Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sddr09.c
Go to the documentation of this file.
1 /* Driver for SanDisk SDDR-09 SmartMedia reader
2  *
3  * (c) 2000, 2001 Robert Baruch ([email protected])
4  * (c) 2002 Andries Brouwer ([email protected])
5  * Developed with the assistance of:
6  * (c) 2002 Alan Stern <[email protected]>
7  *
8  * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9  * This chip is a programmable USB controller. In the SDDR-09, it has
10  * been programmed to obey a certain limited set of SCSI commands.
11  * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12  * commands.
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License as published by the
16  * Free Software Foundation; either version 2, or (at your option) any
17  * later version.
18  *
19  * This program is distributed in the hope that it will be useful, but
20  * WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22  * General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License along
25  * with this program; if not, write to the Free Software Foundation, Inc.,
26  * 675 Mass Ave, Cambridge, MA 02139, USA.
27  */
28 
29 /*
30  * Known vendor commands: 12 bytes, first byte is opcode
31  *
32  * E7: read scatter gather
33  * E8: read
34  * E9: write
35  * EA: erase
36  * EB: reset
37  * EC: read status
38  * ED: read ID
39  * EE: write CIS (?)
40  * EF: compute checksum (?)
41  */
42 
43 #include <linux/errno.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 
51 #include "usb.h"
52 #include "transport.h"
53 #include "protocol.h"
54 #include "debug.h"
55 
56 MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
57 MODULE_AUTHOR("Andries Brouwer <[email protected]>, Robert Baruch <[email protected]>");
58 MODULE_LICENSE("GPL");
59 
60 static int usb_stor_sddr09_dpcm_init(struct us_data *us);
61 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
62 static int usb_stor_sddr09_init(struct us_data *us);
63 
64 
65 /*
66  * The table of devices
67  */
68 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
69  vendorName, productName, useProtocol, useTransport, \
70  initFunction, flags) \
71 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
72  .driver_info = (flags) }
73 
74 static struct usb_device_id sddr09_usb_ids[] = {
75 # include "unusual_sddr09.h"
76  { } /* Terminating entry */
77 };
78 MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
79 
80 #undef UNUSUAL_DEV
81 
82 /*
83  * The flags table
84  */
85 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
86  vendor_name, product_name, use_protocol, use_transport, \
87  init_function, Flags) \
88 { \
89  .vendorName = vendor_name, \
90  .productName = product_name, \
91  .useProtocol = use_protocol, \
92  .useTransport = use_transport, \
93  .initFunction = init_function, \
94 }
95 
96 static struct us_unusual_dev sddr09_unusual_dev_list[] = {
97 # include "unusual_sddr09.h"
98  { } /* Terminating entry */
99 };
100 
101 #undef UNUSUAL_DEV
102 
103 
104 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
105 #define LSB_of(s) ((s)&0xFF)
106 #define MSB_of(s) ((s)>>8)
107 
108 /* #define US_DEBUGP printk */
109 
110 /*
111  * First some stuff that does not belong here:
112  * data on SmartMedia and other cards, completely
113  * unrelated to this driver.
114  * Similar stuff occurs in <linux/mtd/nand_ids.h>.
115  */
116 
118  int model_id;
119  int chipshift; /* 1<<cs bytes total capacity */
120  char pageshift; /* 1<<ps bytes in a page */
121  char blockshift; /* 1<<bs pages in an erase block */
122  char zoneshift; /* 1<<zs blocks in a zone */
123  /* # of logical blocks is 125/128 of this */
124  char pageadrlen; /* length of an address in bytes - 1 */
125 };
126 
127 /*
128  * NAND Flash Manufacturer ID Codes
129  */
130 #define NAND_MFR_AMD 0x01
131 #define NAND_MFR_NATSEMI 0x8f
132 #define NAND_MFR_TOSHIBA 0x98
133 #define NAND_MFR_SAMSUNG 0xec
134 
135 static inline char *nand_flash_manufacturer(int manuf_id) {
136  switch(manuf_id) {
137  case NAND_MFR_AMD:
138  return "AMD";
139  case NAND_MFR_NATSEMI:
140  return "NATSEMI";
141  case NAND_MFR_TOSHIBA:
142  return "Toshiba";
143  case NAND_MFR_SAMSUNG:
144  return "Samsung";
145  default:
146  return "unknown";
147  }
148 }
149 
150 /*
151  * It looks like it is unnecessary to attach manufacturer to the
152  * remaining data: SSFDC prescribes manufacturer-independent id codes.
153  *
154  * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
155  */
156 
157 static struct nand_flash_dev nand_flash_ids[] = {
158  /* NAND flash */
159  { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
160  { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
161  { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
162  { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
163  { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
164  { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
165  { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
166  { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
167  { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
168  { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
169  { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
170  { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
171  { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
172 
173  /* MASK ROM */
174  { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
175  { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
176  { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
177  { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
178  { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
179  { 0,}
180 };
181 
182 static struct nand_flash_dev *
183 nand_find_id(unsigned char id) {
184  int i;
185 
186  for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
187  if (nand_flash_ids[i].model_id == id)
188  return &(nand_flash_ids[i]);
189  return NULL;
190 }
191 
192 /*
193  * ECC computation.
194  */
195 static unsigned char parity[256];
196 static unsigned char ecc2[256];
197 
198 static void nand_init_ecc(void) {
199  int i, j, a;
200 
201  parity[0] = 0;
202  for (i = 1; i < 256; i++)
203  parity[i] = (parity[i&(i-1)] ^ 1);
204 
205  for (i = 0; i < 256; i++) {
206  a = 0;
207  for (j = 0; j < 8; j++) {
208  if (i & (1<<j)) {
209  if ((j & 1) == 0)
210  a ^= 0x04;
211  if ((j & 2) == 0)
212  a ^= 0x10;
213  if ((j & 4) == 0)
214  a ^= 0x40;
215  }
216  }
217  ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
218  }
219 }
220 
221 /* compute 3-byte ecc on 256 bytes */
222 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
223  int i, j, a;
224  unsigned char par, bit, bits[8];
225 
226  par = 0;
227  for (j = 0; j < 8; j++)
228  bits[j] = 0;
229 
230  /* collect 16 checksum bits */
231  for (i = 0; i < 256; i++) {
232  par ^= data[i];
233  bit = parity[data[i]];
234  for (j = 0; j < 8; j++)
235  if ((i & (1<<j)) == 0)
236  bits[j] ^= bit;
237  }
238 
239  /* put 4+4+4 = 12 bits in the ecc */
240  a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
241  ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
242 
243  a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
244  ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
245 
246  ecc[2] = ecc2[par];
247 }
248 
249 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
250  return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
251 }
252 
253 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
254  memcpy(data, ecc, 3);
255 }
256 
257 /*
258  * The actual driver starts here.
