Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sch_qfq.c
Go to the documentation of this file.
1 /*
2  * net/sched/sch_qfq.c Quick Fair Queueing Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 as published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/bitops.h>
14 #include <linux/errno.h>
15 #include <linux/netdevice.h>
16 #include <linux/pkt_sched.h>
17 #include <net/sch_generic.h>
18 #include <net/pkt_sched.h>
19 #include <net/pkt_cls.h>
20 
21 
22 /* Quick Fair Queueing
23  ===================
24 
25  Sources:
26 
27  Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
28  Packet Scheduling with Tight Bandwidth Distribution Guarantees."
29 
30  See also:
31  http://retis.sssup.it/~fabio/linux/qfq/
32  */
33 
34 /*
35 
36  Virtual time computations.
37 
38  S, F and V are all computed in fixed point arithmetic with
39  FRAC_BITS decimal bits.
40 
41  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
42  one bit per index.
43  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
44 
45  The layout of the bits is as below:
46 
47  [ MTU_SHIFT ][ FRAC_BITS ]
48  [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
49  ^.__grp->index = 0
50  *.__grp->slot_shift
51 
52  where MIN_SLOT_SHIFT is derived by difference from the others.
53 
54  The max group index corresponds to Lmax/w_min, where
55  Lmax=1<<MTU_SHIFT, w_min = 1 .
56  From this, and knowing how many groups (MAX_INDEX) we want,
57  we can derive the shift corresponding to each group.
58 
59  Because we often need to compute
60  F = S + len/w_i and V = V + len/wsum
61  instead of storing w_i store the value
62  inv_w = (1<<FRAC_BITS)/w_i
63  so we can do F = S + len * inv_w * wsum.
64  We use W_TOT in the formulas so we can easily move between
65  static and adaptive weight sum.
66 
67  The per-scheduler-instance data contain all the data structures
68  for the scheduler: bitmaps and bucket lists.
69 
70  */
71 
72 /*
73  * Maximum number of consecutive slots occupied by backlogged classes
74  * inside a group.
75  */
76 #define QFQ_MAX_SLOTS 32
77 
78 /*
79  * Shifts used for class<->group mapping. We allow class weights that are
80  * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the
81  * group with the smallest index that can support the L_i / r_i configured
82  * for the class.
83  *
84  * grp->index is the index of the group; and grp->slot_shift
85  * is the shift for the corresponding (scaled) sigma_i.
86  */
87 #define QFQ_MAX_INDEX 24
88 #define QFQ_MAX_WSHIFT 12
89 
90 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
91 #define QFQ_MAX_WSUM (16*QFQ_MAX_WEIGHT)
92 
93 #define FRAC_BITS 30 /* fixed point arithmetic */
94 #define ONE_FP (1UL << FRAC_BITS)
95 #define IWSUM (ONE_FP/QFQ_MAX_WSUM)
96 
97 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
98 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
99 #define QFQ_MIN_LMAX 256 /* min possible lmax for a class */
100 
101 /*
102  * Possible group states. These values are used as indexes for the bitmaps
103  * array of struct qfq_queue.
104  */
106 
107 struct qfq_group;
108 
109 struct qfq_class {
111 
112  unsigned int refcnt;
113  unsigned int filter_cnt;
114 
118  struct Qdisc *qdisc;
119 
120  struct hlist_node next; /* Link for the slot list. */
121  u64 S, F; /* flow timestamps (exact) */
122 
123  /* group we belong to. In principle we would need the index,
124  * which is log_2(lmax/weight), but we never reference it
125  * directly, only the group.
126  */
127  struct qfq_group *grp;
128 
129  /* these are copied from the flowset. */
130  u32 inv_w; /* ONE_FP/weight */
131  u32 lmax; /* Max packet size for this flow. */
132 };
133 
134 struct qfq_group {
135  u64 S, F; /* group timestamps (approx). */
136  unsigned int slot_shift; /* Slot shift. */
137  unsigned int index; /* Group index. */
138  unsigned int front; /* Index of the front slot. */
139  unsigned long full_slots; /* non-empty slots */
140 
141  /* Array of RR lists of active classes. */
143 };
144 
145 struct qfq_sched {
148 
149  u64 V; /* Precise virtual time. */
150  u32 wsum; /* weight sum */
151 
152  unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
153  struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
154 };
155 
156 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
157 {
158  struct qfq_sched *q = qdisc_priv(sch);
159  struct Qdisc_class_common *clc;
160 
161  clc = qdisc_class_find(&q->clhash, classid);
162  if (clc == NULL)
163  return NULL;
164  return container_of(clc, struct qfq_class, common);
165 }
166 
167 static void qfq_purge_queue(struct qfq_class *cl)
168 {
169  unsigned int len = cl->qdisc->q.qlen;
170 
171  qdisc_reset(cl->qdisc);
173 }
174 
175 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
176  [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
177  [TCA_QFQ_LMAX] = { .type = NLA_U32 },
178 };
179 
180 /*
181  * Calculate a flow index, given its weight and maximum packet length.
