Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
stv06xx_hdcs.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher
3  * Mark Cave-Ayland, Carlo E Prelz, Dick Streefland
4  * Copyright (c) 2002, 2003 Tuukka Toivonen
5  * Copyright (c) 2008 Erik AndrĂ©n
6  * Copyright (c) 2008 Chia-I Wu
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  *
22  * P/N 861037: Sensor HDCS1000 ASIC STV0600
23  * P/N 861050-0010: Sensor HDCS1000 ASIC STV0600
24  * P/N 861050-0020: Sensor Photobit PB100 ASIC STV0600-1 - QuickCam Express
25  * P/N 861055: Sensor ST VV6410 ASIC STV0610 - LEGO cam
26  * P/N 861075-0040: Sensor HDCS1000 ASIC
27  * P/N 961179-0700: Sensor ST VV6410 ASIC STV0602 - Dexxa WebCam USB
28  * P/N 861040-0000: Sensor ST VV6410 ASIC STV0610 - QuickCam Web
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include "stv06xx_hdcs.h"
34 
35 static struct v4l2_pix_format hdcs1x00_mode[] = {
36  {
41  .sizeimage =
43  .bytesperline = HDCS_1X00_DEF_WIDTH,
44  .colorspace = V4L2_COLORSPACE_SRGB,
45  .priv = 1
46  }
47 };
48 
49 static struct v4l2_pix_format hdcs1020_mode[] = {
50  {
55  .sizeimage =
57  .bytesperline = HDCS_1020_DEF_WIDTH,
58  .colorspace = V4L2_COLORSPACE_SRGB,
59  .priv = 1
60  }
61 };
62 
67 };
68 
69 /* no lock? */
70 struct hdcs {
72  int w, h;
73 
74  /* visible area of the sensor array */
75  struct {
76  int left, top;
77  int width, height;
78  int border;
79  } array;
80 
81  struct {
82  /* Column timing overhead */
84  /* Column processing overhead */
86  /* Row sample period constant */
88  /* Exposure reset duration */
90  } exp;
91 
92  int psmp;
93 };
94 
95 static int hdcs_reg_write_seq(struct sd *sd, u8 reg, u8 *vals, u8 len)
96 {
97  u8 regs[I2C_MAX_BYTES * 2];
98  int i;
99 
100  if (unlikely((len <= 0) || (len >= I2C_MAX_BYTES) ||
101  (reg + len > 0xff)))
102  return -EINVAL;
103 
104  for (i = 0; i < len; i++) {
105  regs[2 * i] = reg;
106  regs[2 * i + 1] = vals[i];
107  /* All addresses are shifted left one bit
108  * as bit 0 toggles r/w */
109  reg += 2;
110  }
111 
112  return stv06xx_write_sensor_bytes(sd, regs, len);
113 }
114 
115 static int hdcs_set_state(struct sd *sd, enum hdcs_power_state state)
116 {
117  struct hdcs *hdcs = sd->sensor_priv;
118  u8 val;
119  int ret;
120 
121  if (hdcs->state == state)
122  return 0;
123 
124  /* we need to go idle before running or sleeping */
125  if (hdcs->state != HDCS_STATE_IDLE) {
126  ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0);
127  if (ret)
128  return ret;
129  }
130 
131  hdcs->state = HDCS_STATE_IDLE;
132 
133  if (state == HDCS_STATE_IDLE)
134  return 0;
135 
136  switch (state) {
137  case HDCS_STATE_SLEEP:
138  val = HDCS_SLEEP_MODE;
139  break;
140 
141  case HDCS_STATE_RUN:
142  val = HDCS_RUN_ENABLE;
143  break;
144 
145  default:
146  return -EINVAL;
147  }
148 
149  ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), val);
150 
151  /* Update the state if the write succeeded */
152  if (!ret)
153  hdcs->state = state;
154 
155  return ret;
156 }
157 
158 static int hdcs_reset(struct sd *sd)
159 {
160  struct hdcs *hdcs = sd->sensor_priv;
161  int err;
162 
163  err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 1);
164  if (err < 0)
165  return err;
166 
167  err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0);
168  if (err < 0)
169  hdcs->state = HDCS_STATE_IDLE;
170 
171  return err;
172 }
173 
174 static int hdcs_set_exposure(struct gspca_dev *gspca_dev, __s32 val)
175 {
176  struct sd *sd = (struct sd *) gspca_dev;
177  struct hdcs *hdcs = sd->sensor_priv;
178  int rowexp, srowexp;
179  int max_srowexp;