259  */
260 
262  unsigned long capacity; /* Size of card in bytes */
263  int pagesize; /* Size of page in bytes */
264  int pageshift; /* log2 of pagesize */
265  int blocksize; /* Size of block in pages */
266  int blockshift; /* log2 of blocksize */
267  int blockmask; /* 2^blockshift - 1 */
268  int *lba_to_pba; /* logical to physical map */
269  int *pba_to_lba; /* physical to logical map */
270  int lbact; /* number of available pages */
271  int flags;
272 #define SDDR09_WP 1 /* write protected */
273 };
274 
275 /*
276  * On my 16MB card, control blocks have size 64 (16 real control bytes,
277  * and 48 junk bytes). In reality of course the card uses 16 control bytes,
278  * so the reader makes up the remaining 48. Don't know whether these numbers
279  * depend on the card. For now a constant.
280  */
281 #define CONTROL_SHIFT 6
282 
283 /*
284  * On my Combo CF/SM reader, the SM reader has LUN 1.
285  * (and things fail with LUN 0).
286  * It seems LUN is irrelevant for others.
287  */
288 #define LUN 1
289 #define LUNBITS (LUN << 5)
290 
291 /*
292  * LBA and PBA are unsigned ints. Special values.
293  */
294 #define UNDEF 0xffffffff
295 #define SPARE 0xfffffffe
296 #define UNUSABLE 0xfffffffd
297 
298 static const int erase_bad_lba_entries = 0;
299 
300 /* send vendor interface command (0x41) */
301 /* called for requests 0, 1, 8 */
302 static int
303 sddr09_send_command(struct us_data *us,
304  unsigned char request,
305  unsigned char direction,
306  unsigned char *xfer_data,
307  unsigned int xfer_len) {
308  unsigned int pipe;
309  unsigned char requesttype = (0x41 | direction);
310  int rc;
311 
312  // Get the receive or send control pipe number
313 
314  if (direction == USB_DIR_IN)
315  pipe = us->recv_ctrl_pipe;
316  else
317  pipe = us->send_ctrl_pipe;
318 
319  rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
320  0, 0, xfer_data, xfer_len);
321  switch (rc) {
322  case USB_STOR_XFER_GOOD: return 0;
323  case USB_STOR_XFER_STALLED: return -EPIPE;
324  default: return -EIO;
325  }
326 }
327 
328 static int
329 sddr09_send_scsi_command(struct us_data *us,
330  unsigned char *command,
331  unsigned int command_len) {
332  return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
333 }
334 
335 #if 0
336 /*
337  * Test Unit Ready Command: 12 bytes.
338  * byte 0: opcode: 00
339  */
340 static int
341 sddr09_test_unit_ready(struct us_data *us) {
342  unsigned char *command = us->iobuf;
343  int result;
344 
345  memset(command, 0, 6);
346  command[1] = LUNBITS;
347 
348  result = sddr09_send_scsi_command(us, command, 6);
349 
350  US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
351 
352  return result;
353 }
354 #endif
355 
356 /*
357  * Request Sense Command: 12 bytes.
358  * byte 0: opcode: 03
359  * byte 4: data length
360  */
361 static int
362 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
363  unsigned char *command = us->iobuf;
364  int result;
365 
366  memset(command, 0, 12);
367  command[0] = 0x03;
368  command[1] = LUNBITS;
369  command[4] = buflen;
370 
371  result = sddr09_send_scsi_command(us, command, 12);
372  if (result)
373  return result;
374 
376  sensebuf, buflen, NULL);
377  return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
378 }
379 
380 /*
381  * Read Command: 12 bytes.
382  * byte 0: opcode: E8
383  * byte 1: last two bits: 00: read data, 01: read blockwise control,
384  * 10: read both, 11: read pagewise control.
385  * It turns out we need values 20, 21, 22, 23 here (LUN 1).
386  * bytes 2-5: address (interpretation depends on byte 1, see below)
387  * bytes 10-11: count (idem)
388  *
389  * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
390  * A read data command gets data in 512-byte pages.
391  * A read control command gets control in 64-byte chunks.
392  * A read both command gets data+control in 576-byte chunks.
393  *
394  * Blocks are groups of 32 pages, and read blockwise control jumps to the
395  * next block, while read pagewise control jumps to the next page after
396  * reading a group of 64 control bytes.
397  * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
398  *
399  * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
400  */
401 
402 static int
403 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
404  int nr_of_pages, int bulklen, unsigned char *buf,
405  int use_sg) {
406 
407  unsigned char *command = us->iobuf;
408  int result;
409 
410  command[0] = 0xE8;
411  command[1] = LUNBITS | x;
412  command[2] = MSB_of(fromaddress>>16);
413  command[3] = LSB_of(fromaddress>>16);
414  command[4] = MSB_of(fromaddress & 0xFFFF);
415  command[5] = LSB_of(fromaddress & 0xFFFF);
416  command[6] = 0;
417  command[7] = 0;
418  command[8] = 0;
419  command[9] = 0;
420  command[10] = MSB_of(nr_of_pages);
421  command[11] = LSB_of(nr_of_pages);
422 
423  result = sddr09_send_scsi_command(us, command, 12);
424 
425  if (result) {
426  US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
427  x, result);
428  return result;
429  }
430 
431  result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
432  buf, bulklen, use_sg, NULL);
433 
434  if (result != USB_STOR_XFER_GOOD) {
435  US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
436  x, result);
437  return -EIO;
438  }
439  return 0;
440 }
441 
442 /*
443  * Read Data
444  *
445  * fromaddress counts data shorts:
446  * increasing it by 256 shifts the bytestream by 512 bytes;
447  * the last 8 bits are ignored.
448  *
449  * nr_of_pages counts pages of size (1 << pageshift).
450  */
451 static int
452 sddr09_read20(struct us_data *us, unsigned long fromaddress,
453  int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
454  int bulklen = nr_of_pages << pageshift;
455 
456  /* The last 8 bits of fromaddress are ignored. */
457  return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
458  buf, use_sg);
459 }
460 
461 /*
462  * Read Blockwise Control
463  *
464  * fromaddress gives the starting position (as in read data;
465  * the last 8 bits are ignored); increasing it by 32*256 shifts
466  * the output stream by 64 bytes.
467  *
468  * count counts control groups of size (1 << controlshift).
469  * For me, controlshift = 6. Is this constant?
470  *
471  * After getting one control group, jump to the next block
472  * (fromaddress += 8192).
