Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
keyboard.c
Go to the documentation of this file.
1 /*
2  * ebcdic keycode functions for s390 console drivers
3  *
4  * S390 version
5  * Copyright IBM Corp. 2003
6  * Author(s): Martin Schwidefsky ([email protected]),
7  */
8 
9 #include <linux/module.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/sysrq.h>
13 
14 #include <linux/consolemap.h>
15 #include <linux/kbd_kern.h>
16 #include <linux/kbd_diacr.h>
17 #include <asm/uaccess.h>
18 
19 #include "keyboard.h"
20 
21 /*
22  * Handler Tables.
23  */
24 #define K_HANDLERS\
25  k_self, k_fn, k_spec, k_ignore,\
26  k_dead, k_ignore, k_ignore, k_ignore,\
27  k_ignore, k_ignore, k_ignore, k_ignore,\
28  k_ignore, k_ignore, k_ignore, k_ignore
29 
30 typedef void (k_handler_fn)(struct kbd_data *, unsigned char);
32 static k_handler_fn *k_handler[16] = { K_HANDLERS };
33 
34 /* maximum values each key_handler can handle */
35 static const int kbd_max_vals[] = {
36  255, ARRAY_SIZE(func_table) - 1, NR_FN_HANDLER - 1, 0,
37  NR_DEAD - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
38 };
39 static const int KBD_NR_TYPES = ARRAY_SIZE(kbd_max_vals);
40 
41 static unsigned char ret_diacr[NR_DEAD] = {
42  '`', '\'', '^', '~', '"', ','
43 };
44 
45 /*
46  * Alloc/free of kbd_data structures.
47  */
48 struct kbd_data *
49 kbd_alloc(void) {
50  struct kbd_data *kbd;
51  int i;
52 
53  kbd = kzalloc(sizeof(struct kbd_data), GFP_KERNEL);
54  if (!kbd)
55  goto out;
56  kbd->key_maps = kzalloc(sizeof(key_maps), GFP_KERNEL);
57  if (!kbd->key_maps)
58  goto out_kbd;
59  for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
60  if (key_maps[i]) {
61  kbd->key_maps[i] = kmemdup(key_maps[i],
62  sizeof(u_short) * NR_KEYS,
63  GFP_KERNEL);
64  if (!kbd->key_maps[i])
65  goto out_maps;
66  }
67  }
68  kbd->func_table = kzalloc(sizeof(func_table), GFP_KERNEL);
69  if (!kbd->func_table)
70  goto out_maps;
71  for (i = 0; i < ARRAY_SIZE(func_table); i++) {
72  if (func_table[i]) {
73  kbd->func_table[i] = kstrdup(func_table[i],
74  GFP_KERNEL);
75  if (!kbd->func_table[i])
76  goto out_func;
77  }
78  }
79  kbd->fn_handler =
80  kzalloc(sizeof(fn_handler_fn *) * NR_FN_HANDLER, GFP_KERNEL);
81  if (!kbd->fn_handler)
82  goto out_func;
84  sizeof(struct kbdiacruc) * MAX_DIACR,
85  GFP_KERNEL);
86  if (!kbd->accent_table)
87  goto out_fn_handler;
89  return kbd;
90 
91 out_fn_handler:
92  kfree(kbd->fn_handler);
93 out_func:
94  for (i = 0; i < ARRAY_SIZE(func_table); i++)
95  kfree(kbd->func_table[i]);
96  kfree(kbd->func_table);
97 out_maps:
98  for (i = 0; i < ARRAY_SIZE(key_maps); i++)
99  kfree(kbd->key_maps[i]);
100  kfree(kbd->key_maps);
101 out_kbd:
102  kfree(kbd);
103 out:
104  return NULL;
105 }
106 
107 void
108 kbd_free(struct kbd_data *kbd)
109 {
110  int i;
111 
112  kfree(kbd->accent_table);
113  kfree(kbd->fn_handler);
114  for (i = 0; i < ARRAY_SIZE(func_table); i++)
115  kfree(kbd->func_table[i]);
116  kfree(kbd->func_table);
117  for (i = 0; i < ARRAY_SIZE(key_maps); i++)
118  kfree(kbd->key_maps[i]);
119  kfree(kbd->key_maps);
120  kfree(kbd);
121 }
122 
123 /*
124  * Generate ascii -> ebcdic translation table from kbd_data.