180  /* Column time period */
181  int ct;
182  /* Column processing period */
183  int cp;
184  /* Row processing period */
185  int rp;
186  /* Minimum number of column timing periods
187  within the column processing period */
188  int mnct;
189  int cycles, err;
190  u8 exp[14];
191 
192  cycles = val * HDCS_CLK_FREQ_MHZ * 257;
193 
194  ct = hdcs->exp.cto + hdcs->psmp + (HDCS_ADC_START_SIG_DUR + 2);
195  cp = hdcs->exp.cto + (hdcs->w * ct / 2);
196 
197  /* the cycles one row takes */
198  rp = hdcs->exp.rs + cp;
199 
200  rowexp = cycles / rp;
201 
202  /* the remaining cycles */
203  cycles -= rowexp * rp;
204 
205  /* calculate sub-row exposure */
206  if (IS_1020(sd)) {
207  /* see HDCS-1020 datasheet 3.5.6.4, p. 63 */
208  srowexp = hdcs->w - (cycles + hdcs->exp.er + 13) / ct;
209 
210  mnct = (hdcs->exp.er + 12 + ct - 1) / ct;
211  max_srowexp = hdcs->w - mnct;
212  } else {
213  /* see HDCS-1000 datasheet 3.4.5.5, p. 61 */
214  srowexp = cp - hdcs->exp.er - 6 - cycles;
215 
216  mnct = (hdcs->exp.er + 5 + ct - 1) / ct;
217  max_srowexp = cp - mnct * ct - 1;
218  }
219 
220  if (srowexp < 0)
221  srowexp = 0;
222  else if (srowexp > max_srowexp)
223  srowexp = max_srowexp;
224 
225  if (IS_1020(sd)) {
226  exp[0] = HDCS20_CONTROL;
227  exp[1] = 0x00; /* Stop streaming */
228  exp[2] = HDCS_ROWEXPL;
229  exp[3] = rowexp & 0xff;
230  exp[4] = HDCS_ROWEXPH;
231  exp[5] = rowexp >> 8;
232  exp[6] = HDCS20_SROWEXP;
233  exp[7] = (srowexp >> 2) & 0xff;
234  exp[8] = HDCS20_ERROR;
235  exp[9] = 0x10; /* Clear exposure error flag*/
236  exp[10] = HDCS20_CONTROL;
237  exp[11] = 0x04; /* Restart streaming */
238  err = stv06xx_write_sensor_bytes(sd, exp, 6);
239  } else {
240  exp[0] = HDCS00_CONTROL;
241  exp[1] = 0x00; /* Stop streaming */
242  exp[2] = HDCS_ROWEXPL;
243  exp[3] = rowexp & 0xff;
244  exp[4] = HDCS_ROWEXPH;
245  exp[5] = rowexp >> 8;
246  exp[6] = HDCS00_SROWEXPL;
247  exp[7] = srowexp & 0xff;
248  exp[8] = HDCS00_SROWEXPH;
249  exp[9] = srowexp >> 8;
250  exp[10] = HDCS_STATUS;
251  exp[11] = 0x10; /* Clear exposure error flag*/
252  exp[12] = HDCS00_CONTROL;
253  exp[13] = 0x04; /* Restart streaming */
254  err = stv06xx_write_sensor_bytes(sd, exp, 7);
255  if (err < 0)
256  return err;
257  }
258  PDEBUG(D_V4L2, "Writing exposure %d, rowexp %d, srowexp %d",
259  val, rowexp, srowexp);
260  return err;
261 }
262 
263 static int hdcs_set_gains(struct sd *sd, u8 g)
264 {
265  int err;
266  u8 gains[4];
267 
268  /* the voltage gain Av = (1 + 19 * val / 127) * (1 + bit7) */
269  if (g > 127)
270  g = 0x80 | (g / 2);
271 
272  gains[0] = g;
273  gains[1] = g;
274  gains[2] = g;
275  gains[3] = g;
276 
277  err = hdcs_reg_write_seq(sd, HDCS_ERECPGA, gains, 4);
278  return err;
279 }
280 
281 static int hdcs_set_gain(struct gspca_dev *gspca_dev, __s32 val)
282 {
283  PDEBUG(D_V4L2, "Writing gain %d", val);
284  return hdcs_set_gains((struct sd *) gspca_dev,
285  val & 0xff);
286 }
287 
288 static int hdcs_set_size(struct sd *sd,
289  unsigned int width, unsigned int height)
290 {
291  struct hdcs *hdcs = sd->sensor_priv;
292  u8 win[4];
293  unsigned int x, y;
294  int err;
295 
296  /* must be multiple of 4 */
297  width = (width + 3) & ~0x3;
298  height = (height + 3) & ~0x3;
299 
300  if (width > hdcs->array.width)
301  width = hdcs->array.width;
302 
303  if (IS_1020(sd)) {
304  /* the borders are also invalid */
305  if (height + 2 * hdcs->array.border + HDCS_1020_BOTTOM_Y_SKIP
306  > hdcs->array.height)
307  height = hdcs->array.height - 2 * hdcs->array.border -
309 
310  y = (hdcs->array.height - HDCS_1020_BOTTOM_Y_SKIP - height) / 2