473  */
474 static int
475 sddr09_read21(struct us_data *us, unsigned long fromaddress,
476  int count, int controlshift, unsigned char *buf, int use_sg) {
477 
478  int bulklen = (count << controlshift);
479  return sddr09_readX(us, 1, fromaddress, count, bulklen,
480  buf, use_sg);
481 }
482 
483 /*
484  * Read both Data and Control
485  *
486  * fromaddress counts data shorts, ignoring control:
487  * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
488  * the last 8 bits are ignored.
489  *
490  * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
491  */
492 static int
493 sddr09_read22(struct us_data *us, unsigned long fromaddress,
494  int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
495 
496  int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
497  US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
498  nr_of_pages, bulklen);
499  return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
500  buf, use_sg);
501 }
502 
503 #if 0
504 /*
505  * Read Pagewise Control
506  *
507  * fromaddress gives the starting position (as in read data;
508  * the last 8 bits are ignored); increasing it by 256 shifts
509  * the output stream by 64 bytes.
510  *
511  * count counts control groups of size (1 << controlshift).
512  * For me, controlshift = 6. Is this constant?
513  *
514  * After getting one control group, jump to the next page
515  * (fromaddress += 256).
516  */
517 static int
518 sddr09_read23(struct us_data *us, unsigned long fromaddress,
519  int count, int controlshift, unsigned char *buf, int use_sg) {
520 
521  int bulklen = (count << controlshift);
522  return sddr09_readX(us, 3, fromaddress, count, bulklen,
523  buf, use_sg);
524 }
525 #endif
526 
527 /*
528  * Erase Command: 12 bytes.
529  * byte 0: opcode: EA
530  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
531  *
532  * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
533  * The byte address being erased is 2*Eaddress.
534  * The CIS cannot be erased.
535  */
536 static int
537 sddr09_erase(struct us_data *us, unsigned long Eaddress) {
538  unsigned char *command = us->iobuf;
539  int result;
540 
541  US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
542 
543  memset(command, 0, 12);
544  command[0] = 0xEA;
545  command[1] = LUNBITS;
546  command[6] = MSB_of(Eaddress>>16);
547  command[7] = LSB_of(Eaddress>>16);
548  command[8] = MSB_of(Eaddress & 0xFFFF);
549  command[9] = LSB_of(Eaddress & 0xFFFF);
550 
551  result = sddr09_send_scsi_command(us, command, 12);
552 
553  if (result)
554  US_DEBUGP("Result for send_control in sddr09_erase %d\n",
555  result);
556 
557  return result;
558 }
559 
560 /*
561  * Write CIS Command: 12 bytes.
562  * byte 0: opcode: EE
563  * bytes 2-5: write address in shorts
564  * bytes 10-11: sector count
565  *
566  * This writes at the indicated address. Don't know how it differs
567  * from E9. Maybe it does not erase? However, it will also write to
568  * the CIS.
569  *
570  * When two such commands on the same page follow each other directly,
571  * the second one is not done.
572  */
573 
574 /*
575  * Write Command: 12 bytes.
576  * byte 0: opcode: E9
577  * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
578  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
579  * bytes 10-11: sector count (big-endian, in 512-byte sectors).
580  *
581  * If write address equals erase address, the erase is done first,
582  * otherwise the write is done first. When erase address equals zero
583  * no erase is done?
584  */
585 static int
586 sddr09_writeX(struct us_data *us,
587  unsigned long Waddress, unsigned long Eaddress,
588  int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
589 
590  unsigned char *command = us->iobuf;
591  int result;
592 
593  command[0] = 0xE9;
594  command[1] = LUNBITS;
595 
596  command[2] = MSB_of(Waddress>>16);
597  command[3] = LSB_of(Waddress>>16);
598  command[4] = MSB_of(Waddress & 0xFFFF);
599  command[5] = LSB_of(Waddress & 0xFFFF);
600 
601  command[6] = MSB_of(Eaddress>>16);
602  command[7] = LSB_of(Eaddress>>16);
603  command[8] = MSB_of(Eaddress & 0xFFFF);
604  command[9] = LSB_of(Eaddress & 0xFFFF);
605 
606  command[10] = MSB_of(nr_of_pages);
607  command[11] = LSB_of(nr_of_pages);
608 
609  result = sddr09_send_scsi_command(us, command, 12);
610 
611  if (result) {
612  US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
613  result);
614  return result;
615  }
616 
617  result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
618  buf, bulklen, use_sg, NULL);
619 
620  if (result != USB_STOR_XFER_GOOD) {
621  US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
622  result);
623  return -EIO;
624  }
625  return 0;
626 }
627 
628 /* erase address, write same address */
629 static int
630 sddr09_write_inplace(struct us_data *us, unsigned long address,
631  int nr_of_pages, int pageshift, unsigned char *buf,
632  int use_sg) {
633  int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
634  return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
635  buf, use_sg);
636 }
637 
638 #if 0
639 /*
640  * Read Scatter Gather Command: 3+4n bytes.
641  * byte 0: opcode E7
642  * byte 2: n
643  * bytes 4i-1,4i,4i+1: page address
644  * byte 4i+2: page count
645  * (i=1..n)
646  *
647  * This reads several pages from the card to a single memory buffer.
648  * The last two bits of byte 1 have the same meaning as for E8.
649  */
650 static int
651 sddr09_read_sg_test_only(struct us_data *us) {
652  unsigned char *command = us->iobuf;
653  int result, bulklen, nsg, ct;
654  unsigned char *buf;
655  unsigned long address;
656 
657  nsg = bulklen = 0;
658  command[0] = 0xE7;
659  command[1] = LUNBITS;
660  command[2] = 0;
661  address = 040000; ct = 1;
662  nsg++;
663  bulklen += (ct << 9);
664  command[4*nsg+2] = ct;
665  command[4*nsg+1] = ((address >> 9) & 0xFF);
666  command[4*nsg+0] = ((address >> 17) & 0xFF);
667  command[4*nsg-1] = ((address >> 25) & 0xFF);
668 
669  address = 0340000; ct = 1;
670  nsg++;
671  bulklen += (ct << 9);
672  command[4*nsg+2] = ct;
673  command[4*nsg+1] = ((address >> 9) & 0xFF);
674  command[4*nsg+0] = ((address >> 17) & 0xFF);
675  command[4*nsg-1] = ((address >> 25) & 0xFF);
676 
677  address = 01000000; ct = 2;
678  nsg++;
679  bulklen += (ct << 9);
680  command[4*nsg+2] = ct;
681  command[4*nsg+1] = ((address >> 9) & 0xFF);
682  command[4*nsg+0] = ((address >> 17) & 0xFF);
683  command[4*nsg-1] = ((address >> 25) & 0xFF);
684 
685  command[2] = nsg;
686 
687  result = sddr09_send_scsi_command(us, command, 4*nsg+3);
688 
689  if (result) {
690  US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
691  result);
692  return result;
693  }
694 
695  buf = kmalloc(bulklen, GFP_NOIO);
696  if (!buf)
697  return -ENOMEM;
698 
700  buf, bulklen, NULL);
701  kfree(buf);
702  if (result != USB_STOR_XFER_GOOD) {
703  US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
704  result);
705  return -EIO;
706  }
707 
708  return 0;
709 }
710 #endif
711 
712 /*
713  * Read Status Command: 12 bytes.