182  * index = log_2(maxlen/weight) but we need to apply the scaling.
183  * This is used only once at flow creation.
184  */
185 static int qfq_calc_index(u32 inv_w, unsigned int maxlen)
186 {
187  u64 slot_size = (u64)maxlen * inv_w;
188  unsigned long size_map;
189  int index = 0;
190 
191  size_map = slot_size >> QFQ_MIN_SLOT_SHIFT;
192  if (!size_map)
193  goto out;
194 
195  index = __fls(size_map) + 1; /* basically a log_2 */
196  index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
197 
198  if (index < 0)
199  index = 0;
200 out:
201  pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
202  (unsigned long) ONE_FP/inv_w, maxlen, index);
203 
204  return index;
205 }
206 
207 /* Length of the next packet (0 if the queue is empty). */
208 static unsigned int qdisc_peek_len(struct Qdisc *sch)
209 {
210  struct sk_buff *skb;
211 
212  skb = sch->ops->peek(sch);
213  return skb ? qdisc_pkt_len(skb) : 0;
214 }
215 
216 static void qfq_deactivate_class(struct qfq_sched *, struct qfq_class *);
217 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl,
218  unsigned int len);
219 
220 static void qfq_update_class_params(struct qfq_sched *q, struct qfq_class *cl,
221  u32 lmax, u32 inv_w, int delta_w)
222 {
223  int i;
224 
225  /* update qfq-specific data */
226  cl->lmax = lmax;
227  cl->inv_w = inv_w;
228  i = qfq_calc_index(cl->inv_w, cl->lmax);
229 
230  cl->grp = &q->groups[i];
231 
232  q->wsum += delta_w;
233 }
234 
235 static void qfq_update_reactivate_class(struct qfq_sched *q,
236  struct qfq_class *cl,
237  u32 inv_w, u32 lmax, int delta_w)
238 {
239  bool need_reactivation = false;
240  int i = qfq_calc_index(inv_w, lmax);
241 
242  if (&q->groups[i] != cl->grp && cl->qdisc->q.qlen > 0) {
243  /*
244  * shift cl->F back, to not charge the
245  * class for the not-yet-served head
246  * packet
247  */
248  cl->F = cl->S;
249  /* remove class from its slot in the old group */
250  qfq_deactivate_class(q, cl);
251  need_reactivation = true;
252  }
253 
254  qfq_update_class_params(q, cl, lmax, inv_w, delta_w);
255 
256  if (need_reactivation) /* activate in new group */
257  qfq_activate_class(q, cl, qdisc_peek_len(cl->qdisc));
258 }
259 
260 
261 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
262  struct nlattr **tca, unsigned long *arg)
263 {
264  struct qfq_sched *q = qdisc_priv(sch);
265  struct qfq_class *cl = (struct qfq_class *)*arg;
266  struct nlattr *tb[TCA_QFQ_MAX + 1];
267  u32 weight, lmax, inv_w;
268  int err;
269  int delta_w;
270 
271  if (tca[TCA_OPTIONS] == NULL) {
272  pr_notice("qfq: no options\n");
273  return -EINVAL;
274  }
275 
276  err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
277  if (err < 0)
278  return err;
279 
280  if (tb[TCA_QFQ_WEIGHT]) {
281  weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
282  if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
283  pr_notice("qfq: invalid weight %u\n", weight);
284  return -EINVAL;
285  }
286  } else
287  weight = 1;
288 
289  inv_w = ONE_FP / weight;
290  weight = ONE_FP / inv_w;
291  delta_w = weight - (cl ? ONE_FP / cl->inv_w : 0);
292  if (q->wsum + delta_w > QFQ_MAX_WSUM) {
293  pr_notice("qfq: total weight out of range (%u + %u)\n",
294  delta_w, q->wsum);
295  return -EINVAL;
296  }
297 
298  if (tb[TCA_QFQ_LMAX]) {
299  lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
300  if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
301  pr_notice("qfq: invalid max length %u\n", lmax);
302  return -EINVAL;
303  }
304  } else
305  lmax = psched_mtu(qdisc_dev(sch));
306 
307  if (cl != NULL) {
308  if (tca[TCA_RATE]) {
309  err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
310  qdisc_root_sleeping_lock(sch),
311  tca[TCA_RATE]);
312  if (err)
313  return err;
314  }
315 
316  if (lmax == cl->lmax && inv_w == cl->inv_w)
317  return 0; /* nothing to update */
318 
319  sch_tree_lock(sch);
320  qfq_update_reactivate_class(q, cl, inv_w, lmax, delta_w);
321  sch_tree_unlock(sch);
322 
323  return 0;
324  }
325 
326  cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
327  if (cl == NULL)
328  return -ENOBUFS;
329 
330  cl->refcnt = 1;
331  cl->common.classid = classid;
332 
333  qfq_update_class_params(q, cl, lmax, inv_w, delta_w);
334 