125  */
126 void
127 kbd_ascebc(struct kbd_data *kbd, unsigned char *ascebc)
128 {
129  unsigned short *keymap, keysym;
130  int i, j, k;
131 
132  memset(ascebc, 0x40, 256);
133  for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
134  keymap = kbd->key_maps[i];
135  if (!keymap)
136  continue;
137  for (j = 0; j < NR_KEYS; j++) {
138  k = ((i & 1) << 7) + j;
139  keysym = keymap[j];
140  if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
141  KTYP(keysym) == (KT_LETTER | 0xf0))
142  ascebc[KVAL(keysym)] = k;
143  else if (KTYP(keysym) == (KT_DEAD | 0xf0))
144  ascebc[ret_diacr[KVAL(keysym)]] = k;
145  }
146  }
147 }
148 
149 #if 0
150 /*
151  * Generate ebcdic -> ascii translation table from kbd_data.
152  */
153 void
154 kbd_ebcasc(struct kbd_data *kbd, unsigned char *ebcasc)
155 {
156  unsigned short *keymap, keysym;
157  int i, j, k;
158 
159  memset(ebcasc, ' ', 256);
160  for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
161  keymap = kbd->key_maps[i];
162  if (!keymap)
163  continue;
164  for (j = 0; j < NR_KEYS; j++) {
165  keysym = keymap[j];
166  k = ((i & 1) << 7) + j;
167  if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
168  KTYP(keysym) == (KT_LETTER | 0xf0))
169  ebcasc[k] = KVAL(keysym);
170  else if (KTYP(keysym) == (KT_DEAD | 0xf0))
171  ebcasc[k] = ret_diacr[KVAL(keysym)];
172  }
173  }
174 }
175 #endif
176 
177 /*
178  * We have a combining character DIACR here, followed by the character CH.
179  * If the combination occurs in the table, return the corresponding value.
180  * Otherwise, if CH is a space or equals DIACR, return DIACR.
181  * Otherwise, conclude that DIACR was not combining after all,
182  * queue it and return CH.
183  */
184 static unsigned int
185 handle_diacr(struct kbd_data *kbd, unsigned int ch)
186 {
187  int i, d;
188 
189  d = kbd->diacr;
190  kbd->diacr = 0;
191 
192  for (i = 0; i < kbd->accent_table_size; i++) {
193  if (kbd->accent_table[i].diacr == d &&
194  kbd->accent_table[i].base == ch)
195  return kbd->accent_table[i].result;
196  }
197 
198  if (ch == ' ' || ch == d)
199  return d;
200 
201  kbd_put_queue(kbd->port, d);
202  return ch;
203 }
204 
205 /*
206  * Handle dead key.
207  */
208 static void
209 k_dead(struct kbd_data *kbd, unsigned char value)
210 {
211  value = ret_diacr[value];
212  kbd->diacr = (kbd->diacr ? handle_diacr(kbd, value) : value);
213 }
214 
215 /*
216  * Normal character handler.
217  */
218 static void
219 k_self(struct kbd_data *kbd, unsigned char value)
220 {
221  if (kbd->diacr)
222  value = handle_diacr(kbd, value);
223  kbd_put_queue(kbd->port, value);
224 }
225 
226 /*
227  * Special key handlers
228  */
229 static void
230 k_ignore(struct kbd_data *kbd, unsigned char value)
231 {
232 }
233 
234 /*
235  * Function key handler.
236  */
237 static void
238 k_fn(struct kbd_data *kbd, unsigned char value)
239 {
240  if (kbd->func_table[value])
241  kbd_puts_queue(kbd->port, kbd->func_table[value]);
242 }
243 
244 static void
245 k_spec(struct kbd_data *kbd, unsigned char value)
246 {
247  if (value >= NR_FN_HANDLER)
248  return;
249  if (kbd->fn_handler[value])
250  kbd->fn_handler[value](kbd);
251 }
252 
253 /*
254  * Put utf8 character to tty flip buffer.
255  * UTF-8 is defined for words of up to 31 bits,
256  * but we need only 16 bits here
257  */
258 static void
259 to_utf8(struct tty_port *port, ushort c)
260 {
261  if (c < 0x80)
262  /* 0******* */
263  kbd_put_queue(port, c);
264  else if (c < 0x800) {
265  /* 110***** 10****** */
266  kbd_put_queue(port, 0xc0 | (c >> 6));
267  kbd_put_queue(port, 0x80 | (c & 0x3f));
268  } else {
269  /* 1110**** 10****** 10****** */
270  kbd_put_queue(port, 0xe0 | (c >> 12));
271  kbd_put_queue(port, 0x80 | ((c >> 6) & 0x3f));
272  kbd_put_queue(port, 0x80 | (c & 0x3f));
273  }
274 }
275 
276 /*
277  * Process keycode.