714  * byte 0: opcode: EC
715  *
716  * Returns 64 bytes, all zero except for the first.
717  * bit 0: 1: Error
718  * bit 5: 1: Suspended
719  * bit 6: 1: Ready
720  * bit 7: 1: Not write-protected
721  */
722 
723 static int
724 sddr09_read_status(struct us_data *us, unsigned char *status) {
725 
726  unsigned char *command = us->iobuf;
727  unsigned char *data = us->iobuf;
728  int result;
729 
730  US_DEBUGP("Reading status...\n");
731 
732  memset(command, 0, 12);
733  command[0] = 0xEC;
734  command[1] = LUNBITS;
735 
736  result = sddr09_send_scsi_command(us, command, 12);
737  if (result)
738  return result;
739 
741  data, 64, NULL);
742  *status = data[0];
743  return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
744 }
745 
746 static int
747 sddr09_read_data(struct us_data *us,
748  unsigned long address,
749  unsigned int sectors) {
750 
751  struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
752  unsigned char *buffer;
753  unsigned int lba, maxlba, pba;
754  unsigned int page, pages;
755  unsigned int len, offset;
756  struct scatterlist *sg;
757  int result;
758 
759  // Figure out the initial LBA and page
760  lba = address >> info->blockshift;
761  page = (address & info->blockmask);
762  maxlba = info->capacity >> (info->pageshift + info->blockshift);
763  if (lba >= maxlba)
764  return -EIO;
765 
766  // Since we only read in one block at a time, we have to create
767  // a bounce buffer and move the data a piece at a time between the
768  // bounce buffer and the actual transfer buffer.
769 
770  len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
771  buffer = kmalloc(len, GFP_NOIO);
772  if (buffer == NULL) {
773  printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
774  return -ENOMEM;
775  }
776 
777  // This could be made much more efficient by checking for
778  // contiguous LBA's. Another exercise left to the student.
779 
780  result = 0;
781  offset = 0;
782  sg = NULL;
783 
784  while (sectors > 0) {
785 
786  /* Find number of pages we can read in this block */
787  pages = min(sectors, info->blocksize - page);
788  len = pages << info->pageshift;
789 
790  /* Not overflowing capacity? */
791  if (lba >= maxlba) {
792  US_DEBUGP("Error: Requested lba %u exceeds "
793  "maximum %u\n", lba, maxlba);
794  result = -EIO;
795  break;
796  }
797 
798  /* Find where this lba lives on disk */
799  pba = info->lba_to_pba[lba];
800 
801  if (pba == UNDEF) { /* this lba was never written */
802 
803  US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
804  pages, lba, page);
805 
806  /* This is not really an error. It just means
807  that the block has never been written.
808  Instead of returning an error
809  it is better to return all zero data. */
810 
811  memset(buffer, 0, len);
812 
813  } else {
814  US_DEBUGP("Read %d pages, from PBA %d"
815  " (LBA %d) page %d\n",
816  pages, pba, lba, page);
817 
818  address = ((pba << info->blockshift) + page) <<
819  info->pageshift;
820 
821  result = sddr09_read20(us, address>>1,
822  pages, info->pageshift, buffer, 0);
823  if (result)
824  break;
825  }
826 
827  // Store the data in the transfer buffer
829  &sg, &offset, TO_XFER_BUF);
830 
831  page = 0;
832  lba++;
833  sectors -= pages;
834  }
835 
836  kfree(buffer);
837  return result;
838 }
839 
840 static unsigned int
841 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
842  static unsigned int lastpba = 1;
843  int zonestart, end, i;
844 
845  zonestart = (lba/1000) << 10;
846  end = info->capacity >> (info->blockshift + info->pageshift);
847  end -= zonestart;
848  if (end > 1024)
849  end = 1024;
850 
851  for (i = lastpba+1; i < end; i++) {
852  if (info->pba_to_lba[zonestart+i] == UNDEF) {
853  lastpba = i;
854  return zonestart+i;
855  }
856  }
857  for (i = 0; i <= lastpba; i++) {
858  if (info->pba_to_lba[zonestart+i] == UNDEF) {
859  lastpba = i;
860  return zonestart+i;
861  }
862  }
863  return 0;
864 }
865 
866 static int
867 sddr09_write_lba(struct us_data *us, unsigned int lba,
868  unsigned int page, unsigned int pages,
869  unsigned char *ptr, unsigned char *blockbuffer) {
870 
871  struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
872  unsigned long address;
873  unsigned int pba, lbap;
874  unsigned int pagelen;
875  unsigned char *bptr, *cptr, *xptr;
876  unsigned char ecc[3];
877  int i, result, isnew;
878 
879  lbap = ((lba % 1000) << 1) | 0x1000;
880  if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
881  lbap ^= 1;
882  pba = info->lba_to_pba[lba];
883  isnew = 0;
884 
885  if (pba == UNDEF) {
886  pba = sddr09_find_unused_pba(info, lba);
887  if (!pba) {
889  "sddr09_write_lba: Out of unused blocks\n");
890  return -ENOSPC;
891  }
892  info->pba_to_lba[pba] = lba;
893  info->lba_to_pba[lba] = pba;
894  isnew = 1;
895  }
896 
897  if (pba == 1) {
898  /* Maybe it is impossible to write to PBA 1.