335  cl->qdisc = qdisc_create_dflt(sch->dev_queue,
336  &pfifo_qdisc_ops, classid);
337  if (cl->qdisc == NULL)
338  cl->qdisc = &noop_qdisc;
339 
340  if (tca[TCA_RATE]) {
341  err = gen_new_estimator(&cl->bstats, &cl->rate_est,
342  qdisc_root_sleeping_lock(sch),
343  tca[TCA_RATE]);
344  if (err) {
345  qdisc_destroy(cl->qdisc);
346  kfree(cl);
347  return err;
348  }
349  }
350 
351  sch_tree_lock(sch);
353  sch_tree_unlock(sch);
354 
355  qdisc_class_hash_grow(sch, &q->clhash);
356 
357  *arg = (unsigned long)cl;
358  return 0;
359 }
360 
361 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
362 {
363  struct qfq_sched *q = qdisc_priv(sch);
364 
365  if (cl->inv_w) {
366  q->wsum -= ONE_FP / cl->inv_w;
367  cl->inv_w = 0;
368  }
369 
370  gen_kill_estimator(&cl->bstats, &cl->rate_est);
371  qdisc_destroy(cl->qdisc);
372  kfree(cl);
373 }
374 
375 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
376 {
377  struct qfq_sched *q = qdisc_priv(sch);
378  struct qfq_class *cl = (struct qfq_class *)arg;
379 
380  if (cl->filter_cnt > 0)
381  return -EBUSY;
382 
383  sch_tree_lock(sch);
384 
385  qfq_purge_queue(cl);
387 
388  BUG_ON(--cl->refcnt == 0);
389  /*
390  * This shouldn't happen: we "hold" one cops->get() when called
391  * from tc_ctl_tclass; the destroy method is done from cops->put().
392  */
393 
394  sch_tree_unlock(sch);
395  return 0;
396 }
397 
398 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
399 {
400  struct qfq_class *cl = qfq_find_class(sch, classid);
401 
402  if (cl != NULL)
403  cl->refcnt++;
404 
405  return (unsigned long)cl;
406 }
407 
408 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
409 {
410  struct qfq_class *cl = (struct qfq_class *)arg;
411 
412  if (--cl->refcnt == 0)
413  qfq_destroy_class(sch, cl);
414 }
415 
416 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
417 {
418  struct qfq_sched *q = qdisc_priv(sch);
419 
420  if (cl)
421  return NULL;
422 
423  return &q->filter_list;
424 }
425 
426 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
427  u32 classid)
428 {
429  struct qfq_class *cl = qfq_find_class(sch, classid);
430 
431  if (cl != NULL)
432  cl->filter_cnt++;
433 
434  return (unsigned long)cl;
435 }
436 
437 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
438 {
439  struct qfq_class *cl = (struct qfq_class *)arg;
440 
441  cl->filter_cnt--;
442 }
443 
444 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
445  struct Qdisc *new, struct Qdisc **old)
446 {
447  struct qfq_class *cl = (struct qfq_class *)arg;
448 
449  if (new == NULL) {
450  new = qdisc_create_dflt(sch->dev_queue,
451  &pfifo_qdisc_ops, cl->common.classid);
452  if (new == NULL)
453  new = &noop_qdisc;
454  }
455 
456  sch_tree_lock(sch);
457  qfq_purge_queue(cl);
458  *old = cl->qdisc;
459  cl->qdisc = new;
460  sch_tree_unlock(sch);
461  return 0;
462 }
463 
464 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
465 {
466  struct qfq_class *cl = (struct qfq_class *)arg;
467 
468  return cl->qdisc;
469 }
470 
471 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
472  struct sk_buff *skb, struct tcmsg *tcm)
473 {
474  struct qfq_class *cl = (struct qfq_class *)arg;
475  struct nlattr *nest;
476 
477  tcm->tcm_parent = TC_H_ROOT;
478  tcm->tcm_handle = cl->common.classid;
479  tcm->tcm_info = cl->qdisc->handle;
480 
481  nest = nla_nest_start(skb, TCA_OPTIONS);
482  if (nest == NULL)
483  goto nla_put_failure;
484  if (nla_put_u32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w) ||
485  nla_put_u32(skb, TCA_QFQ_LMAX, cl->lmax))
486  goto nla_put_failure;
487  return nla_nest_end(skb, nest);
488 
489 nla_put_failure:
490  nla_nest_cancel(skb, nest);
491  return -EMSGSIZE;
492 }
493 
494 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
495  struct gnet_dump *d)
496 {
497  struct qfq_class *cl = (struct qfq_class *)arg;
498  struct tc_qfq_stats xstats;
499 
500  memset(&xstats, 0, sizeof(xstats));
501  cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
502 
503  xstats.weight = ONE_FP/cl->inv_w;
504  xstats.lmax = cl->lmax;
505 
506  if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
507  gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
508  gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
509  return -1;
510 