311  + hdcs->array.top;
312  } else {
313  if (height > hdcs->array.height)
314  height = hdcs->array.height;
315 
316  y = hdcs->array.top + (hdcs->array.height - height) / 2;
317  }
318 
319  x = hdcs->array.left + (hdcs->array.width - width) / 2;
320 
321  win[0] = y / 4;
322  win[1] = x / 4;
323  win[2] = (y + height) / 4 - 1;
324  win[3] = (x + width) / 4 - 1;
325 
326  err = hdcs_reg_write_seq(sd, HDCS_FWROW, win, 4);
327  if (err < 0)
328  return err;
329 
330  /* Update the current width and height */
331  hdcs->w = width;
332  hdcs->h = height;
333  return err;
334 }
335 
336 static int hdcs_s_ctrl(struct v4l2_ctrl *ctrl)
337 {
338  struct gspca_dev *gspca_dev =
339  container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
340  int err = -EINVAL;
341 
342  switch (ctrl->id) {
343  case V4L2_CID_GAIN:
344  err = hdcs_set_gain(gspca_dev, ctrl->val);
345  break;
346  case V4L2_CID_EXPOSURE:
347  err = hdcs_set_exposure(gspca_dev, ctrl->val);
348  break;
349  }
350  return err;
351 }
352 
353 static const struct v4l2_ctrl_ops hdcs_ctrl_ops = {
354  .s_ctrl = hdcs_s_ctrl,
355 };
356 
357 static int hdcs_init_controls(struct sd *sd)
358 {
359  struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler;
360 
361  v4l2_ctrl_handler_init(hdl, 2);
362  v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops,
364  v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops,
365  V4L2_CID_GAIN, 0, 0xff, 1, HDCS_DEFAULT_GAIN);
366  return hdl->error;
367 }
368 
369 static int hdcs_probe_1x00(struct sd *sd)
370 {
371  struct hdcs *hdcs;
372  u16 sensor;
373  int ret;
374 
375  ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor);
376  if (ret < 0 || sensor != 0x08)
377  return -ENODEV;
378 
379  pr_info("HDCS-1000/1100 sensor detected\n");
380 
381  sd->gspca_dev.cam.cam_mode = hdcs1x00_mode;
382  sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1x00_mode);
383 
384  hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL);
385  if (!hdcs)
386  return -ENOMEM;
387 
388  hdcs->array.left = 8;
389  hdcs->array.top = 8;
390  hdcs->array.width = HDCS_1X00_DEF_WIDTH;
391  hdcs->array.height = HDCS_1X00_DEF_HEIGHT;
392  hdcs->array.border = 4;
393 
394  hdcs->exp.cto = 4;
395  hdcs->exp.cpo = 2;
396  hdcs->exp.rs = 186;
397  hdcs->exp.er = 100;
398 
399  /*
400  * Frame rate on HDCS-1000 with STV600 depends on PSMP:
401  * 4 = doesn't work at all
402  * 5 = 7.8 fps,
403  * 6 = 6.9 fps,
404  * 8 = 6.3 fps,
405  * 10 = 5.5 fps,
406  * 15 = 4.4 fps,
407  * 31 = 2.8 fps
408  *
409  * Frame rate on HDCS-1000 with STV602 depends on PSMP:
410  * 15 = doesn't work at all
411  * 18 = doesn't work at all
412  * 19 = 7.3 fps
413  * 20 = 7.4 fps
414  * 21 = 7.4 fps
415  * 22 = 7.4 fps
416  * 24 = 6.3 fps
417  * 30 = 5.4 fps
418  */
419  hdcs->psmp = (sd->bridge == BRIDGE_STV602) ? 20 : 5;
420 
421  sd->sensor_priv = hdcs;
422 
423  return 0;
424 }
425 
426 static int hdcs_probe_1020(struct sd *sd)
427 {
428  struct hdcs *hdcs;
429  u16 sensor;
430  int ret;
431 
432  ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor);
433  if (ret < 0 || sensor != 0x10)
434  return -ENODEV;
435 
436  pr_info("HDCS-1020 sensor detected\n");
437 
438  sd->gspca_dev.cam.cam_mode = hdcs1020_mode;
439  sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1020_mode);
440 
441  hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL);
442  if (!hdcs)
443  return -ENOMEM;
444 
445  /*
446  * From Andrey's test image: looks like HDCS-1020 upper-left
447  * visible pixel is at 24,8 (y maybe even smaller?) and lower-right
448  * visible pixel at 375,299 (x maybe even larger?)