899  Fake success, but don't do anything. */
900  printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
901  return 0;
902  }
903 
904  pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
905 
906  /* read old contents */
907  address = (pba << (info->pageshift + info->blockshift));
908  result = sddr09_read22(us, address>>1, info->blocksize,
909  info->pageshift, blockbuffer, 0);
910  if (result)
911  return result;
912 
913  /* check old contents and fill lba */
914  for (i = 0; i < info->blocksize; i++) {
915  bptr = blockbuffer + i*pagelen;
916  cptr = bptr + info->pagesize;
917  nand_compute_ecc(bptr, ecc);
918  if (!nand_compare_ecc(cptr+13, ecc)) {
919  US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
920  i, pba);
921  nand_store_ecc(cptr+13, ecc);
922  }
923  nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
924  if (!nand_compare_ecc(cptr+8, ecc)) {
925  US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
926  i, pba);
927  nand_store_ecc(cptr+8, ecc);
928  }
929  cptr[6] = cptr[11] = MSB_of(lbap);
930  cptr[7] = cptr[12] = LSB_of(lbap);
931  }
932 
933  /* copy in new stuff and compute ECC */
934  xptr = ptr;
935  for (i = page; i < page+pages; i++) {
936  bptr = blockbuffer + i*pagelen;
937  cptr = bptr + info->pagesize;
938  memcpy(bptr, xptr, info->pagesize);
939  xptr += info->pagesize;
940  nand_compute_ecc(bptr, ecc);
941  nand_store_ecc(cptr+13, ecc);
942  nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
943  nand_store_ecc(cptr+8, ecc);
944  }
945 
946  US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
947 
948  result = sddr09_write_inplace(us, address>>1, info->blocksize,
949  info->pageshift, blockbuffer, 0);
950 
951  US_DEBUGP("sddr09_write_inplace returns %d\n", result);
952 
953 #if 0
954  {
955  unsigned char status = 0;
956  int result2 = sddr09_read_status(us, &status);
957  if (result2)
958  US_DEBUGP("sddr09_write_inplace: cannot read status\n");
959  else if (status != 0xc0)
960  US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
961  status);
962  }
963 #endif
964 
965 #if 0
966  {
967  int result2 = sddr09_test_unit_ready(us);
968  }
969 #endif
970 
971  return result;
972 }
973 
974 static int
975 sddr09_write_data(struct us_data *us,
976  unsigned long address,
977  unsigned int sectors) {
978 
979  struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
980  unsigned int lba, maxlba, page, pages;
981  unsigned int pagelen, blocklen;
982  unsigned char *blockbuffer;
983  unsigned char *buffer;
984  unsigned int len, offset;
985  struct scatterlist *sg;
986  int result;
987 
988  // Figure out the initial LBA and page
989  lba = address >> info->blockshift;
990  page = (address & info->blockmask);
991  maxlba = info->capacity >> (info->pageshift + info->blockshift);
992  if (lba >= maxlba)
993  return -EIO;
994 
995  // blockbuffer is used for reading in the old data, overwriting
996  // with the new data, and performing ECC calculations
997 
998  /* TODO: instead of doing kmalloc/kfree for each write,
999  add a bufferpointer to the info structure */
1000 
1001  pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1002  blocklen = (pagelen << info->blockshift);
1003  blockbuffer = kmalloc(blocklen, GFP_NOIO);
1004  if (!blockbuffer) {
1005  printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1006  return -ENOMEM;
1007  }
1008 
1009  // Since we don't write the user data directly to the device,
1010  // we have to create a bounce buffer and move the data a piece
1011  // at a time between the bounce buffer and the actual transfer buffer.
1012 
1013  len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1014  buffer = kmalloc(len, GFP_NOIO);
1015  if (buffer == NULL) {
1016  printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1017  kfree(blockbuffer);
1018  return -ENOMEM;
1019  }
1020 
1021  result = 0;
1022  offset = 0;
1023  sg = NULL;
1024 
1025  while (sectors > 0) {
1026 
1027  // Write as many sectors as possible in this block
1028 
1029  pages = min(sectors, info->blocksize - page);
1030  len = (pages << info->pageshift);
1031 
1032  /* Not overflowing capacity? */
1033  if (lba >= maxlba) {
1034  US_DEBUGP("Error: Requested lba %u exceeds "
1035  "maximum %u\n", lba, maxlba);
1036  result = -EIO;
1037  break;
1038  }
1039 
1040  // Get the data from the transfer buffer
1042  &sg, &offset, FROM_XFER_BUF);
1043 
1044  result = sddr09_write_lba(us, lba, page, pages,
1045  buffer, blockbuffer);
1046  if (result)
1047  break;
1048 
1049  page = 0;
1050  lba++;
1051  sectors -= pages;
1052  }
1053 
1054  kfree(buffer);
1055  kfree(blockbuffer);
1056 
1057  return result;
1058 }
1059 
1060 static int
1061 sddr09_read_control(struct us_data *us,
1062  unsigned long address,
1063  unsigned int blocks,
1064  unsigned char *content,
1065  int use_sg) {
1066 
1067  US_DEBUGP("Read control address %lu, blocks %d\n",
1068  address, blocks);
1069 
1070  return sddr09_read21(us, address, blocks,
1071  CONTROL_SHIFT, content, use_sg);
1072 }
1073 
1074 /*
1075  * Read Device ID Command: 12 bytes.
1076  * byte 0: opcode: ED
1077  *
1078  * Returns 2 bytes: Manufacturer ID and Device ID.
1079  * On more recent cards 3 bytes: the third byte is an option code A5
1080  * signifying that the secret command to read an 128-bit ID is available.
1081  * On still more recent cards 4 bytes: the fourth byte C0 means that
1082  * a second read ID cmd is available.
1083  */
1084 static int
1085 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086  unsigned char *command = us->iobuf;
1087  unsigned char *content = us->iobuf;
1088  int result, i;
1089 
1090  memset(command, 0, 12);
1091  command[0] = 0xED;
1092  command[1] = LUNBITS;
1093 
1094  result = sddr09_send_scsi_command(us, command, 12);
1095  if (result)
1096  return result;
1097 
1098  result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099  content, 64, NULL);
1100 
1101  for (i = 0; i < 4; i++)
1102  deviceID[i] = content[i];
1103 
1104  return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105 }
1106 
1107 static int
1108 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109  int result;
1110  unsigned char status;
1111 
1112  result = sddr09_read_status(us, &status);
1113  if (result) {
1114  US_DEBUGP("sddr09_get_wp: read_status fails\n");
1115  return result;
1116  }
1117  US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1118  if ((status & 0x80) == 0) {
1119  info->flags |= SDDR09_WP; /* write protected */
1120  US_DEBUGP(" WP");
1121  }
1122  if (status & 0x40)
1123  US_DEBUGP(" Ready");
1124  if (status & LUNBITS)
1125  US_DEBUGP(" Suspended");
1126  if (status & 0x1)
1127  US_DEBUGP(" Error");
1128  US_DEBUGP("\n");
1129  return 0;
1130 }
1131 
1132 #if 0
1133 /*
1134  * Reset Command: 12 bytes.