511  return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
512 }
513 
514 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
515 {
516  struct qfq_sched *q = qdisc_priv(sch);
517  struct qfq_class *cl;
518  struct hlist_node *n;
519  unsigned int i;
520 
521  if (arg->stop)
522  return;
523 
524  for (i = 0; i < q->clhash.hashsize; i++) {
525  hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
526  if (arg->count < arg->skip) {
527  arg->count++;
528  continue;
529  }
530  if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
531  arg->stop = 1;
532  return;
533  }
534  arg->count++;
535  }
536  }
537 }
538 
539 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
540  int *qerr)
541 {
542  struct qfq_sched *q = qdisc_priv(sch);
543  struct qfq_class *cl;
544  struct tcf_result res;
545  int result;
546 
547  if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
548  pr_debug("qfq_classify: found %d\n", skb->priority);
549  cl = qfq_find_class(sch, skb->priority);
550  if (cl != NULL)
551  return cl;
552  }
553 
555  result = tc_classify(skb, q->filter_list, &res);
556  if (result >= 0) {
557 #ifdef CONFIG_NET_CLS_ACT
558  switch (result) {
559  case TC_ACT_QUEUED:
560  case TC_ACT_STOLEN:
562  case TC_ACT_SHOT:
563  return NULL;
564  }
565 #endif
566  cl = (struct qfq_class *)res.class;
567  if (cl == NULL)
568  cl = qfq_find_class(sch, res.classid);
569  return cl;
570  }
571 
572  return NULL;
573 }
574 
575 /* Generic comparison function, handling wraparound. */
576 static inline int qfq_gt(u64 a, u64 b)
577 {
578  return (s64)(a - b) > 0;
579 }
580 
581 /* Round a precise timestamp to its slotted value. */
582 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
583 {
584  return ts & ~((1ULL << shift) - 1);
585 }
586 
587 /* return the pointer to the group with lowest index in the bitmap */
588 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
589  unsigned long bitmap)
590 {
591  int index = __ffs(bitmap);
592  return &q->groups[index];
593 }
594 /* Calculate a mask to mimic what would be ffs_from(). */
595 static inline unsigned long mask_from(unsigned long bitmap, int from)
596 {
597  return bitmap & ~((1UL << from) - 1);
598 }
599 
600 /*
601  * The state computation relies on ER=0, IR=1, EB=2, IB=3
602  * First compute eligibility comparing grp->S, q->V,
603  * then check if someone is blocking us and possibly add EB
604  */
605 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
606 {
607  /* if S > V we are not eligible */
608  unsigned int state = qfq_gt(grp->S, q->V);
609  unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
610  struct qfq_group *next;
611 
612  if (mask) {
613  next = qfq_ffs(q, mask);
614  if (qfq_gt(grp->F, next->F))
615  state |= EB;
616  }
617 
618  return state;
619 }
620 
621 
622 /*
623  * In principle
624  * q->bitmaps[dst] |= q->bitmaps[src] & mask;
625  * q->bitmaps[src] &= ~mask;
626  * but we should make sure that src != dst
627  */
628 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
629  int src, int dst)
630 {
631  q->bitmaps[dst] |= q->bitmaps[src] & mask;
632  q->bitmaps[src] &= ~mask;
633 }
634 
635 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
636 {
637  unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
638  struct qfq_group *next;
639 
640  if (mask) {
641  next = qfq_ffs(q, mask);
642  if (!qfq_gt(next->F, old_F))
643  return;
644  }
645 
646  mask = (1UL << index) - 1;
647  qfq_move_groups(q, mask, EB, ER);
648  qfq_move_groups(q, mask, IB, IR);
649 }
650 
651 /*
652  * perhaps
653  *
654  old_V ^= q->V;
655  old_V >>= QFQ_MIN_SLOT_SHIFT;
656  if (old_V) {
657  ...
658  }
659  *
660  */
661 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V)
662 {
663  unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
664  unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
665 
666  if (vslot != old_vslot) {
667  unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
668  qfq_move_groups(q, mask, IR, ER);
669  qfq_move_groups(q, mask, IB, EB);
670  }
671 }
672 
673 
674 /*
675  * If the weight and lmax (max_pkt_size) of the classes do not change,
676  * then QFQ guarantees that the slot index is never higher than
677  * 2 + ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM).
