter(if it exists) into
364  * task->pi_waiters list.
365  */
366  if (rt_mutex_has_waiters(lock)) {
367  top = rt_mutex_top_waiter(lock);
368  top->pi_list_entry.prio = top->list_entry.prio;
369  plist_add(&top->pi_list_entry, &task->pi_waiters);
370  }
371  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
372  }
373 
374  /* We got the lock. */
375  debug_rt_mutex_lock(lock);
376 
377  rt_mutex_set_owner(lock, task);
378 
379  rt_mutex_deadlock_account_lock(lock, task);
380 
381  return 1;
382 }
383 
384 /*
385  * Task blocks on lock.
386  *
387  * Prepare waiter and propagate pi chain
388  *
389  * This must be called with lock->wait_lock held.
390  */
391 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
392  struct rt_mutex_waiter *waiter,
393  struct task_struct *task,
394  int detect_deadlock)
395 {
396  struct task_struct *owner = rt_mutex_owner(lock);
397  struct rt_mutex_waiter *top_waiter = waiter;
398  unsigned long flags;
399  int chain_walk = 0, res;
400 
401  raw_spin_lock_irqsave(&task->pi_lock, flags);
402  __rt_mutex_adjust_prio(task);
403  waiter->task = task;
404  waiter->lock = lock;
405  plist_node_init(&waiter->list_entry, task->prio);
406  plist_node_init(&waiter->pi_list_entry, task->prio);
407 
408  /* Get the top priority waiter on the lock */
409  if (rt_mutex_has_waiters(lock))
410  top_waiter = rt_mutex_top_waiter(lock);
411  plist_add(&waiter->list_entry, &lock->wait_list);
412 
413  task->pi_blocked_on = waiter;
414 
415  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
416 
417  if (!owner)
418  return 0;
419 
420  if (waiter == rt_mutex_top_waiter(lock)) {
421  raw_spin_lock_irqsave(&owner->pi_lock, flags);
422  plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
423  plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
424 
425  __rt_mutex_adjust_prio(owner);
426  if (owner->pi_blocked_on)
427  chain_walk = 1;
428  raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
429  }
430  else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
431  chain_walk = 1;
432 
433  if (!chain_walk)
434  return 0;
435 
436  /*
437  * The owner can't disappear while holding a lock,
438  * so the owner struct is protected by wait_lock.
439  * Gets dropped in rt_mutex_adjust_prio_chain()!
440  */
441  get_task_struct(owner);
442 
443  raw_spin_unlock(&lock->wait_lock);
444 
445  res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
446  task);
447 
448  raw_spin_lock(&lock->wait_lock);
449 
450  return res;
451 }
452 
453 /*
454  * Wake up the next waiter on the lock.
455  *
456  * Remove the top waiter from the current tasks waiter list and wake it up.
457  *
458  * Called with lock->wait_lock held.
459  */
460 static void wakeup_next_waiter(struct rt_mutex *lock)
461 {
462  struct rt_mutex_waiter *waiter;
463  unsigned long flags;
464 
465  raw_spin_lock_irqsave(&current->pi_lock, flags);
466 
467  waiter = rt_mutex_top_waiter(lock);
468 
469  /*
470  * Remove it from current->pi_waiters. We do not adjust a
471  * possible priority boost right now. We execute wakeup in the
472  * boosted mode and go back to normal after releasing
473  * lock->wait_lock.
474  */
475  plist_del(&waiter->pi_list_entry, &current->pi_waiters);
476 
477  rt_mutex_set_owner(lock, NULL);
478 
479  raw_spin_unlock_irqrestore(&current->pi_lock, flags);
480 
481  wake_up_process(waiter->task);
482 }
483 
484 /*
485  * Remove a waiter from a lock and give up
486  *
487  * Must be called with lock->wait_lock held and
488  * have just failed to try_to_take_rt_mutex().