1135  * byte 0: opcode: EB
1136  */
1137 static int
1138 sddr09_reset(struct us_data *us) {
1139 
1140  unsigned char *command = us->iobuf;
1141 
1142  memset(command, 0, 12);
1143  command[0] = 0xEB;
1144  command[1] = LUNBITS;
1145 
1146  return sddr09_send_scsi_command(us, command, 12);
1147 }
1148 #endif
1149 
1150 static struct nand_flash_dev *
1151 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152  struct nand_flash_dev *cardinfo;
1153  unsigned char deviceID[4];
1154  char blurbtxt[256];
1155  int result;
1156 
1157  US_DEBUGP("Reading capacity...\n");
1158 
1159  result = sddr09_read_deviceID(us, deviceID);
1160 
1161  if (result) {
1162  US_DEBUGP("Result of read_deviceID is %d\n", result);
1163  printk(KERN_WARNING "sddr09: could not read card info\n");
1164  return NULL;
1165  }
1166 
1167  sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1168  deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1169 
1170  /* Byte 0 is the manufacturer */
1171  sprintf(blurbtxt + strlen(blurbtxt),
1172  ": Manuf. %s",
1173  nand_flash_manufacturer(deviceID[0]));
1174 
1175  /* Byte 1 is the device type */
1176  cardinfo = nand_find_id(deviceID[1]);
1177  if (cardinfo) {
1178  /* MB or MiB? It is neither. A 16 MB card has
1179  17301504 raw bytes, of which 16384000 are
1180  usable for user data. */
1181  sprintf(blurbtxt + strlen(blurbtxt),
1182  ", %d MB", 1<<(cardinfo->chipshift - 20));
1183  } else {
1184  sprintf(blurbtxt + strlen(blurbtxt),
1185  ", type unrecognized");
1186  }
1187 
1188  /* Byte 2 is code to signal availability of 128-bit ID */
1189  if (deviceID[2] == 0xa5) {
1190  sprintf(blurbtxt + strlen(blurbtxt),
1191  ", 128-bit ID");
1192  }
1193 
1194  /* Byte 3 announces the availability of another read ID command */
1195  if (deviceID[3] == 0xc0) {
1196  sprintf(blurbtxt + strlen(blurbtxt),
1197  ", extra cmd");
1198  }
1199 
1200  if (flags & SDDR09_WP)
1201  sprintf(blurbtxt + strlen(blurbtxt),
1202  ", WP");
1203 
1204  printk(KERN_WARNING "%s\n", blurbtxt);
1205 
1206  return cardinfo;
1207 }
1208 
1209 static int
1210 sddr09_read_map(struct us_data *us) {
1211 
1212  struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1213  int numblocks, alloc_len, alloc_blocks;
1214  int i, j, result;
1215  unsigned char *buffer, *buffer_end, *ptr;
1216  unsigned int lba, lbact;
1217 
1218  if (!info->capacity)
1219  return -1;
1220 
1221  // size of a block is 1 << (blockshift + pageshift) bytes
1222  // divide into the total capacity to get the number of blocks
1223 
1224  numblocks = info->capacity >> (info->blockshift + info->pageshift);
1225 
1226  // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1227  // but only use a 64 KB buffer
1228  // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1229 #define SDDR09_READ_MAP_BUFSZ 65536
1230 
1231  alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1232  alloc_len = (alloc_blocks << CONTROL_SHIFT);
1233  buffer = kmalloc(alloc_len, GFP_NOIO);
1234  if (buffer == NULL) {
1235  printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1236  result = -1;
1237  goto done;
1238  }
1239  buffer_end = buffer + alloc_len;
1240 
1241 #undef SDDR09_READ_MAP_BUFSZ
1242 
1243  kfree(info->lba_to_pba);
1244  kfree(info->pba_to_lba);
1245  info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1246  info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1247 
1248  if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1249  printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1250  result = -1;
1251  goto done;
1252  }
1253 
1254  for (i = 0; i < numblocks; i++)
1255  info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1256 
1257  /*
1258  * Define lba-pba translation table
1259  */
1260 
1261  ptr = buffer_end;
1262  for (i = 0; i < numblocks; i++) {
1263  ptr += (1 << CONTROL_SHIFT);
1264  if (ptr >= buffer_end) {
1265  unsigned long address;
1266 
1267  address = i << (info->pageshift + info->blockshift);
1268  result = sddr09_read_control(
1269  us, address>>1,
1270  min(alloc_blocks, numblocks - i),
1271  buffer, 0);
1272  if (result) {
1273  result = -1;
1274  goto done;
1275  }
1276  ptr = buffer;
1277  }
1278 
1279  if (i == 0 || i == 1) {
1280  info->pba_to_lba[i] = UNUSABLE;
1281  continue;
1282  }
1283 
1284  /* special PBAs have control field 0^16 */
1285  for (j = 0; j < 16; j++)
1286  if (ptr[j] != 0)
1287  goto nonz;
1288  info->pba_to_lba[i] = UNUSABLE;
1289  printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1290  i);
1291  continue;
1292 
1293  nonz:
1294  /* unwritten PBAs have control field FF^16 */
1295  for (j = 0; j < 16; j++)
1296  if (ptr[j] != 0xff)
1297  goto nonff;
1298  continue;
1299 
1300  nonff:
1301  /* normal PBAs start with six FFs */
1302  if (j < 6) {
1304  "sddr09: PBA %d has no logical mapping: "
1305  "reserved area = %02X%02X%02X%02X "
1306  "data status %02X block status %02X\n",
1307  i, ptr[0], ptr[1], ptr[2], ptr[3],
1308  ptr[4], ptr[5]);
1309  info->pba_to_lba[i] = UNUSABLE;
1310  continue;
1311  }
1312 
1313  if ((ptr[6] >> 4) != 0x01) {
1315  "sddr09: PBA %d has invalid address field "
1316  "%02X%02X/%02X%02X\n",
1317  i, ptr[6], ptr[7], ptr[11], ptr[12]);
1318  info->pba_to_lba[i] = UNUSABLE;
1319  continue;
1320  }
1321 
1322  /* check even parity */
1323  if (parity[ptr[6] ^ ptr[7]]) {
1325  "sddr09: Bad parity in LBA for block %d"
1326  " (%02X %02X)\n", i, ptr[6], ptr[7]);
1327  info->pba_to_lba[i] = UNUSABLE;
1328  continue;
1329  }
1330 
1331  lba = short_pack(ptr[7], ptr[6]);
1332  lba = (lba & 0x07FF) >> 1;
1333 
1334  /*
1335  * Every 1024 physical blocks ("zone"), the LBA numbers
1336  * go back to zero, but are within a higher block of LBA's.
1337  * Also, there is a maximum of 1000 LBA's per zone.
1338  * In other words, in PBA 1024-2047 you will find LBA 0-999
1339  * which are really LBA 1000-1999. This allows for 24 bad
1340  * or special physical blocks per zone.