678  *
679  * With the current values of the above constants, the index is
680  * then guaranteed to never be higher than 2 + 256 * (1 / 16) = 18.
681  *
682  * When the weight of a class is increased or the lmax of the class is
683  * decreased, a new class with smaller slot size may happen to be
684  * activated. The activation of this class should be properly delayed
685  * to when the service of the class has finished in the ideal system
686  * tracked by QFQ. If the activation of the class is not delayed to
687  * this reference time instant, then this class may be unjustly served
688  * before other classes waiting for service. This may cause
689  * (unfrequently) the above bound to the slot index to be violated for
690  * some of these unlucky classes.
691  *
692  * Instead of delaying the activation of the new class, which is quite
693  * complex, the following inaccurate but simple solution is used: if
694  * the slot index is higher than QFQ_MAX_SLOTS-2, then the timestamps
695  * of the class are shifted backward so as to let the slot index
696  * become equal to QFQ_MAX_SLOTS-2. This threshold is used because, if
697  * the slot index is above it, then the data structure implementing
698  * the bucket list either gets immediately corrupted or may get
699  * corrupted on a possible next packet arrival that causes the start
700  * time of the group to be shifted backward.
701  */
702 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl,
703  u64 roundedS)
704 {
705  u64 slot = (roundedS - grp->S) >> grp->slot_shift;
706  unsigned int i; /* slot index in the bucket list */
707 
708  if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
709  u64 deltaS = roundedS - grp->S -
710  ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
711  cl->S -= deltaS;
712  cl->F -= deltaS;
713  slot = QFQ_MAX_SLOTS - 2;
714  }
715 
716  i = (grp->front + slot) % QFQ_MAX_SLOTS;
717 
718  hlist_add_head(&cl->next, &grp->slots[i]);
719  __set_bit(slot, &grp->full_slots);
720 }
721 
722 /* Maybe introduce hlist_first_entry?? */
723 static struct qfq_class *qfq_slot_head(struct qfq_group *grp)
724 {
725  return hlist_entry(grp->slots[grp->front].first,
726  struct qfq_class, next);
727 }
728 
729 /*
730  * remove the entry from the slot
731  */
732 static void qfq_front_slot_remove(struct qfq_group *grp)
733 {
734  struct qfq_class *cl = qfq_slot_head(grp);
735 
736  BUG_ON(!cl);
737  hlist_del(&cl->next);
738  if (hlist_empty(&grp->slots[grp->front]))
739  __clear_bit(0, &grp->full_slots);
740 }
741 
742 /*
743  * Returns the first full queue in a group. As a side effect,
744  * adjust the bucket list so the first non-empty bucket is at
745  * position 0 in full_slots.
746  */
747 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp)
748 {
749  unsigned int i;
750 
751  pr_debug("qfq slot_scan: grp %u full %#lx\n",
752  grp->index, grp->full_slots);
753 
754  if (grp->full_slots == 0)
755  return NULL;
756 
757  i = __ffs(grp->full_slots); /* zero based */
758  if (i > 0) {
759  grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
760  grp->full_slots >>= i;
761  }
762 
763  return qfq_slot_head(grp);
764 }
765 
766 /*
767  * adjust the bucket list. When the start time of a group decreases,
768  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
769  * move the objects. The mask of occupied slots must be shifted
770  * because we use ffs() to find the first non-empty slot.
771  * This covers decreases in the group's start time, but what about
772  * increases of the start time ?
773  * Here too we should make sure that i is less than 32
774  */
775 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
776 {
777  unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
778 
779  grp->full_slots <<= i;
780  grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
781 }
782 
783 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V)
784 {
785  struct qfq_group *grp;
786  unsigned long ineligible;
787 
788  ineligible = q->bitmaps[IR] | q->bitmaps[IB];
789  if (ineligible) {
790  if (!q->bitmaps[ER]) {
791  grp = qfq_ffs(q, ineligible);
792  if (qfq_gt(grp->S, q->V))
793  q->V = grp->S;
794  }
795  qfq_make_eligible(q, old_V);
796  }
797 }
798 
799 /*
800  * Updates the class, returns true if also the group needs to be updated.