489  */
490 static void remove_waiter(struct rt_mutex *lock,
491  struct rt_mutex_waiter *waiter)
492 {
493  int first = (waiter == rt_mutex_top_waiter(lock));
494  struct task_struct *owner = rt_mutex_owner(lock);
495  unsigned long flags;
496  int chain_walk = 0;
497 
498  raw_spin_lock_irqsave(&current->pi_lock, flags);
499  plist_del(&waiter->list_entry, &lock->wait_list);
500  current->pi_blocked_on = NULL;
501  raw_spin_unlock_irqrestore(&current->pi_lock, flags);
502 
503  if (!owner)
504  return;
505 
506  if (first) {
507 
508  raw_spin_lock_irqsave(&owner->pi_lock, flags);
509 
510  plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
511 
512  if (rt_mutex_has_waiters(lock)) {
513  struct rt_mutex_waiter *next;
514 
515  next = rt_mutex_top_waiter(lock);
516  plist_add(&next->pi_list_entry, &owner->pi_waiters);
517  }
518  __rt_mutex_adjust_prio(owner);
519 
520  if (owner->pi_blocked_on)
521  chain_walk = 1;
522 
523  raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
524  }
525 
526  WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
527 
528  if (!chain_walk)
529  return;
530 
531  /* gets dropped in rt_mutex_adjust_prio_chain()! */
532  get_task_struct(owner);
533 
534  raw_spin_unlock(&lock->wait_lock);
535 
536  rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
537 
538  raw_spin_lock(&lock->wait_lock);
539 }
540 
541 /*
542  * Recheck the pi chain, in case we got a priority setting
543  *
544  * Called from sched_setscheduler
545  */
546 void rt_mutex_adjust_pi(struct task_struct *task)
547 {
548  struct rt_mutex_waiter *waiter;
549  unsigned long flags;
550 
551  raw_spin_lock_irqsave(&task->pi_lock, flags);
552 
553  waiter = task->pi_blocked_on;
554  if (!waiter || waiter->list_entry.prio == task->prio) {
555  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
556  return;
557  }
558 
559  raw_spin_unlock_irqrestore(&task->pi_lock, flags);
560 
561  /* gets dropped in rt_mutex_adjust_prio_chain()! */
562  get_task_struct(task);
563  rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
564 }
565 
576 static int __sched
577 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
578  struct hrtimer_sleeper *timeout,
579  struct rt_mutex_waiter *waiter)
580 {
581  int ret = 0;
582 
583  for (;;) {
584  /* Try to acquire the lock: */
585  if (try_to_take_rt_mutex(lock, current, waiter))
586  break;
587 
588  /*
589  * TASK_INTERRUPTIBLE checks for signals and
590  * timeout. Ignored otherwise.
591  */
592  if (unlikely(state == TASK_INTERRUPTIBLE)) {
593  /* Signal pending? */
594  if (signal_pending(current))
595  ret = -EINTR;
596  if (timeout && !timeout->task)
597  ret = -ETIMEDOUT;
598  if (ret)
599  break;
600  }
601 
602  raw_spin_unlock(&lock->wait_lock);
603 
605 
606  schedule_rt_mutex(lock);
607 
608  raw_spin_lock(&lock->wait_lock);
609  set_current_state(state);
610  }
611 
612  return ret;
613 }
614 
615 /*
616  * Slow path lock function:
617  */
618 static int __sched
619 rt_mutex_slowlock(struct rt_mutex *lock, int state,
620  struct hrtimer_sleeper *timeout,
621  int detect_deadlock)
622 {
623  struct rt_mutex_waiter waiter;
624  int ret = 0;
625 
627 
628  raw_spin_lock(&lock->wait_lock);
629 
630  /* Try to acquire the lock again: */
631  if (try_to_take_rt_mutex(lock, current, NULL)) {
632  raw_spin_unlock(&lock->wait_lock);
633  return 0;
634  }
635 
636  set_current_state(state);
637 
638  /* Setup the timer, when timeout != NULL */
639  if (unlikely(timeout)) {
640  hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
641  if (!hrtimer_active(&timeout->timer))
642  timeout->task = NULL;
643  }
644 
645  ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
646 
647  if (likely(!ret))
648  ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
649 
651 
652  if (unlikely(ret))
653  remove_waiter(lock, &waiter);
654 
655  /*
656  * try_to_take_rt_mutex() sets the waiter bit
657  * unconditionally. We might have to fix that up.
658  */
659  fixup_rt_mutex_waiters(lock);
660 
661  raw_spin_unlock(&lock->wait_lock);
662 
663  /* Remove pending timer: */
664  if (unlikely(timeout))
665  hrtimer_cancel(&timeout->timer);
666 
668 
669  return ret;
670 }
671 
672 /*
673  * Slow path try-lock function:
674  */
675 static inline int
676 rt_mutex_slowtrylock(struct rt_mutex *lock)
677 {
678  int ret = 0;
679 
680  raw_spin_lock(&lock->wait_lock);
681 
682  if (likely(rt_mutex_owner(lock) != current)) {
683 
684  ret = try_to_take_rt_mutex(lock, current, NULL);
685  /*
686  * try_to_take_rt_mutex() sets the lock waiters
687  * bit unconditionally. Clean this up.
688  */
689  fixup_rt_mutex_waiters(lock);
690  }
691 
692  raw_spin_unlock(&lock->wait_lock);
693 
694  return ret;
695 }
696 
697 /*
698  * Slow path to release a rt-mutex:
699  */
700 static void __sched
701 rt_mutex_slowunlock(struct rt_mutex *lock)
702 {
703  raw_spin_lock(&lock->wait_lock);
704 
705  debug_rt_mutex_unlock(lock);
706 
708 
709  if (!rt_mutex_has_waiters(lock)) {
710  lock->owner = NULL;
711  raw_spin_unlock(&lock->wait_lock);
712  return;
713  }
714 
715  wakeup_next_waiter(lock);
716 
717  raw_spin_unlock(&lock->wait_lock);
718 
719  /* Undo pi boosting if necessary: */
720  rt_mutex_adjust_prio(current);
721 }
722 
723 /*
724  * debug aware fast / slowpath lock,trylock,unlock
725  *
726  * The atomic acquire/release ops are compiled away, when either the
727  * architecture does not support cmpxchg or when debugging is enabled.