449  */
450  hdcs->array.left = 24;
451  hdcs->array.top = 4;
452  hdcs->array.width = HDCS_1020_DEF_WIDTH;
453  hdcs->array.height = 304;
454  hdcs->array.border = 4;
455 
456  hdcs->psmp = 6;
457 
458  hdcs->exp.cto = 3;
459  hdcs->exp.cpo = 3;
460  hdcs->exp.rs = 155;
461  hdcs->exp.er = 96;
462 
463  sd->sensor_priv = hdcs;
464 
465  return 0;
466 }
467 
468 static int hdcs_start(struct sd *sd)
469 {
470  PDEBUG(D_STREAM, "Starting stream");
471 
472  return hdcs_set_state(sd, HDCS_STATE_RUN);
473 }
474 
475 static int hdcs_stop(struct sd *sd)
476 {
477  PDEBUG(D_STREAM, "Halting stream");
478 
479  return hdcs_set_state(sd, HDCS_STATE_SLEEP);
480 }
481 
482 static int hdcs_init(struct sd *sd)
483 {
484  struct hdcs *hdcs = sd->sensor_priv;
485  int i, err = 0;
486 
487  /* Set the STV0602AA in STV0600 emulation mode */
488  if (sd->bridge == BRIDGE_STV602)
490 
491  /* Execute the bridge init */
492  for (i = 0; i < ARRAY_SIZE(stv_bridge_init) && !err; i++) {
493  err = stv06xx_write_bridge(sd, stv_bridge_init[i][0],
494  stv_bridge_init[i][1]);
495  }
496  if (err < 0)
497  return err;
498 
499  /* sensor soft reset */
500  hdcs_reset(sd);
501 
502  /* Execute the sensor init */
503  for (i = 0; i < ARRAY_SIZE(stv_sensor_init) && !err; i++) {
504  err = stv06xx_write_sensor(sd, stv_sensor_init[i][0],
505  stv_sensor_init[i][1]);
506  }
507  if (err < 0)
508  return err;
509 
510  /* Enable continuous frame capture, bit 2: stop when frame complete */
511  err = stv06xx_write_sensor(sd, HDCS_REG_CONFIG(sd), BIT(3));
512  if (err < 0)
513  return err;
514 
515  /* Set PGA sample duration
516  (was 0x7E for the STV602, but caused slow framerate with HDCS-1020) */
517  if (IS_1020(sd))
519  (HDCS_ADC_START_SIG_DUR << 6) | hdcs->psmp);
520  else
522  (HDCS_ADC_START_SIG_DUR << 5) | hdcs->psmp);
523  if (err < 0)
524  return err;
525 
526  return hdcs_set_size(sd, hdcs->array.width, hdcs->array.height);
527 }
528 
529 static int hdcs_dump(struct sd *sd)
530 {
531  u16 reg, val;
532 
533  pr_info("Dumping sensor registers:\n");
534 
535  for (reg = HDCS_IDENT; reg <= HDCS_ROWEXPH; reg++) {
536  stv06xx_read_sensor(sd, reg, &val);
537  pr_info("reg 0x%02x = 0x%02x\n", reg, val);
538  }
539  return 0;
540 }