801  */
802 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl)
803 {
804  unsigned int len = qdisc_peek_len(cl->qdisc);
805 
806  cl->S = cl->F;
807  if (!len)
808  qfq_front_slot_remove(grp); /* queue is empty */
809  else {
810  u64 roundedS;
811 
812  cl->F = cl->S + (u64)len * cl->inv_w;
813  roundedS = qfq_round_down(cl->S, grp->slot_shift);
814  if (roundedS == grp->S)
815  return false;
816 
817  qfq_front_slot_remove(grp);
818  qfq_slot_insert(grp, cl, roundedS);
819  }
820 
821  return true;
822 }
823 
824 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
825 {
826  struct qfq_sched *q = qdisc_priv(sch);
827  struct qfq_group *grp;
828  struct qfq_class *cl;
829  struct sk_buff *skb;
830  unsigned int len;
831  u64 old_V;
832 
833  if (!q->bitmaps[ER])
834  return NULL;
835 
836  grp = qfq_ffs(q, q->bitmaps[ER]);
837 
838  cl = qfq_slot_head(grp);
839  skb = qdisc_dequeue_peeked(cl->qdisc);
840  if (!skb) {
841  WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
842  return NULL;
843  }
844 
845  sch->q.qlen--;
846  qdisc_bstats_update(sch, skb);
847 
848  old_V = q->V;
849  len = qdisc_pkt_len(skb);
850  q->V += (u64)len * IWSUM;
851  pr_debug("qfq dequeue: len %u F %lld now %lld\n",
852  len, (unsigned long long) cl->F, (unsigned long long) q->V);
853 
854  if (qfq_update_class(grp, cl)) {
855  u64 old_F = grp->F;
856 
857  cl = qfq_slot_scan(grp);
858  if (!cl)
859  __clear_bit(grp->index, &q->bitmaps[ER]);
860  else {
861  u64 roundedS = qfq_round_down(cl->S, grp->slot_shift);
862  unsigned int s;
863 
864  if (grp->S == roundedS)
865  goto skip_unblock;
866  grp->S = roundedS;
867  grp->F = roundedS + (2ULL << grp->slot_shift);
868  __clear_bit(grp->index, &q->bitmaps[ER]);
869  s = qfq_calc_state(q, grp);
870  __set_bit(grp->index, &q->bitmaps[s]);
871  }
872 
873  qfq_unblock_groups(q, grp->index, old_F);
874  }
875 
876 skip_unblock:
877  qfq_update_eligible(q, old_V);
878 
879  return skb;
880 }
881 
882 /*
883  * Assign a reasonable start time for a new flow k in group i.
884  * Admissible values for \hat(F) are multiples of \sigma_i
885  * no greater than V+\sigma_i . Larger values mean that
886  * we had a wraparound so we consider the timestamp to be stale.
887  *
888  * If F is not stale and F >= V then we set S = F.
889  * Otherwise we should assign S = V, but this may violate
890  * the ordering in ER. So, if we have groups in ER, set S to
891  * the F_j of the first group j which would be blocking us.
892  * We are guaranteed not to move S backward because
893  * otherwise our group i would still be blocked.
894  */
895 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
896 {
897  unsigned long mask;
898  u64 limit, roundedF;
899  int slot_shift = cl->grp->slot_shift;
900 
901  roundedF = qfq_round_down(cl->F, slot_shift);
902  limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
903 
904  if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
905  /* timestamp was stale */
906  mask = mask_from(q->bitmaps[ER], cl->grp->index);
907  if (mask) {
908  struct qfq_group *next = qfq_ffs(q, mask);
909  if (qfq_gt(roundedF, next->F)) {
910  if (qfq_gt(limit, next->F))
911  cl->S = next->F;
912  else /* preserve timestamp correctness */
913  cl->S = limit;
914  return;
915  }
916  }
917  cl->S = q->V;
918  } else /* timestamp is not stale */
919  cl->S = cl->F;
920 }
921 
922 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
923 {
924  struct qfq_sched *q = qdisc_priv(sch);
925  struct qfq_class *cl;
926  int err = 0;
927 
928  cl = qfq_classify(skb, sch, &err);
929  if (cl == NULL) {
930  if (err & __NET_XMIT_BYPASS)
931  sch->qstats.drops++;
932  kfree_skb(skb);
933  return err;
934  }
935  pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
936 
937  if (unlikely(cl->lmax < qdisc_pkt_len(skb))) {
938  pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
939  cl->lmax, qdisc_pkt_len(skb), cl->common.classid);
940  qfq_update_reactivate_class(q, cl, cl->inv_w,
941  qdisc_pkt_len(skb), 0);
942  }
943 
944  err = qdisc_enqueue(skb, cl->qdisc);
945  if (unlikely(err != NET_XMIT_SUCCESS)) {
946  pr_debug("qfq_enqueue: enqueue failed %d\n", err);
947  if (net_xmit_drop_count(err)) {
948  cl->qstats.drops++;
949  sch->qstats.drops++;
950  }
951  return err;
952  }
953 
954  bstats_update(&cl->bstats, skb);
955  ++sch->q.qlen;
956 
957  /* If the new skb is not the head of queue, then done here. */
958  if (cl->qdisc->q.qlen != 1)
959  return err;
960 
961  /* If reach this point, queue q was idle */
962  qfq_activate_class(q, cl, qdisc_pkt_len(skb));
963 
964  return err;
965 }
966 
967 /*
968  * Handle class switch from idle to backlogged.