728  */
729 static inline int
730 rt_mutex_fastlock(struct rt_mutex *lock, int state,
731  int detect_deadlock,
732  int (*slowfn)(struct rt_mutex *lock, int state,
733  struct hrtimer_sleeper *timeout,
734  int detect_deadlock))
735 {
736  if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
738  return 0;
739  } else
740  return slowfn(lock, state, NULL, detect_deadlock);
741 }
742 
743 static inline int
744 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
745  struct hrtimer_sleeper *timeout, int detect_deadlock,
746  int (*slowfn)(struct rt_mutex *lock, int state,
747  struct hrtimer_sleeper *timeout,
748  int detect_deadlock))
749 {
750  if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
752  return 0;
753  } else
754  return slowfn(lock, state, timeout, detect_deadlock);
755 }
756 
757 static inline int
758 rt_mutex_fasttrylock(struct rt_mutex *lock,
759  int (*slowfn)(struct rt_mutex *lock))
760 {
761  if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
763  return 1;
764  }
765  return slowfn(lock);
766 }
767 
768 static inline void
769 rt_mutex_fastunlock(struct rt_mutex *lock,
770  void (*slowfn)(struct rt_mutex *lock))
771 {
772  if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
774  else
775  slowfn(lock);
776 }
777 
783 void __sched rt_mutex_lock(struct rt_mutex *lock)
784 {
785  might_sleep();
786 
787  rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
788 }
790 
803  int detect_deadlock)
804 {
805  might_sleep();
806 
807  return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
808  detect_deadlock, rt_mutex_slowlock);
809 }
811 
827 int
828 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
829  int detect_deadlock)
830 {
831  might_sleep();
832 
833  return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
834  detect_deadlock, rt_mutex_slowlock);
835 }
837 
846 {
847  return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
848 }
850 
856 void __sched rt_mutex_unlock(struct rt_mutex *lock)
857 {
858  rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
859 }
861 
870 void rt_mutex_destroy(struct rt_mutex *lock)
871 {
872  WARN_ON(rt_mutex_is_locked(lock));
873 #ifdef CONFIG_DEBUG_RT_MUTEXES
874  lock->magic = NULL;
875 #endif
876 }
877 
879 
889 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
890 {
891  lock->owner = NULL;
893  plist_head_init(&lock->wait_list);
894 
895  debug_rt_mutex_init(lock, name);
896 }
898 
910  struct task_struct *proxy_owner)
911 {
912  __rt_mutex_init(lock, NULL);
913  debug_rt_mutex_proxy_lock(lock, proxy_owner);
914  rt_mutex_set_owner(lock, proxy_owner);
915  rt_mutex_deadlock_account_lock(lock, proxy_owner);
916 }
917 
926 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
927  struct task_struct *proxy_owner)
928 {
930  rt_mutex_set_owner(lock, NULL);
932 }
933 
949  struct rt_mutex_waiter *waiter,
950  struct task_struct *task, int detect_deadlock)
951 {
952  int ret;
953 
954  raw_spin_lock(&lock->wait_lock);
955 
956  if (try_to_take_rt_mutex(lock, task, NULL)) {
957  raw_spin_unlock(&lock->wait_lock);
958  return 1;
959  }
960 
961  ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
962 
963  if (ret && !rt_mutex_owner(lock)) {
964  /*
965  * Reset the return value. We might have
966  * returned with -EDEADLK and the owner
967  * released the lock while we were walking the
968  * pi chain. Let the waiter sort it out.
969  */
970  ret = 0;
971  }
972 
973  if (unlikely(ret))
974  remove_waiter(lock, waiter);
975 
976  raw_spin_unlock(&lock->wait_lock);
977 
979 
980  return ret;
981 }
982 
996 {
997  if (!rt_mutex_has_waiters(lock))
998  return NULL;
999 
1000  return rt_mutex_top_waiter(lock)->task;
1001 }
1002 
1020  struct hrtimer_sleeper *to,
1021  struct rt_mutex_waiter *waiter,
1022  int detect_deadlock)
1023 {
1024  int ret;
1025 
1026  raw_spin_lock(&lock->wait_lock);
1027 
1029 
1030  ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1031 
1033 
1034  if (unlikely(ret))
1035  remove_waiter(lock, waiter);
1036 
1037  /*
1038  * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1039  * have to fix that up.
1040  */
1041  fixup_rt_mutex_waiters(lock);
1042 
1043  raw_spin_unlock(&lock->wait_lock);
1044 
1045  return ret;
1046 }