278  */
279 void
280 kbd_keycode(struct kbd_data *kbd, unsigned int keycode)
281 {
282  unsigned short keysym;
283  unsigned char type, value;
284 
285  if (!kbd)
286  return;
287 
288  if (keycode >= 384)
289  keysym = kbd->key_maps[5][keycode - 384];
290  else if (keycode >= 256)
291  keysym = kbd->key_maps[4][keycode - 256];
292  else if (keycode >= 128)
293  keysym = kbd->key_maps[1][keycode - 128];
294  else
295  keysym = kbd->key_maps[0][keycode];
296 
297  type = KTYP(keysym);
298  if (type >= 0xf0) {
299  type -= 0xf0;
300  if (type == KT_LETTER)
301  type = KT_LATIN;
302  value = KVAL(keysym);
303 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
304  if (kbd->sysrq) {
305  if (kbd->sysrq == K(KT_LATIN, '-')) {
306  kbd->sysrq = 0;
307  handle_sysrq(value);
308  return;
309  }
310  if (value == '-') {
311  kbd->sysrq = K(KT_LATIN, '-');
312  return;
313  }
314  /* Incomplete sysrq sequence. */
315  (*k_handler[KTYP(kbd->sysrq)])(kbd, KVAL(kbd->sysrq));
316  kbd->sysrq = 0;
317  } else if ((type == KT_LATIN && value == '^') ||
318  (type == KT_DEAD && ret_diacr[value] == '^')) {
319  kbd->sysrq = K(type, value);
320  return;
321  }
322 #endif
323  (*k_handler[type])(kbd, value);
324  } else
325  to_utf8(kbd->port, keysym);
326 }
327 
328 /*
329  * Ioctl stuff.
330  */
331 static int
332 do_kdsk_ioctl(struct kbd_data *kbd, struct kbentry __user *user_kbe,
333  int cmd, int perm)
334 {
335  struct kbentry tmp;
336  ushort *key_map, val, ov;
337 
338  if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
339  return -EFAULT;
340 #if NR_KEYS < 256
341  if (tmp.kb_index >= NR_KEYS)
342  return -EINVAL;
343 #endif
344 #if MAX_NR_KEYMAPS < 256
345  if (tmp.kb_table >= MAX_NR_KEYMAPS)
346  return -EINVAL;
347 #endif
348 
349  switch (cmd) {
350  case KDGKBENT:
351  key_map = kbd->key_maps[tmp.kb_table];
352  if (key_map) {
353  val = U(key_map[tmp.kb_index]);
354  if (KTYP(val) >= KBD_NR_TYPES)
355  val = K_HOLE;
356  } else
357  val = (tmp.kb_index ? K_HOLE : K_NOSUCHMAP);
358  return put_user(val, &user_kbe->kb_value);
359  case KDSKBENT:
360  if (!perm)
361  return -EPERM;
362  if (!tmp.kb_index && tmp.kb_value == K_NOSUCHMAP) {
363  /* disallocate map */
364  key_map = kbd->key_maps[tmp.kb_table];
365  if (key_map) {
366  kbd->key_maps[tmp.kb_table] = NULL;
367  kfree(key_map);
368  }
369  break;
370  }
371 
372  if (KTYP(tmp.kb_value) >= KBD_NR_TYPES)
373  return -EINVAL;
374  if (KVAL(tmp.kb_value) > kbd_max_vals[KTYP(tmp.kb_value)])
375  return -EINVAL;
376 
377  if (!(key_map = kbd->key_maps[tmp.kb_table])) {
378  int j;
379 
380  key_map = kmalloc(sizeof(plain_map),
381  GFP_KERNEL);
382  if (!key_map)
383  return -ENOMEM;
384  kbd->key_maps[tmp.kb_table] = key_map;
385  for (j = 0; j < NR_KEYS; j++)
386  key_map[j] = U(K_HOLE);
387  }
388  ov = U(key_map[tmp.kb_index]);
389  if (tmp.kb_value == ov)
390  break; /* nothing to do */
391  /*
392  * Attention Key.