969  */
970 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl,
971  unsigned int pkt_len)
972 {
973  struct qfq_group *grp = cl->grp;
974  u64 roundedS;
975  int s;
976 
977  qfq_update_start(q, cl);
978 
979  /* compute new finish time and rounded start. */
980  cl->F = cl->S + (u64)pkt_len * cl->inv_w;
981  roundedS = qfq_round_down(cl->S, grp->slot_shift);
982 
983  /*
984  * insert cl in the correct bucket.
985  * If cl->S >= grp->S we don't need to adjust the
986  * bucket list and simply go to the insertion phase.
987  * Otherwise grp->S is decreasing, we must make room
988  * in the bucket list, and also recompute the group state.
989  * Finally, if there were no flows in this group and nobody
990  * was in ER make sure to adjust V.
991  */
992  if (grp->full_slots) {
993  if (!qfq_gt(grp->S, cl->S))
994  goto skip_update;
995 
996  /* create a slot for this cl->S */
997  qfq_slot_rotate(grp, roundedS);
998  /* group was surely ineligible, remove */
999  __clear_bit(grp->index, &q->bitmaps[IR]);
1000  __clear_bit(grp->index, &q->bitmaps[IB]);
1001  } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
1002  q->V = roundedS;
1003 
1004  grp->S = roundedS;
1005  grp->F = roundedS + (2ULL << grp->slot_shift);
1006  s = qfq_calc_state(q, grp);
1007  __set_bit(grp->index, &q->bitmaps[s]);
1008 
1009  pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1010  s, q->bitmaps[s],
1011  (unsigned long long) cl->S,
1012  (unsigned long long) cl->F,
1013  (unsigned long long) q->V);
1014 
1015 skip_update:
1016  qfq_slot_insert(grp, cl, roundedS);
1017 }
1018 
1019 
1020 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1021  struct qfq_class *cl)
1022 {
1023  unsigned int i, offset;
1024  u64 roundedS;
1025 
1026  roundedS = qfq_round_down(cl->S, grp->slot_shift);
1027  offset = (roundedS - grp->S) >> grp->slot_shift;
1028  i = (grp->front + offset) % QFQ_MAX_SLOTS;
1029 
1030  hlist_del(&cl->next);
1031  if (hlist_empty(&grp->slots[i]))
1032  __clear_bit(offset, &grp->full_slots);
1033 }
1034 
1035 /*
1036  * called to forcibly destroy a queue.
1037  * If the queue is not in the front bucket, or if it has
1038  * other queues in the front bucket, we can simply remove
1039  * the queue with no other side effects.
1040  * Otherwise we must propagate the event up.
1041  */
1042 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
1043 {
1044  struct qfq_group *grp = cl->grp;
1045  unsigned long mask;
1046  u64 roundedS;
1047  int s;
1048 
1049  cl->F = cl->S;
1050  qfq_slot_remove(q, grp, cl);
1051 
1052  if (!grp->full_slots) {
1053  __clear_bit(grp->index, &q->bitmaps[IR]);
1054  __clear_bit(grp->index, &q->bitmaps[EB]);
1055  __clear_bit(grp->index, &q->bitmaps[IB]);
1056 
1057  if (test_bit(grp->index, &q->bitmaps[ER]) &&
1058  !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1059  mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1060  if (mask)
1061  mask = ~((1UL << __fls(mask)) - 1);
1062  else
1063  mask = ~0UL;
1064  qfq_move_groups(q, mask, EB, ER);
1065  qfq_move_groups(q, mask, IB, IR);
1066  }
1067  __clear_bit(grp->index, &q->bitmaps[ER]);
1068  } else if (hlist_empty(&grp->slots[grp->front])) {
1069  cl = qfq_slot_scan(grp);
1070  roundedS = qfq_round_down(cl->S, grp->slot_shift);
1071  if (grp->S != roundedS) {
1072  __clear_bit(grp->index, &q->bitmaps[ER]);
1073  __clear_bit(grp->index, &q->bitmaps[IR]);
1074  __clear_bit(grp->index, &q->bitmaps[EB]);
1075  __clear_bit(grp->index, &q->bitmaps[IB]);
1076  grp->S = roundedS;
1077  grp->F = roundedS + (2ULL << grp->slot_shift);
1078  s = qfq_calc_state(q, grp);
1079  __set_bit(grp->index, &q->bitmaps[s]);
1080  }
1081  }
1082 
1083  qfq_update_eligible(q, q->V);
1084 }
1085 
1086 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1087 {