1341  */
1342 
1343  if (lba >= 1000) {
1345  "sddr09: Bad low LBA %d for block %d\n",
1346  lba, i);
1347  goto possibly_erase;
1348  }
1349 
1350  lba += 1000*(i/0x400);
1351 
1352  if (info->lba_to_pba[lba] != UNDEF) {
1354  "sddr09: LBA %d seen for PBA %d and %d\n",
1355  lba, info->lba_to_pba[lba], i);
1356  goto possibly_erase;
1357  }
1358 
1359  info->pba_to_lba[i] = lba;
1360  info->lba_to_pba[lba] = i;
1361  continue;
1362 
1363  possibly_erase:
1364  if (erase_bad_lba_entries) {
1365  unsigned long address;
1366 
1367  address = (i << (info->pageshift + info->blockshift));
1368  sddr09_erase(us, address>>1);
1369  info->pba_to_lba[i] = UNDEF;
1370  } else
1371  info->pba_to_lba[i] = UNUSABLE;
1372  }
1373 
1374  /*
1375  * Approximate capacity. This is not entirely correct yet,
1376  * since a zone with less than 1000 usable pages leads to
1377  * missing LBAs. Especially if it is the last zone, some
1378  * LBAs can be past capacity.
1379  */
1380  lbact = 0;
1381  for (i = 0; i < numblocks; i += 1024) {
1382  int ct = 0;
1383 
1384  for (j = 0; j < 1024 && i+j < numblocks; j++) {
1385  if (info->pba_to_lba[i+j] != UNUSABLE) {
1386  if (ct >= 1000)
1387  info->pba_to_lba[i+j] = SPARE;
1388  else
1389  ct++;
1390  }
1391  }
1392  lbact += ct;
1393  }
1394  info->lbact = lbact;
1395  US_DEBUGP("Found %d LBA's\n", lbact);
1396  result = 0;
1397 
1398  done:
1399  if (result != 0) {
1400  kfree(info->lba_to_pba);
1401  kfree(info->pba_to_lba);
1402  info->lba_to_pba = NULL;
1403  info->pba_to_lba = NULL;
1404  }
1405  kfree(buffer);
1406  return result;
1407 }
1408 
1409 static void
1410 sddr09_card_info_destructor(void *extra) {
1411  struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1412 
1413  if (!info)
1414  return;
1415 
1416  kfree(info->lba_to_pba);
1417  kfree(info->pba_to_lba);
1418 }
1419 
1420 static int
1421 sddr09_common_init(struct us_data *us) {
1422  int result;
1423 
1424  /* set the configuration -- STALL is an acceptable response here */
1425  if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1426  US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1427  ->actconfig->desc.bConfigurationValue);
1428  return -EINVAL;
1429  }
1430 
1431  result = usb_reset_configuration(us->pusb_dev);
1432  US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1433  if (result == -EPIPE) {
1434  US_DEBUGP("-- stall on control interface\n");
1435  } else if (result != 0) {
1436  /* it's not a stall, but another error -- time to bail */
1437  US_DEBUGP("-- Unknown error. Rejecting device\n");
1438  return -EINVAL;
1439  }
1440 
1441  us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1442  if (!us->extra)
1443  return -ENOMEM;
1444  us->extra_destructor = sddr09_card_info_destructor;
1445 
1446  nand_init_ecc();
1447  return 0;
1448 }
1449 
1450 
1451 /*
1452  * This is needed at a very early stage. If this is not listed in the
1453  * unusual devices list but called from here then LUN 0 of the combo reader
1454  * is not recognized. But I do not know what precisely these calls do.
1455  */
1456 static int
1457 usb_stor_sddr09_dpcm_init(struct us_data *us) {
1458  int result;
1459  unsigned char *data = us->iobuf;
1460 
1461  result = sddr09_common_init(us);
1462  if (result)
1463  return result;
1464 
1465  result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1466  if (result) {
1467  US_DEBUGP("sddr09_init: send_command fails\n");
1468  return result;
1469  }
1470 
1471  US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1472  // get 07 02
1473 
1474  result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1475  if (result) {
1476  US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1477  return result;
1478  }
1479 
1480  US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1481  // get 07 00
1482 
1483  result = sddr09_request_sense(us, data, 18);
1484  if (result == 0 && data[2] != 0) {
1485  int j;
1486  for (j=0; j<18; j++)
1487  printk(" %02X", data[j]);
1488  printk("\n");
1489  // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1490  // 70: current command
1491  // sense key 0, sense code 0, extd sense code 0
1492  // additional transfer length * = sizeof(data) - 7
1493  // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1494  // sense key 06, sense code 28: unit attention,
1495  // not ready to ready transition
1496  }
1497 
1498  // test unit ready
1499 
1500  return 0; /* not result */
1501 }
1502 
1503 /*
1504  * Transport for the Microtech DPCM-USB
1505  */
1506 static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1507 {
1508  int ret;
1509 
1510  US_DEBUGP("dpcm_transport: LUN=%d\n", srb->device->lun);
1511 
1512  switch (srb->device->lun) {
1513  case 0:
1514 
1515  /*
1516  * LUN 0 corresponds to the CompactFlash card reader.
1517  */
1518  ret = usb_stor_CB_transport(srb, us);
1519  break;
1520 
1521  case 1:
1522 
1523  /*
1524  * LUN 1 corresponds to the SmartMedia card reader.
1525  */
1526 
1527  /*
1528  * Set the LUN to 0 (just in case).