393  */
394  if (((ov == K_SAK) || (tmp.kb_value == K_SAK)) &&
396  return -EPERM;
397  key_map[tmp.kb_index] = U(tmp.kb_value);
398  break;
399  }
400  return 0;
401 }
402 
403 static int
404 do_kdgkb_ioctl(struct kbd_data *kbd, struct kbsentry __user *u_kbs,
405  int cmd, int perm)
406 {
407  unsigned char kb_func;
408  char *p;
409  int len;
410 
411  /* Get u_kbs->kb_func. */
412  if (get_user(kb_func, &u_kbs->kb_func))
413  return -EFAULT;
414 #if MAX_NR_FUNC < 256
415  if (kb_func >= MAX_NR_FUNC)
416  return -EINVAL;
417 #endif
418 
419  switch (cmd) {
420  case KDGKBSENT:
421  p = kbd->func_table[kb_func];
422  if (p) {
423  len = strlen(p);
424  if (len >= sizeof(u_kbs->kb_string))
425  len = sizeof(u_kbs->kb_string) - 1;
426  if (copy_to_user(u_kbs->kb_string, p, len))
427  return -EFAULT;
428  } else
429  len = 0;
430  if (put_user('\0', u_kbs->kb_string + len))
431  return -EFAULT;
432  break;
433  case KDSKBSENT:
434  if (!perm)
435  return -EPERM;
436  len = strnlen_user(u_kbs->kb_string,
437  sizeof(u_kbs->kb_string) - 1);
438  if (!len)
439  return -EFAULT;
440  if (len > sizeof(u_kbs->kb_string) - 1)
441  return -EINVAL;
442  p = kmalloc(len + 1, GFP_KERNEL);
443  if (!p)
444  return -ENOMEM;
445  if (copy_from_user(p, u_kbs->kb_string, len)) {
446  kfree(p);
447  return -EFAULT;
448  }
449  p[len] = 0;
450  kfree(kbd->func_table[kb_func]);
451  kbd->func_table[kb_func] = p;
452  break;
453  }
454  return 0;
455 }
456 
457 int kbd_ioctl(struct kbd_data *kbd, unsigned int cmd, unsigned long arg)
458 {
459  struct tty_struct *tty;
460  void __user *argp;
461  unsigned int ct;
462  int perm;
463 
464  argp = (void __user *)arg;
465 
466  /*
467  * To have permissions to do most of the vt ioctls, we either have
468  * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
469  */
470  tty = tty_port_tty_get(kbd->port);
471  /* FIXME this test is pretty racy */
472  perm = current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG);
473  tty_kref_put(tty);
474  switch (cmd) {
475  case KDGKBTYPE:
476  return put_user(KB_101, (char __user *)argp);
477  case KDGKBENT:
478  case KDSKBENT:
479  return do_kdsk_ioctl(kbd, argp, cmd, perm);
480  case KDGKBSENT:
481  case KDSKBSENT:
482  return do_kdgkb_ioctl(kbd, argp, cmd, perm);
483  case KDGKBDIACR:
484  {
485  struct kbdiacrs __user *a = argp;
486  struct kbdiacr diacr;
487  int i;
488 
489  if (put_user(kbd->accent_table_size, &a->kb_cnt))
490  return -EFAULT;
491  for (i = 0; i < kbd->accent_table_size; i++) {
492  diacr.diacr = kbd->accent_table[i].diacr;
493  diacr.base = kbd->accent_table[i].base;
494  diacr.result = kbd->accent_table[i].result;
495  if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr)))
496  return -EFAULT;
497  }
498  return 0;
499  }
500  case KDGKBDIACRUC:
501  {
502  struct kbdiacrsuc __user *a = argp;
503 
504  ct = kbd->accent_table_size;
505  if (put_user(ct, &a->kb_cnt))
506  return -EFAULT;
507  if (copy_to_user(a->kbdiacruc, kbd->accent_table,
508  ct * sizeof(struct kbdiacruc)))
509  return -EFAULT;
510  return 0;
511  }
512  case KDSKBDIACR:
513  {
514  struct kbdiacrs __user *a = argp;
515  struct kbdiacr diacr;
516  int i;
517 
518  if (!perm)
519  return -EPERM;
520  if (get_user(ct, &a->kb_cnt))
521  return -EFAULT;
522  if (ct >= MAX_DIACR)
523  return -EINVAL;
524  kbd->accent_table_size = ct;
525  for (i = 0; i < ct; i++) {
526  if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr)))
527  return -EFAULT;
528  kbd->accent_table[i].diacr = diacr.diacr;
529  kbd->accent_table[i].base = diacr.base;
530  kbd->accent_table[i].result = diacr.result;
531  }
532  return 0;
533  }
534  case KDSKBDIACRUC:
535  {
536  struct kbdiacrsuc __user *a = argp;
537 
538  if (!perm)
539  return -EPERM;
540  if (get_user(ct, &a->kb_cnt))
541  return -EFAULT;
542  if (ct >= MAX_DIACR)
543  return -EINVAL;
544  kbd->accent_table_size = ct;
546  ct * sizeof(struct kbdiacruc)))
547  return -EFAULT;
548  return 0;
549  }
550  default:
551  return -ENOIOCTLCMD;
552  }
553 }
554