1088  struct qfq_sched *q = qdisc_priv(sch);
1089  struct qfq_class *cl = (struct qfq_class *)arg;
1090 
1091  if (cl->qdisc->q.qlen == 0)
1092  qfq_deactivate_class(q, cl);
1093 }
1094 
1095 static unsigned int qfq_drop(struct Qdisc *sch)
1096 {
1097  struct qfq_sched *q = qdisc_priv(sch);
1098  struct qfq_group *grp;
1099  unsigned int i, j, len;
1100 
1101  for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1102  grp = &q->groups[i];
1103  for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1104  struct qfq_class *cl;
1105  struct hlist_node *n;
1106 
1107  hlist_for_each_entry(cl, n, &grp->slots[j], next) {
1108 
1109  if (!cl->qdisc->ops->drop)
1110  continue;
1111 
1112  len = cl->qdisc->ops->drop(cl->qdisc);
1113  if (len > 0) {
1114  sch->q.qlen--;
1115  if (!cl->qdisc->q.qlen)
1116  qfq_deactivate_class(q, cl);
1117 
1118  return len;
1119  }
1120  }
1121  }
1122  }
1123 
1124  return 0;
1125 }
1126 
1127 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1128 {
1129  struct qfq_sched *q = qdisc_priv(sch);
1130  struct qfq_group *grp;
1131  int i, j, err;
1132 
1133  err = qdisc_class_hash_init(&q->clhash);
1134  if (err < 0)
1135  return err;
1136 
1137  for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1138  grp = &q->groups[i];
1139  grp->index = i;
1141  - (QFQ_MAX_INDEX - i);
1142  for (j = 0; j < QFQ_MAX_SLOTS; j++)
1143  INIT_HLIST_HEAD(&grp->slots[j]);
1144  }
1145 
1146  return 0;
1147 }
1148 
1149 static void qfq_reset_qdisc(struct Qdisc *sch)
1150 {
1151  struct qfq_sched *q = qdisc_priv(sch);
1152  struct qfq_group *grp;
1153  struct qfq_class *cl;
1154  struct hlist_node *n, *tmp;
1155  unsigned int i, j;
1156 
1157  for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1158  grp = &q->groups[i];
1159  for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1160  hlist_for_each_entry_safe(cl, n, tmp,
1161  &grp->slots[j], next) {
1162  qfq_deactivate_class(q, cl);
1163  }
1164  }
1165  }
1166 
1167  for (i = 0; i < q->clhash.hashsize; i++) {
1168  hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode)
1169  qdisc_reset(cl->qdisc);
1170  }
1171  sch->q.qlen = 0;
1172 }
1173 
1174 static void qfq_destroy_qdisc(struct Qdisc *sch)
1175 {
1176  struct qfq_sched *q = qdisc_priv(sch);
1177  struct qfq_class *cl;
1178  struct hlist_node *n, *next;
1179  unsigned int i;
1180 
1182 
1183  for (i = 0; i < q->clhash.hashsize; i++) {
1184  hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1185  common.hnode) {
1186  qfq_destroy_class(sch, cl);
1187  }
1188  }
1190 }
1191 
1192 static const struct Qdisc_class_ops qfq_class_ops = {
1193  .change = qfq_change_class,
1194  .delete = qfq_delete_class,
1195  .get = qfq_get_class,
1196  .put = qfq_put_class,
1197  .tcf_chain = qfq_tcf_chain,
1198  .bind_tcf = qfq_bind_tcf,
1199  .unbind_tcf = qfq_unbind_tcf,
1200  .graft = qfq_graft_class,
1201  .leaf = qfq_class_leaf,
1202  .qlen_notify = qfq_qlen_notify,
1203  .dump = qfq_dump_class,
1204  .dump_stats = qfq_dump_class_stats,
1205  .walk = qfq_walk,
1206 };
1207 
1208 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1209  .cl_ops = &qfq_class_ops,
1210  .id = "qfq",
1211  .priv_size = sizeof(struct qfq_sched),
1212  .enqueue = qfq_enqueue,
1213  .dequeue = qfq_dequeue,
1214  .peek = qdisc_peek_dequeued,
1215  .drop = qfq_drop,
1216  .init = qfq_init_qdisc,
1217  .reset = qfq_reset_qdisc,
1218  .destroy = qfq_destroy_qdisc,
1219  .owner = THIS_MODULE,
1220 };
1221 
1222 static int __init qfq_init(void)
1223 {
1224  return register_qdisc(&qfq_qdisc_ops);
1225 }
1226 
1227 static void __exit qfq_exit(void)
1228 {
1229  unregister_qdisc(&qfq_qdisc_ops);
1230 }
1231 
1232 module_init(qfq_init);
1233 module_exit(qfq_exit);
1234 MODULE_LICENSE("GPL");