1529  */
1530  srb->device->lun = 0;
1531  ret = sddr09_transport(srb, us);
1532  srb->device->lun = 1;
1533  break;
1534 
1535  default:
1536  US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1537  srb->device->lun);
1539  break;
1540  }
1541  return ret;
1542 }
1543 
1544 
1545 /*
1546  * Transport for the Sandisk SDDR-09
1547  */
1548 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1549 {
1550  static unsigned char sensekey = 0, sensecode = 0;
1551  static unsigned char havefakesense = 0;
1552  int result, i;
1553  unsigned char *ptr = us->iobuf;
1554  unsigned long capacity;
1555  unsigned int page, pages;
1556 
1557  struct sddr09_card_info *info;
1558 
1559  static unsigned char inquiry_response[8] = {
1560  0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1561  };
1562 
1563  /* note: no block descriptor support */
1564  static unsigned char mode_page_01[19] = {
1565  0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1566  0x01, 0x0A,
1567  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1568  };
1569 
1570  info = (struct sddr09_card_info *)us->extra;
1571 
1572  if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1573  /* for a faked command, we have to follow with a faked sense */
1574  memset(ptr, 0, 18);
1575  ptr[0] = 0x70;
1576  ptr[2] = sensekey;
1577  ptr[7] = 11;
1578  ptr[12] = sensecode;
1579  usb_stor_set_xfer_buf(ptr, 18, srb);
1580  sensekey = sensecode = havefakesense = 0;
1581  return USB_STOR_TRANSPORT_GOOD;
1582  }
1583 
1584  havefakesense = 1;
1585 
1586  /* Dummy up a response for INQUIRY since SDDR09 doesn't
1587  respond to INQUIRY commands */
1588 
1589  if (srb->cmnd[0] == INQUIRY) {
1590  memcpy(ptr, inquiry_response, 8);
1591  fill_inquiry_response(us, ptr, 36);
1592  return USB_STOR_TRANSPORT_GOOD;
1593  }
1594 
1595  if (srb->cmnd[0] == READ_CAPACITY) {
1596  struct nand_flash_dev *cardinfo;
1597 
1598  sddr09_get_wp(us, info); /* read WP bit */
1599 
1600  cardinfo = sddr09_get_cardinfo(us, info->flags);
1601  if (!cardinfo) {
1602  /* probably no media */
1603  init_error:
1604  sensekey = 0x02; /* not ready */
1605  sensecode = 0x3a; /* medium not present */
1607  }
1608 
1609  info->capacity = (1 << cardinfo->chipshift);
1610  info->pageshift = cardinfo->pageshift;
1611  info->pagesize = (1 << info->pageshift);
1612  info->blockshift = cardinfo->blockshift;
1613  info->blocksize = (1 << info->blockshift);
1614  info->blockmask = info->blocksize - 1;
1615 
1616  // map initialization, must follow get_cardinfo()
1617  if (sddr09_read_map(us)) {
1618  /* probably out of memory */
1619  goto init_error;
1620  }
1621 
1622  // Report capacity
1623 
1624  capacity = (info->lbact << info->blockshift) - 1;
1625 
1626  ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1627 
1628  // Report page size
1629 
1630  ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1631  usb_stor_set_xfer_buf(ptr, 8, srb);
1632 
1633  return USB_STOR_TRANSPORT_GOOD;
1634  }
1635 
1636  if (srb->cmnd[0] == MODE_SENSE_10) {
1637  int modepage = (srb->cmnd[2] & 0x3F);
1638 
1639  /* They ask for the Read/Write error recovery page,
1640  or for all pages. */
1641  /* %% We should check DBD %% */
1642  if (modepage == 0x01 || modepage == 0x3F) {
1643  US_DEBUGP("SDDR09: Dummy up request for "
1644  "mode page 0x%x\n", modepage);
1645 
1646  memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1647  ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1648  ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1649  usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1650  return USB_STOR_TRANSPORT_GOOD;
1651  }
1652 
1653  sensekey = 0x05; /* illegal request */
1654  sensecode = 0x24; /* invalid field in CDB */
1656  }
1657 
1658  if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1659  return USB_STOR_TRANSPORT_GOOD;
1660 
1661  havefakesense = 0;
1662 
1663  if (srb->cmnd[0] == READ_10) {
1664 
1665  page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1666  page <<= 16;
1667  page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1668  pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1669 
1670  US_DEBUGP("READ_10: read page %d pagect %d\n",
1671  page, pages);
1672 
1673  result = sddr09_read_data(us, page, pages);
1674  return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1676  }
1677 
1678  if (srb->cmnd[0] == WRITE_10) {
1679 
1680  page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1681  page <<= 16;
1682  page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1683  pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1684 
1685  US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1686  page, pages);
1687 
1688  result = sddr09_write_data(us, page, pages);
1689  return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1691  }
1692 
1693  /* catch-all for all other commands, except
1694  * pass TEST_UNIT_READY and REQUEST_SENSE through
1695  */
1696  if (srb->cmnd[0] != TEST_UNIT_READY &&
1697  srb->cmnd[0] != REQUEST_SENSE) {
1698  sensekey = 0x05; /* illegal request */
1699  sensecode = 0x20; /* invalid command */
1700  havefakesense = 1;
1702  }
1703 
1704  for (; srb->cmd_len<12; srb->cmd_len++)
1705  srb->cmnd[srb->cmd_len] = 0;
1706 
1707  srb->cmnd[1] = LUNBITS;
1708 
1709  ptr[0] = 0;
1710  for (i=0; i<12; i++)
1711  sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1712 
1713  US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1714 
1715  result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1716  if (result) {
1717  US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1718  "returns %d\n", result);
1719  return USB_STOR_TRANSPORT_ERROR;
1720  }
1721 
1722  if (scsi_bufflen(srb) == 0)
1723  return USB_STOR_TRANSPORT_GOOD;
1724 
1725  if (srb->sc_data_direction == DMA_TO_DEVICE ||
1727  unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1728  ? us->send_bulk_pipe : us->recv_bulk_pipe;
1729 
1730  US_DEBUGP("SDDR09: %s %d bytes\n",
1731  (srb->sc_data_direction == DMA_TO_DEVICE) ?
1732  "sending" : "receiving",
1733  scsi_bufflen(srb));
1734 
1735  result = usb_stor_bulk_srb(us, pipe, srb);
1736 
1737  return (result == USB_STOR_XFER_GOOD ?
1739  }
1740 
1741  return USB_STOR_TRANSPORT_GOOD;
1742 }
1743 
1744 /*
1745  * Initialization routine for the sddr09 subdriver
1746  */
1747 static int
1748 usb_stor_sddr09_init(struct us_data *us) {
1749  return sddr09_common_init(us);
1750 }
1751 
1752 static int sddr09_probe(struct usb_interface *intf,
1753  const struct usb_device_id *id)
1754 {
1755  struct us_data *us;
1756  int result;
1757 
1758  result = usb_stor_probe1(&us, intf, id,
1759  (id - sddr09_usb_ids) + sddr09_unusual_dev_list);
1760  if (result)
1761  return result;
1762 
1763  if (us->protocol == USB_PR_DPCM_USB) {
1764  us->transport_name = "Control/Bulk-EUSB/SDDR09";
1765  us->transport = dpcm_transport;
1767  us->max_lun = 1;
1768  } else {
1769  us->transport_name = "EUSB/SDDR09";
1770  us->transport = sddr09_transport;
1772  us->max_lun = 0;
1773  }
1774 
1775  result = usb_stor_probe2(us);
1776  return result;
1777 }
1778 
1779 static struct usb_driver sddr09_driver = {
1780  .name = "ums-sddr09",
1781  .probe = sddr09_probe,
1782  .disconnect = usb_stor_disconnect,
1783  .suspend = usb_stor_suspend,
1784  .resume = usb_stor_resume,
1785  .reset_resume = usb_stor_reset_resume,
1786  .pre_reset = usb_stor_pre_reset,
1787  .post_reset = usb_stor_post_reset,
1788  .id_table = sddr09_usb_ids,
1789  .soft_unbind = 1,
1790  .no_dynamic_id = 1,
1791 };
1792 
1793 module_usb_driver(sddr09_driver);